
MAKING DERANGEMENTS USING

ELEMENT SWAPS

Pranjal Jain
thereligiousatheists@gmail.com

Aug 2020

1 Introduction

The Steinhaus-Johnson-Trotter Algorithm (SJTA henceforth) is an algorithm
which uses swaps of adjacent elements to generate all permutations of a given
set in n! − 1 swaps. The aim of this paper is to prove a similar result for
derangements.

Problem definition
Let a ‘switch’ refer to the act of exchanging the positions of the elements in
any pair chosen in any permutation of Sn = {1, 2, . . . , n} (unlike the SJTA,
where it would refer to the act of swapping any pair of adjacent elements).

We explore whether it is possible to cover all derangements using only switches,
starting at the derangement Tn = {n, 1, 2, . . . , n − 1}, with the additional
constraint that any switch made in our sequence of switches must result in
a derangement, and never in a non-derangement. Note that henceforth in
this article, any sequence of switches which is referred to satisfies this con-
dition even if it is not explicitly mentioned.

Note that in the absence of this constraint, the problem is a trivial application
of the SJTA, and under the absence of the freedom of swapping any two
elements (and restricting to swapping only adjacent elements), it is trivially
impossible to have such a sequence, since no swap of adjacent elements can
be used to convert Tn into another derangement.
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Abstract: The aim of the article is to show that there always exists a sequence of swaps of

elements, which when applied to a derangement (of n>3 elements) will go through all

derangements of n elements, with an additional constraint that all swaps in this sequence

produce a derangement (not necessarily one which hasn't appeared before in the sequence).
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2 Some lemmas regarding the setup

For convenience, let p(n) be the proposition that all derangements can be
covered as dictated by the above conditions starting at Tn, and let q(n) be
the proposition that the same task can be done by starting at any derange-
ment. We will prove the following lemma regarding p and q.

Lemma 2.1

If p(n) is true for some n, then so is q(n).

Proof

Let p(n) be true for some n, because there exists a sequence A of switches
which goes through all derangements of Sn, starting at Tn.

Let Dn be the set of all derangements of Sn. Let ∆ be the sequence of de-
rangements obtained by applying A to Tn.

Let X ∈ Dn be an arbitrary derangement of Sn, which appears at least once
in ∆ (by definition), and let AX be the subsequence of A s.t. (such that)
applying AX to Tn gets us to X.

Since each switch has a corresponding ‘inverse’, s.t. applying a switch to
some permutation and then applying its inverse leaves the permutation un-
changed, we can also say that each sequence of switches has a corresponding
inverse sequence, s.t. applying the sequence to some permutation and then
applying its inverse leaves the permutation unchanged.

Hence, we can simply apply A−1

X
(inverse of AX) to X to get to Tn, and then

apply A to Tn to cover all elements of Dn, hence showing that a sequence of
switches exists s.t. starting at X, we can cover all elements of Dn. �
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Lemma 2.2

Consider a derangement π of Sn+1 (n ≥ 5), s.t. π(k) = n + 1 for some
k 6= n + 1, and let p(n) and p(n − 1) (and hence, q(n) and q(n − 1), by
Lemma 2.1 ) be true. Then, there exists some sequence of switches A s.t.
when it is applied to π,
(1) it goes through all derangements of Sn+1 in which n + 1 is at the k-th
position.
(2) it never switches n+ 1 with any other element.

Proof

Let ‘a’ denote the element a of Sn, and let ‘[a]’ denote the a-th position
in any permutation (not the element at the a-th position, but the position
itself).

Call [a] the ‘home’ of a for every a ∈ Sn. Hence, an alternative definition of
a derangement of Sn is that it is a permutation of Sn in which none of the
elements are at their respective homes.

Now, let’s analyse π under this definition. If we neglect the element n+1 and
[k] in π (since we are not going to switch n+ 1 with anything), then we see
that every element other than k has a home, and k has no home. This means
that for any permutation of these elements to be a derangement, k can go
to any position but the rest can only go to a position which is not their home.

Consider the following two cases which are mutually exclusive and cover all
possibilities :
Case I : π(n+ 1) 6= k

Case II : π(n+ 1) = k

Case I : In this case, we will temporarily assign [n + 1] as the home of k.
Hence, π (neglecting n+1 and [k]) is simply some derangement of n objects,
since none of the objects are at their respective home. This means that we
can use the fact that q(n) is true to guarantee that there is some sequence
of switches A1 s.t. applying A1 to π covers all derangements of Sn+1 which
have n+1 at [k] and don’t have k at [n+1]. After we apply A1 to π, we will
apply A−1

1 to get us back to π before proceeding.
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This leaves only the derangements of Sn+1 in which k is at [n+ 1]. To cover
these, we will first perform one or more switches so that k moves over to
[n+ 1].

If π(n + 1) 6= π−1(k), then this can simply be done using a single switch
between k and π(n+ 1).

If π(n + 1) = π−1(k), then this switch can’t be made since it will lead us to
a non-derangement permutation (π(n + 1) will end up at its home). So, we
will cover the possibility that π(n+1) = π−1(k) by considering the following
four mutually exclusive cases which cover all possibilities:
Case Ia : k 6= n (so k ≤ n− 1), and π(n+ 1) 6= k + 1.
Case Ib : k 6= n (so k ≤ n− 1), and π(n+ 1) = k + 1.
Case Ic : k = n and π(n+ 1) 6= n− 1.
Case Id : k = n and π(n+ 1) = n− 1.

Case Ia : In this case, we will switch k and π(k + 1), and then we switch k

with π(n+1) (π(k+1) acts as a ‘middleman’ of sorts). If we use the notation
‘a → [b]’ to indicate that a is at [b], then we have the following chronology :

Start : k → [π(n+ 1)], π(k + 1) → [k + 1], π(n+ 1) → [n+ 1]

After first switch : π(k + 1) → [π(n+ 1)], k → [k + 1], π(n+ 1) → [n+ 1]

After second switch : π(k+ 1) → [π(n+ 1)], π(n+ 1) → [k+ 1], k → [n+ 1]

This completes Case Ia.

Case Ib : In this case, we use the same idea of having a ‘middleman’, but
we use k − 1 in place of k + 1 if k ≥ 2, and we use k + 2 if k = 1.

Case Ic : We use the same idea as in Case Ia, but with k − 1 in place of
k + 1 (since now we have k + 1 = n+ 1).

Case Id : We use the same idea as in Case Ia, but with k−2 in place of k+1.

Now that we have a derangement in which k is at [n + 1] and n + 1 is at
[k] (let’s name it π′), we will ignore [n+ 1] and [k] (and hence, the elements
k and n+1), since none of the switches we make henceforth will involve those.
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Now, notice that π′ (neglecting [k] and [n + 1]) is simply a derangement of
n − 1 objects, since each object has a home and none of them are at their
respective homes. Hence, using the fact that q(n − 1) is true, we can guar-
antee that there exists some sequence A2 of switches which when applied to
π′ will go through all derangements of Sn+1 in which k is at [n+1] and n+1
is at [k], which proves Lemma 2 for Case 1.

Summary : First, we showed using p(n) that there is some sequence of
switches A1, which when applied to π goes through all derangements of Sn+1

in which n + 1 is at [k] and k is not at [n + 1]. After applying A1 to π, we
applied A−1

1 to the resultant derangement in order to come back to π, for
convenience.

Then, we made either 1 or 2 (depending on the circumstances) switches to
bring k to [n + 1], and then used p(n − 1) to show that there is some se-
quence A2 of switches, which when applied to the resultant derangement goes
through all derangements of Sn+1 in which n+ 1 is at [k] and k is at [n+ 1],
hence proving Lemma 2 for Case 1.

Case II : In Case I, we first covered the derangements with n + 1 being at
[k] and k not being at [n + 1], and then we covered the derangements with
n+ 1 being at [k] and k being at [n+ 1].

In this case, we first cover the derangements in which n+1 is at [k] and k is
at [n+1] using p(n− 1), then we remove k from [n+1] by switching it with
any element which is not n + 1, and then cover all derangements in which
n+1 is at [k] and k is not at [n+1] using p(n). �
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3 The Induction Step

We will now show using Lemma 2.2 that p(n)^p(n− 1) → p(n + 1) = T (T
denotes true) for n ≥ 5.

Proof

We start off with Tn+1 = {n + 1, 1, 2, . . . , n}, and then use Lemma 2 with
k = 1 to guarantee the existence of a sequence A1, which when applied to
Tn+1 will cover all derangements with n + 1 at [1]. Then, we apply A−1

1 to
the resultant derangement to come back to Tn+1, for convenience.

Now, we switch n+ 1 and 2, and then we use Lemma 2 with k = 3 to guar-
antee the existence of a sequence A3, which when applied to Tn+1 will cover
all derangements with n + 1 at [3]. Then, we apply A−1

3 to the resultant
derangement to come back to Tn+1, for convenience.

We keep going this way till we cover all derangements with n+1 in odd posi-
tions, and then we reverse all the switches made so far and come back to Tn+1.

Now, we will cover the derangements with n+ 1 at even positions.

First, we switch n + 1 with 2 (in Tn+1), and then we switch n + 1 with 1,
hence leaving us with the derangement τ = {2, n+1, 1, 3, 4, . . . , n}. Now, we
use Lemma 2 with k = 2 to guarantee the existence of a sequence A2, which
when applied to τ will cover all derangements with n + 1 at [2]. Then, we
apply A−1

2 to the resultant derangement to come back to τ , for convenience.

Now, we switch n + 1 with 3, and then we use Lemma 2 with k = 4 to
guarantee the existence of a sequence A4, which when applied to τ will cover
all derangements with n + 1 at [4]. Then, we apply A−1

4 to the resultant
derangement to come back to τ , for convenience.

We keep going this way till we cover all derangements with n + 1 in even
positions, hence covering all derangements of Sn+1 and proving the claim. �
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4 Proof for n = 4

Now that we have proved the induction step, we only need to prove the base
cases (i.e. that p(4) = p(5) = T ).

Note that p(3) is trivially false, since there are only 2 elements in D3 and it
requires at least 2 switches to get from one to the other, that’s why we are
choosing n = 4 and n = 5 as our base cases.

For showing that p(4) is true, we can simply draw a graph where the vertices
are derangements of S4 and 2 vertices are connected iff there exists a single
switch which can change one into the other, and notice that the graph is
connected, hence proving the claim.

Figure 1: Graph for n = 4
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5 Proof for n = 5

The proof that p(5) = T can’t be done by hand without immense room for
error, since there would be 44 vertices if we drew a similar graph as before
for n = 5, and each vertex would have either 5 or 6 edges (see Section 6:

Open Problem and Misc Results → Result 1 for the proof of this claim).
Hence, I wrote a Java program in NetBeans IDE 8.2, which was linked with
a database made in MySQL 5.5 to do the job for me.

Code logic : First, we make a table in MySQL which contains all derange-
ments of S5 (order is immaterial), except for T5. This can be done using
a different code (if you do it this way, you can actually skip making the
database altogether and simply feed the derangements straight into the Java
code), but I simply entered them by hand and then used the following mea-
sures to ensure that there were no errors in the entered data :
(1) Checked that there were exactly 43 entries.
(2) Ensured that every entry was unique (by declaring the derangement col-
umn as a primary key).
(3) Writing a simple code to check that each entry was in fact a derangement.

With the database in place, we first define a custom method which takes in
a string and swaps the characters in the specified positions (note that this
method was designed specifically for the purpose of making switches in de-
rangements and it won’t work on arbitrary strings in which there is repetition
of characters).

Then, we link the code and the database and make a loop which goes through
all the entries of the table in the database. For each entry in the table, we
make at most 1001 (this bound can be changed) random switches in T5

(ensuring that each switch results in a derangement). After each switch, we
check if the resulting derangement is equal to the table entry in question.
We keep making these switches till one of the following occurs :
(1) The derangement made using switches on T5 equals the table entry in
question.
(2) 1001 switches have been made without reaching the table entry in ques-
tion, in which case we print out this particular entry for manual checking.
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Once one of these events occurs, we move to checking the next entry of the
table.

Hence, if at the end of execution we see that there is no text output, that
means that the code found a path from T5 to each entry in the table, meaning
that in the graph for n = 5, we can always find a path starting at T5 and
ending at D ∈ D5, for every D, hence proving that the graph is connected
and p(5) = T . This is indeed what I received as the result.

You can view and copy my code and view the MySQL table here : https://
drive.google.com/drive/folders/11IYgcBCDXrya36ZB0bZefQwsu3wdl8DC?

usp=sharing.

In the next section, I propose an open problem and prove some miscellaneous
results about the setup, and the reader may judge their usefulness in solving
the open problem.
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6 Open Problem and Misc Results

Let α(n) refer to the graph with vertices being derangements of Sn, and any
pair of vertices is connected iff making a single switch in one derangement of
the pair is sufficient to construct the other in the pair.

The open problem I wish to propose is that of finding the least number of
switches it takes to cover all elements starting at Tn as a function of n, and
to find how this function changes when one changes the starting point.

I feel that α(n) will be symmetric w.r.t. (with respect to) all the vertices
which have the same number of edges, so the function will be the same for
any pair of starting points which have the same number of edges. Note that
this is pure speculation on my part.

Some miscellaneous results

Result 6.1 : Bounds on the number of edges at each vertex

For any given derangement D of Sn, let fn(D) be the number of edges at the
vertex representing D in α(n). Then,

(1) For n even (n ≥ 4),

nC2 − n ≤ fn(D) ≤ nC2 −
n

2
.

(2) For n odd (n ≥ 3),

nC2 − n ≤ fn(D) ≤ nC2 −
n+3

2
.

Proof

Let D be some derangement of Sn. Define βn(D) to be the graph which
has elements of Sn as vertices, where any pair of vertices is connected by an
edge iff performing a switch on that pair in D results in a non-derangement
permutation. Also, let E(G) denote the number of edges in any graph G.

Since the total number of switches one can perform in any permutation of n
elements is nC2, the number of switches in D which lead to a derangement
is nC2 − E(βn(D)). Note that this is also the value of fn(D).
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Hence, our problem now reduces to finding a bound on E(βn(D)).

Firstly, notice that every vertex in βn(D) has either 1 or 2 edges, since any
a ∈ Sn appearing at [b] in D can’t be switched with b and D(a) (since doing
so would result in a non-derangement). Hence, a has 2 edges in βn(D) iff
b 6= D(a), and a has 1 edge in βn(D) iff b = D(a).

Further, notice that if some a ∈ Sn has exactly 1 edge in βn(D), then it
must be connected to some b ∈ Sn which also has exactly 1 edge in βn(D).
Hence, vertices with single edges come in pairs in βn(D), which also means
that we can never have a vertex with exactly 1 edge connected to a vertex
with exactly 2 edges.

Lemma

The set of all vertices in βn(D) with exactly 2 edges each forms a set of
polygons.

Proof

Firstly, we can’t have exactly 1 or exactly 2 vertices with exactly 2 edges
each. Hence, there are 3 or more such vertices (or zero).

Let a1 be an arbitrary such vertex, and let a2 be one of the two vertices
connected to a1. Let a3 be a vertex connected to a2 (a3 6= a1). Now, either
a3 is connected to a1, in which case a1 is the part of a complete polygon
which is disconnected from the rest of the vertices, or a3 connects to some
a4 6= a1, a2.

Now, either a4 connects to a1, in which case a1 is part of a polygon discon-
nected from the rest of the graph, or it connects to some a5 6= a1, a3. We can
keep going this way, and eventually, we will either show that a1 is part of a
polygon which is disconnected from the rest of the vertices, or we will run
out of more vertices to introduce, hence having to connect the last vertex to
a1 and showing that a1 is part of a polygon.

Hence, we have shown that any arbitrary vertex with 2 edges must be part of
a polygon, hence proving the lemma. �
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Now, let the number of vertices in βn(D) with exactly 1 edge be 2m, for some
non-negative integer m. Hence, we see that

E(βn(D)) = m+ (n− 2m) = n−m . . . (i)

This is because m edges in βn(D) are contributed by the 2m vertices with
exactly one edge each, and the remaining n−2m vertices form polygons with
a total vertex count of n− 2m, and hence, a total edge count of n− 2m.
For n even we have 0 ≤ m ≤ n

2
, and for n odd we have 0 ≤ m ≤ n−3

2
(since we

can’t have a single vertex with exactly 2 edges), hence proving the claimed
inequality for fn(D). �

Result 6.2 : The number of solutions in D given βn(D)

Consider a graph G with n vertices, each representing a unique number in
Sn, s.t.
(1) any vertex in this graph has either exactly 1 or exactly 2 edges.
(2) any vertex with exactly 1 edge is connected to another vertex with exactly

1 edge.
(3) no vertex is connected to itself.
(4) no pair of vertices is connected by more than one edge.

Let the number of polygons in this graph be k. Then, there are 2k solutions
in D ∈ Dn for the equation

βn(D) = G

Proof

Firstly, notice that the lemma proved as part of Result 1 also applies to any
G as defined above . Hence, we can guarantee that the we can partition the
vertices in G into those that are vertices of a polygon and those that have
only 1 edge which connects them to another vertex with only 1 edge.

First, let’s consider an arbitrary pair of elements with exactly one edge each
(a, b) ∈ S2

n
s.t. a is connected to b. Since we want G to be βn(D) for some

D ∈ Dn, this must mean that a and b can’t be switched with each other
and only each other in D (if we want the switch to result in a derangement),
meaning that a is at [b] and b is at [a] in D (i.e. D(a) = b and D(b) = a).
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Since the choice of a and b was arbitrary, this means that we now know D(a)
for all a ∈ Sn which has only 1 edge.

Now, we’ll try to find D(a) if a is the vertex of a polygon in G. Consider
an arbitrary vertex a1 of an arbitrary polygon with s sides in G. Let the
vertices joined to a1 be a2 and as, those joined to a2 be a1 and a3, and so on,
all the way till as. Consider the following pair of mutually exclusive cases
which cover all possibilities :
Case I : D(a1) = a2
Case II : D(a2) = a1

Case I : In this case, we now know thatD(a2) = a3, D(a3) = a4, . . . , D(as−1) =
as and D(as) = a1, hence forcing us into one and only one choice for the value
of D and D−1 over these s elements.

Case II : In this case, we know that D(a3) = a2, D(a4) = a5, . . . , D(as) =
as−1 and D(a1) = as, hence forcing us into one and only one choice for the
value of D and D−1 over these s elements.

Hence, we have exactly 2 distinct ways to choose the values which D takes
over the vertices of any given polygon in G (and the choice for any polygon
doesn’t affect the choice for any other polygon), hence showing that there are
exactly 2k choices for D ∈ Dn s.t. βn(D) = G (since there is only one way to
choose the values which D takes over the vertices with exactly 1 edge each),
hence proving the desired result. �

It is also worth mentioning that this result gives us an expression for the
number of vertices in α(n) with a given number of edges.
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Result 6.3 : ‘Rotations’ of a derangement

Call a permutation (of Sn) π
′ a ‘rotation’ of a permutation (of Sn) π iff there

is some k ∈ {0, 1, 2, . . . , n− 1} s.t.

π(r) = π′[modn(r + k)] ∀ r ∈ Sn

where modn(a) ≡ a (modn) and modn(a) ∈ Sn ∀ a ∈ Z.

Further, call a derangement D ∈ Dn ‘of level L’ iff there are exactly L

rotations of D which are derangements. Then,
(1) all rotations of D are of the same level as D.
(2) there are no derangements of level n in Dn.
(3) all derangements of level n− 1 in Dn are rotations of Sn.

Proof

The proof for the first two claims is trivial, and so is left out.

It is easy to see that all rotations of Sn other than itself are derangements,
and so they are all of level n−1. Also, a defining property of any rotation D

of Sn is that the non-derangement rotation of D (i.e. Sn) is such that every
element is at its home. Hence, showing that the non-derangement rotation
of an arbitrary level n−1 derangement X must have the property that every
element is at its home suffices to prove the claim.

We will show this using a proof by contradiction. Assume that the non-
derangement rotation Y of X (where X is a derangement of level n− 1) has
some element a which is at [b] 6= [a]. Hence, if we consider the rotation Y ′ of
Y (and hence of X, since any rotation of Y is also a rotation of X) defined
as

Y (r) = Y ′{modn[r +modn(a− b)]} ∀ r ∈ Sn

we see that a = Y (b) = Y ′(a), meaning that Y ′ is not a derangement.
However, this is contradictory to the assumption that X is a level n − 1
derangement, since Y ′ 6= Y (a consequence of the fact that a 6= b), meaning
that there are 2 distinct rotations of X which are non-derangements. Hence,
the claim is proved. �
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It may be worth noting that if n is odd, then βn(D) for any level n − 1
derangement D ∈ Dn is an n-gon (and hence, all such D have exacly nC2−n

edges in α(n)), and if n is even, the same is true for all level n− 1 derange-
ments D ∈ Dn, except for when D is defined as

D(r) = modn

(

r +
n

2

)

∀ r ∈ Sn

since in this case, we have

D−1(r) = modn

(

r −
n

2

)

= modn

(

r +
n

2

)

= D(r)

meaning that the 2 elements which r can’t be switched with are equal. In
this special case, D will have nC2 −

n

2
edges in α(n).

Result 6.4 : Switches always change the parity of the permutation

It’s obvious at first sight that any switch of adjacent elements always switches
the parity of the permutation in which the switch was executed. However, I
claim that the non-obvious result that a switch between any pair of elements
changes the parity of the starting permutation holds as well.

Proof

Consider some permutation π of Sn, in which we wish to switch some a

(which is originally at [A]) with some b (which is originally at [B]) (A < B).
Let the permutation obtained after making this switch be π′.

Let p be the be the number of values of k ∈ Sn s.t. k ∈ (A,B) and π(k) > a,
and let q be the number of values of k ∈ Sn s.t. k ∈ (A,B) and π(k) < b.

Let N be the number of inversions in π, and likewise define N ′ for π′ (an
inversion is a pair {x, y} s.t. x > y and π(x) < π(y)).

Now, let us consider the new inversions which were created as a result of
switching a and b, and those that were ‘destroyed’ as a result of the same.
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Inversions involving an element at some [C] (s.t. C ∈ [1, A) ∪ (B, n]) and a

or b are neither created nor destroyed, since the position of a and b w.r.t. an
element at such a position is not changed by this switch.

If we look at inversions involving an element at some [C] (s.t. C ∈ (A,B))
and a, then we see that p new inversions are created, and (B − A − 1 − p)
pre-existing inversions are destroyed. Likewise, considering the inversions
involving an element at some [C] (s.t. C ∈ (A,B)) and b, then we see that
q new inversions are created, and (B −A− 1− q) pre-existing inversions are
destroyed.

One inversion involving b and a is also created/destroyed (depending on
whether it existed before the switch or not). Hence, we get that

N ′ = N + p+ q − (B − A− 1− p)− (B − A− 1− q)± 1 ≡ N + 1 (mod 2)

(the ±1 is to account for the inversion of a and b which is created/destroyed
by the switch), hence proving the claim. �

This result could prove relevant for the open problem because it tells us that
any sequence of switches of odd length must end at a derangement of parity
opposite to that of the starting derangement, and likewise, any sequence of
switches of even length must end at a derangement with the same parity as
the starting derangement.
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