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Abstract
We can derive the Cauchy's residue theorem (its general form) just by direct integration of a Taylor
series “without” making any radius go to zero, even without the limit circumference idea take place.
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H) Let D be a simply connected open subset of the complex plane, where z = a € D, enclosed by a
rectificable positively oriented simple curve (C*) in D, and f a function defined and holomorphic on D
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D) Being f holomorphic on D ,its infinitely differentiable and equal to its own Taylor series at z=a and in
the neighborhood.
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Let z, = a + pye'® € D ,being 8, = arg (z — a) when travelling counterclockwise
over D around z = a , being the start point: z, and the end point: z; = a + poei(90+2”)6 aD,
then integrating ...
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Both lateral sums are canceled, remaining the middle term
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