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Abstract

Preceptron model updating with back propagation has become the routine of deep learning. Continu-
ous feed forward procedure is required in order for backward propagate to function properly. Doubt-
ing the underlying physical interpretation on transformer based models such as GPT brought about
by the routine explaination, a new method of training is proposed in order to keep self-consistency
of the physics. By treating the GPT model as a space-time diagram, and then trace the worldlines
of signals, identifing the possible paths of signals in order fot a self-attention event to occure. With
a slight modification, self-attention can be viewed as an ising model interaction, which enables the
goal to be designed as energy of system. Target is treated as an external magnetic field inducing sig-
nals modeled as magnetic dipoles. A probability network is designed to pilot input signals travelling
at constant speed through different routes. A rule of updating the probabilities is designed in order
to form constructive interference at target locations so that instantaneous energy can be maximised.
Experiment is conducted on a 4-class classification problem extracted from MNIST. The results ex-
hibit interesting but expected behavours, which do not exist in a bp updated network, but more like
learning in a real human, especially in the few-shot scenario.

1 Introduction

Self-attention has a core idea of positive feed-
back, letting two similar vectors attend to each
other to be updated and become even more similar.
If non zero attention weights are evenly distributed
only within the similar vectors close enough,
meanwhile setting attention weights towards any
other key vectors to be zero, then self-attention is
simplified to ising model [Binder(2001)]. If vec-
tors are indeed interacting to each other like mag-
netic dipoles in ising model, those vector/dipoles
can only exert forces within a limited spatial range
at any time. The GPT [Radford(2018)] model can
be viewed as a space-time diagram, with time on
the x-axis. Any input query vector treated as a sig-
nal with direction is teleported to its output po-
sition instantaneously, tracing its worldline as a
vertical line. All the key vectors interacting with
the query must trace worldlines intersecting at one
same point on the query worldline to allow at-
tention mechanism physically take place. Earlier
signals can travel to their future but they can not
travel backward in time to take part a self-attention

interaction event held before their emision time.
Every timestamp in every target position, there is
a self-attention event, excluding the ones not pos-
sible to arrive in time, a signal needs to make a
choice over which event should it join. Hence
there is a probability associated with each world-
line leading to a destination event.

It is reasonable to assume that multiple sig-
nals can be emitted at one timestamp, all of them
are identical to their normalized input vector at in-
put time. Signals travelling different worldlines
according to a probability distribution. In a self-
attention interaction event, signals from different
space-time sources bringing different values inter-
act to each other, the similarity (dot product) be-
tween normalized signals is in the range [−1,+1],
and our goal is to maximize the total similari-
ties between all signals in this self-attention event.
Treating the self-attention event as a ising model
interaction ’meeting’, signals can interact to each
other freely, or they can be influence by a target
signal. In ising model target is the external mag-
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netic field, interacting to every dipole signal. In
the meeting analogy target is the host of meeting
event, selecting his prferable guests which are ob-
viously more similar to the him. By telling the
sources to increase or decrease the probability of
sending signals (guests) to his meeting. A host
can maximize the total similarity score, same as
the energy of ising model. Once the probabili-
ties are learned, sources will send similar guests

to the meeting even the host is absence; this can
be described by a constructive interference process
[Born and Wolf(1999)]. Our energy model con-
siders only the host-guest interactions, but not the
guest-guest interactions, because it increases com-
puting expense, and the theory will be much more
complicated as it will be discussed in the Further
Work section.

2 Background

2.1 Self attention as ising model

Attention weights are higher between two simi-
lar values, indicating they are neighbours in phase
space. A signal can be treated as a magnetic dipole
in phase space, having similaries with other sig-
nals sij = qi · qj ∈ [−1,+1]. Whenever the
cosine-similarity in phase space exceeds a threash-
old, and also the two signals both exist at same
time, attention interaction can occure. Interacting
dipoles tend to point toward a same direction to
lower the system’s potential energy.

qi → mean(qi +
∑

j ∈ {sim(i, j)

> threashold}

qj)

can be considered as an evenly distributted atten-
tion weight being applied.

Potential energy of an ising model is usually
written as

E = −
∑
i,j

J η(i, j)qi · qj −
∑
i

qi ·Bext (1)

η(i, j) is 1 if qi and qj are similar else 0; J is the
coupling coefficient, can be treated as constant=1.
Ignoring the guest-guest interaction

∑
i,j

term, treat-

ing target signal as the external field Bext, and
only consider the interaction between dipoles and
the target, is a simplified ising model.

Applying attention mechanism between target
and input signals, it is convenient to split signals
into two groups using a similarity threashold: the
attended group as similar friends, and others as the
non-attending second group. Target is allowed to
adjust himself according to the influences acquired
from interacting friends as signals arriving. Then

the whole system’s energy is calculated using this
attended target.

Transformation of signal can occur any time
between the signal’s emision and its arrival time
in the ising model event. Such transformations are
ignored temporarily; in fact mean field theory can
be used to explain the origin of non-linear transfor-
mations. This will be discussed in Further Work
section, and now for simplicity signals are kept un-
changed until they attend with the target.

2.2 GPT worldlines

Take one GPT layer, self-attention transformer re-
ceives input signals following different worldline
trajectories. Fig1 shows x1 signal need to travel
at a lower speed compare with x2 speed, if both
of them need to arrive transformer at time T. This
is also reflected in the gradient of trajectories in
space-time diagram. To be more intuitive, assum-
ing travelling speed is constant and path length
of signal conduction is extended as a compen-
sate. This describes better towards reality, plot-
ted in the constant speed picture of space-time di-
agram. Signals travelling from an emitter to a tar-
get receiver with a fixed spatial location, it can
choose multiple paths, each path has a different
length so that the travelling time will be a spec-
trum of durations. Noticing the route probabil-
ity is not the same thing as self-attention weight.
Self-attention weights are calculated within trans-
former as receiver at time T, whereas route proba-
bility is formed at emision time in the source input
neuron position.

∑
i
ai,T = 1 is the normalization

of self-attention weights, whereas
∑
t

n1,t

N = 1 is

the normalization of route probabilities, N is the
total number of signals emitted per unit time if
neuron x1 is activated.
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2.3 Goal as function convolution

Method of calculating similarity between two sig-
nals is dot product. Query signal is the external
magnetic force experienced at target(destination)
location, Keys are signals arriving target from dif-
ferent sources. A route is defined as a (source, tar-
get, travel duration) triplet. Now we implement
the same idea of attention weight update on emi-
sion route probabilities. If the arriving signals are
similar to the target, then increase the correspond-
ing route probability. The consequence would be
if we randomly pick two signals arriving at same
time in any self-attention event, if they are sim-
ilar, then source neurons will send more signals
along the two paths with correct travelling dura-
tion, so that more signals would follow these paths
and interact in the same ’meeting’ event. If query
vector is always present and acting as a host, he
can welcoming similar guests to join his meeting
and expelling unwanted dissimilar guests since ac-
cepting those guests will cost more energy. Define
this process as magnetic induction mutual atten-
tion. After route probability update is completed,
signals arriving an attention interaction ’meeting’
will form a constructive interference.

If signals do not disappear immediately after
his arriving ’meeting’ event, it may interact with
signals arrive in the future. Our assumption is that
signals must arrive simultaneously and are not al-
lowed to survive after 1 timestamp, because old
meeting event will be dismissed to allow the next
meeting to start. The reality may not be so strict.
Two signals do not have to arrive simultaneously
to enable self-attention interaction; as long as their
worldline routes converge into a vacinity range in
space-time diagram, self-attention interaction can
take place. This situation is ignored for simplicity

reason.
Host signal is assumed to be present all the

time. Consider all the guest signals and their ar-

rival time distribution, f(t) =
t∫

τ=0

ρτ,tx(τ)dτ is

the resultant signal received by host at time t. ρτ,t
is the emision number per unit time from source
neuron at time τ and arrives attention interaction
event held at time t. Our goal is to maximize the
peak of similarity between target signal and the
received signal J = supt∈[0,T ] f(t) · g(t). This
is the maximum instantaneous energy of the ising
model. If the peak is high enough then hopefully
the host will be able to emit signals to the next
layer or triggers an avalanche of phase change in
the ising model. For simplicity, assume the target
host signal is

g(t) =

{
1 0 ≤ t ≤ T
0 otherwise

Host signal is set to be a top-hat function with con-
stant vector same size as signals 1 = (1, 1, ..., 1)T

during the interaction time period [0, T ]. There-
fore the goal becomes a convolution function,
which describes the strength of influence caused
by impulse of arriving signals. This is also the
peak of energy-over-time function in our simpli-
fied ising model.

J = sup
t∈[0,T ]

t∫
τ=0

ρτ,tx(τ) · 1dτ

This goal applies to a single learner which can
only response to one class. In order to solve a
multi-class classification problem, we will need
multiple learners.

(a) signal worldlines in GPT model (b) constant speed worldlines

Figure 1: space-time diagram of signals
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Figure 2: 4-class worldlines

3 Method

4 classes are chosen out of 10 from MNIST
dataset, y ∈ {0, 1, 2, 4}. Spatial dimention is 2 in
order to input features of a 2D picture, plus one
temporal dimention to form our space-time dia-
gram. Preprocessing the picture requires trunca-
tion to size [27,27], cutting into non-overlapping
3x3 regions, then reshaped to [W,H,9], where
W=9 and H=9. Size of signal vector is 9+1, and
there are WxH=81 different sources of signals.
The extra one size of signal is used to represent the
resting state, in case if all the 9 pixels are all 0, the
normalized signal can still have modulus length
equals to 1. xij · xij = 1∀i ∈ [1, 9], j ∈ [1, 9],
xij ∈ R10. 4 target classes are placed just outside
the spatial corners of the picture as shown in Fig2.
Target signal also has its size increased by 1.

target(:→y)(t) = gy =

(
0

1
31 ∈ R9

)
∀t ∈ [0, T ]

All signals are zero-centralized and then normal-
ized, having modulus length equals 1. Anywhere
else in this paper whenever a 1 appears, it really
represents gy, the unattended constant target sig-
nal, physically interpreted as the magnetic external

field.

Manhattan distance is used to calculate spa-
tial distances, signal speed is set to be constant
1. Every souce ij maintains its own route proba-
bility matrix. Time is truncated at T=24, enough
for any signal to reach its target destination (maxi-
mum distance is 18), plus 6 timestamps to receive
final signals for the system to reach equilibrium.
Each route probability matrix has shape [4, 25],
covering the 4 corner classes with any travel du-
ration t − τ ∈ [0, 24]. There are routes not pos-
sible of travelling because of the speed limit, and
also there are routes detoured so signal would ar-
rive later than expected. No noise is add along
the routes, and no transformation is applied to the
travelling signals.

Each training step, only one input picture is
fed into the network, allowing system to evolve
24 timestamps, apply attention mechanism at each
timestamp interaction event, meanwhile accumu-
lating the modification on each travelling duration.
After 24 timestamps the accumulated modification
is applied to the route probabilities and then nor-
malized.
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Mutual attention is applied between target host
as query and input signals as keys to obtain the at-
tended target:

hy(t) =
∑
m(t)

sym∑
l′,m′

sl′m′
vm

where

sym =

{
1 if qy · km ≥ 0.7

0 elsewise
(2)

This is just averaging the query with all keys hav-
ing similarity greater than a threashold, under the
constraint that signal could arrive the target lo-
cation in time. km = xij(τ) with source id
m(t) := 9i + j | dist(ij → y) ≤ t − τ ; and
query qy = gy = 1.

After attention, target with all similar neigh-
bours would have similarity equals 1, and the re-
maining signals would interact with the attended
host target in the convolution:

Jy = sup
t∈[0,T ]

t∫
τ=0

∑
ij|sym=0

ρ
(ij→y)
τ,t xij(τ) · hy(t)+

∑
ij|sym=1

ρ
(ij→y)
τ,t 1dτ

(3)

The goal is not maximised using gradients and
back propagation. Instead we want to deliver all
signals emitted from any source to the correct
path, i.e. ρ

(ij→y)
τ,t = Np

(ij→y)
δ , The duration of

travelling is δ = t − τ , N is the total number of
signals emitted per unit time in one exitation pe-
riod from source neuron ij towards target y, which
can be treated as constant. As route probability
p
(ij→y)
δ∗ → 1, with a suitable choice of travel du-

ration δ∗ on each source-destination combination
(i,j,y), a signal can interact with as many similar
(≥ 0.7 threashold) ’friends’ as possible, hence af-
ter the attention process,

Jy →
∑

ij|sym=1

t∗(i,j,y)=τemit+δ
∗∫

τ=τemit

Ndτ

because the first dot product term in Eq3 goes to 0
due to conservation of probability.

This implies if our goal is to minimise the in-
fimum of negative potential energy (as an alter-
native way of saying maximising J), all similar
signals chosen by host shall arrive at t∗(y) =
t∗(i, j, y)∀i, j simultaneously, forming a sharpe

spike on graph showing received signal number
distribution over time, producing a low entropy
state. Due to the presence of host signal gy(t),
generalized to be time dependent, t∗(y) is ex-
pected to appear around the peak of gy(t)’s mag-
nitude.

ρ:→y(τ, t) =
∑
ij

ρij→yτ,t

In the MNIST experiment signals are emitted only
at τ = 0, therefore for target y, the similar signals’
entropy is

Hy = −
T∫

t=0

q(t)logq(t)dt

where q(t) := ρ+→y(t)
T∫

t=0

ρ+→y(t)dt

and the superscript

symbol ’+’ means all the similar signal sources.
This entropy is expected to decrease in order for
the similar signals to induce a larger power.

However under the assumption that target ex-
ternal field is time-independent rather than a spiky
impulse, the updating rule we are using is opti-
mizing the energy during all time, not trying to
concentrate the receiving peak, so there is a slight
mismatch between our goal and the weight updat-
ing rule. Despite this difference the model can still
learn, more detailed analysis will be done in the
Experiment section.

Route probability update method is simple,
adding a modification term and then re-normalize
over travel duration δ = t− τ :

pij→yδ (new) =
pij→yδ + ∆wij→yδ∫

δ

pij→yδ + ∆wij→yδ dδ
(4)

∆wij→yδ =


η+p

ij→y
δ if xij · gy ≥ 0.7

η−p
ij→y
δ if 0.7 > xij · gy > −0.7

η−−p
ij→y
δ if xij · gy ≤ −0.7

where η+, η−, η−− are learning rates for differ-
ent similarities between arriving signals and tar-
get. Learning rates can vary for different number
of training samples. For C=4, K=5 few-shot setup,
η+ = 1.0, η− = −0.5, η−− = −0.8 are cho-
sen. 0.7 is a threashold defining the term ’similar’,
which can also be changed.

After the model is trained for 1 epoch, infer-
ence process is to calculate Jy according to Eq3
∀y ∈ {label set} as if they are activated, the pre-
diction is ypred = arg maxy Jy
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C=4,K=1

epoch=5

C=4,K=5,

epoch=1

C=4,K=10

epoch=1

C=4,K=5

epoch=10

Our+SeqTrn 66.63% 83.50% 88.65% 86.99%

Our+MixTrn NA 86.66% 82.48% 83.81%

BP+SeqTrn 38.41% 43.79% 35.04% 77.23%

BP+MixTrn NA 53.28% 53.86% 79.99%

Table 1: few-shot experiment results

4 Experiment

4.1 MNIST classification

Few training examples are randomly selected from
MNIST, forming 3 train sets, each contain 1, 5,
10 pictures per class respectively. One picture is
fed into the network for each train step. Sequen-
tial train receives inputs from different classes
in sequential order; mixed train shuffles the in-
put order. For example with [a,b] being the two
classes, SeqTrn(C=2,K=3)=[a,a,a,b,b,b], whereas
MixTrn(C=2,K=3)=[a,b,b,a,b,a]. A number of
epoch repeats the train procedure.

A fully connected neuron network with self-
attention appled on input layer, then through a
fully connected trainable weights of shape [4,
729], predicting a softmax probability, using
cross-entropy loss and Adam optimizer to back
propagate the gradients. This one-layer model is
the usual way of training, and it is the compare
benchmark for our proposed induced interference
training.

Test is evaluated on MNIST test set only using
the 4 training digits [0,1,2,4].

Our dynamic induced interference training
outperforms the traditional back propagation
model in few-shot scenario, and it doesn’t suf-
fer from the catastrophic forgetting in sequential
training. Result is in Table1. In fact sequen-
tial learning can sometimes be more hepful. For
the one-shot situation, mixed training makes no
difference with sequential training, but the accu-
racies are largelly influenced by the quality of
the one chosen picture. Therefore the one-shot
experiments are repeated for several times and
then take the average accuracy. Increasing K and
epoch number can eventually let the BP network to
achieve accuracies up to 94% or higher, but clearly
human learning doesn’t require that much data and
train steps.

Catastrophc forgetting is another important ef-
fect need to be addressed. Classical fully connect
matrix transforms the common manifold where
all input signals are projected on. Learning one
class will affect the shape of manifold and hence
the relative distances between current input vector
forwarded onto the hidden layer and the anchor
vectors (W [y, :]∀y 6= target) of other classes,
therefore changing the output similarity with other
classes.

In our ising model based forward propagate
mechanism, route probabilities towards different
target learners are normalized separately, updat-
ing the probabilities towards y = 0 doesn’t affect
the y = 1 routes, therefore forgetting is not obvi-
ous, unless most of the two different class’s input
sources cannot distinguish the two target’s space-
time coordinates. This circumstance is like em-
ployees adjusted their departure time to arrive their
working company at 9:30 am normally; then the
next day their working place is moved to another
venue, all the employees leave home as usual time
and still arrives the new company venue around a
same time; this is highly unlikely to happen with-
out the employees re-adjust their departure time.

If the similar signals cannot arrive simultane-
ously, then the proportion of dissimilar signals in
an attention event will increase. This will cause
the expected similarity between any two signals to
decrease. This effect has been proven; diagonal
along Table2 has shown the estimated similarity
metric after training has finished, and the supervis-
ing external target signal field has been withdrawn
for this evaluation. In a learner’s receiver view,
probability distribution of arriving signal count
over all sources can be calculated. This probability
distribution becomes stable as more signals are ar-
riving towards the end of observing time window.
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y=0 y=1 y=2 y=4

learner0 0.2971 0.1876 0.0914 0.1559

learner1 0.1551 0.4441 0.1507 0.1130

learner2 0.0833 0.1168 0.1912 0.0534

learner4 0.0951 0.1608 0.1258 0.2409

Table 2: expected signal similarity during stable period

policy0 policy1 policy2 policy4

learner0 15.99 9.49 10.17 7.24

learner1 18.05 18.49 13.63 12.75

learner2 17.24 14.28 17.97 17.51

learner4 9.72 10.31 9.89 15.43

Table 3: expected signal arrival time for sending policy

18 timestamps is the lower bound of travelling
time for the furthest separated source-destination
pair. This leaves 6 timestamps corresponding to
6 snapshots of complete-information interaction
events, calling this the sable period. Therefore
each snapshot the expected similarity can be cal-
culated as:

Eql,qmS(t) =
∑
lm

qlqmxl · xm

where l ∈ {1...81} loopping through source ids,
and probability of receiving a signal from the
source is

ql(t) =

t∫
τ
ρi,j→yτ,t dτ

∑
l

t∫
τ
ρi,j→yτ,t dτ

∀l = 9i+ j

(5)

Then the expected similarity is averaged over
t ∈ [19, 24] for a number of input examples se-
lected from a desired label. 4 learners all have
a largest expected similarity for their own label.
This is a solid evidence that the inducing external
field’s precense during training process is helping
the input signals to show greater expected similar-
ity only in the correct learner. This is the same

analogy as magnitizing a neutral iron block using
a magnant. Take away the magnant, the iron block
still exhibit magnetic field only in certain direc-
tion.

Another interesting phenomenon was ob-
served when analysing the expected signal arrival
time shown by Table3. We know the sources
are sending signals with different travelling dura-
tions according to a distribution. A distribution
is trained for each target destination, so there are
4 trained signal sending policies, making up the
route probability array. What would be the con-
sequence of using a wrong policy on any target?
Obviously the optimizing objective would not be
as high as if the correct policy is used because
constructive interference would be broken. Apart
from that, according to experiment, when white in-
put is used, all sources send signals at same time,
the expected signal arriving time using a wrong
policy would be shorter than the time if the cor-
rect policy is used. Although is is not always true
if learners are re-trained, but most of the time this
effect has been observed. It seems to suggest that
in human thought, correct answer usually takes
longer time to be realized, and the first impression
answer is likely to be wrong.
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Figure 3: double slit classification

4.2 Double slit experiment

With signal emision time spanning for a dura-
tion L, an experiment was firstly designed on a
NLP task. However the NLP experiment was
not successiful. The main reason of failure is
that no activation state can be easily defined
for the input word vectors; i.e. wv · 1 6=
similarity(word, target). Unlike the previous
mnist experiment, where the 3x3 feature’s activa-
tion level can be easily defined, NLP word vec-
tors has been transformed into a number of ’top-
ics’ equals to the number of vector size. Each
’topic’ has a scalar ’magnitude’ but its range can-
not simply be stretched to [−1,+1]. A viable
representation is to use the crude one-hot repre-
sentation as input, with size of dictionary equals
the number of sources, each having a unique po-
sition. This would produce a route probability
tensor with shape [Ndict, C, T ], with dictionary
size Ndict, number of classes C and travel dura-
tion with maximum value T. This is too large to
be trained in practical; for large picture/video in-
puts this can also be a huge problem for the train-
ing. Therefore some kind of aggregation+pooling
method need to be used in order to reduce the num-
ber of signal travelling routes. Such a method will
be proposed in the Further Work section.

In order to verify whether our induction model
works for a time-varying signal source, A dou-
ble slit experiment was designed to solve a 2-class
classification problem. The model was setup to

identify whether two signal sources are in phase
or out of phase, as shown in Fig 3. Two signal
sources are rotating 2D unit vectors:

xi(t) =

(
sin(ωt+ θi + ε)

cos(ωt+ θi + ε)

)

For the in-phase input, θ0 = θ1 = 0; for the out-
of-phase input, θ0 = 0, θ1 = π. ε is a small ran-
dom noise, ω is the coherent angular velocity of
signal rotation. Two targets are both unit vectors
y = (0, 1)T := 1. Similar as in the mnist experi-
ment, one dummy dimension is added to represent
the ’rest state’. Also the attended target hy(t) is
used to calculate the ising model energy.

The idea of the experiment is that if in-phase
signals are emitted from input sources, then the
route probabilities towards 1(0) are trained such
that all signals arrived will form a constructive in-
terference pattern at position of 1(0). However
this doesn’t guarenteen a constructive interference
in 1(π)’s position with a different route proba-
bility policy when input signals remain in-phase.
Therefore both the energy averaged over time and
the expectation of similarity will be the largest at
1(0)’s position.

The opposite situation occures for the out-of-
phase class. Therefore the two learners would be
able to solve the classification problem.

Experiment shows expected results, model can
make predictions with 97% accuracy. The code for
both experiments is released. 1

1https://github.com/ttssrr423/InducedInterference
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5 Further Work

5.1 Multi-layer encoder

There are three things mentioned in earlier section
which are not resolved.

1. Dipole-dipole or guest-guest interaction
among the arriving signals was ignored.
This is an over-simplification.

2. A method of aggregation+pooling need to
be used to reduce the effective number of
input sources. This reduces the number of
routes need to be trained.

3. Non-linearity need to appear somewhere
with a reasonable origination.

A hierachial attention mechanism is a pro-
posed solution to the problems above. Attention
is normally used among vectors, however it can
be generalized to be used among any ranked ten-
sors. Scalar attention hi =

∑
j
aijvj is just per-

ceptron model in another form, with scalar atten-
tion weight aij(qi, kj) looked up from a trainable
matrix. An vector v

(1)
j with elements selected

from set H(0) = {h1, h2, ...hi, ...}, forms a sub-
set v(1)

j′ = (h1, h2, ...hD) ⊂ H(0). Superscript
(1) indicates the rank is 1, therefore a vector is ag-
gregated from rank 0 scalars. Now building the
attention mechanism iteratively:

h
(1)
i′ =

∑
j′

a(1)(q
(1)
i′ ,k

(1)
j′ )v

(1)
j′

=
∑
j′

a(1)(q
(1)
i′ ,k

(1)
j′ )AGG

j′←{i}

∑
j

a(0)(q
(0)
i , k

(0)
j )v

(0)
j

Superscript on attention weights are indicating
the rank of tensor input pairs for the attention sim-
ilarity function. This equation is the general form
of self-attention normally been used.

Repeat the aggregation-iteration a few more
steps further, a rank R tensor can be treated as the
output of the hierachial attention:

h
(R)
i′ =

∑
j′

a(R)(q
(R)
i′ ,k

(R)
j′ )AGG

j′←{i}
h
(R−1)
i

Dipole-dipole interactions are allowed to take
place among the values in each ranked layer, using
a threashold-based attention mechanism as Eq2.
Hence the previously ignored interaction is taken
into consideration in a hierachial way.

The number of elements in h
(R)
i′ is DR where

D is the number of r-1 ranked tensor in a r ranked
tensor. This exponentially increasing size will
slow the computation until the forward propagate
calculation becomes impossible.

The solution to the problem is to use mean-
field approximation as the pooling method. In
a high rank tensor this enables the dipole-dipole
interaction to be modelled. Approximation av-
erages the attended values to produce a scalar,
µ(h

(R)
i′ ) = h

(R→0)
i′ . A useful property is that

similarity between attended value h
(R)
i′ and acti-

vation state 1(R) now can be calculated using a
dot product operation, because more activated el-
ements/neurons will increase their parent tensor’s
mean field until it reaches the fully activated state
µ(1(R)) = 1. The suqshing of a tensor into a
scalar used the idea of renormalization, which can
be applied to a complex system not far from its
critical state where self-similarity can be observed
between different scales.

Nested concepts with higher level of abstrac-
tion represented as a higher rank tensor (larger
scale), is a much better way to encode words in
tensors, compare with the word vector representa-
tion in NLP. This not only fixes the problem of
training NLP induced interference network (see
4.2 experiment section), but more importantly,
gives rise to the non-linear response towards target
signal, experienced as an external magnetic field.
Mean field operation reduces the number of input
signal sources as well as the signal size. This en-
ables the network to maintain fast forward propa-
gate calculation speed even the attention rank level
becomes high.

Mean field solution of ising model with energy
described in Eq(1) is:

µ = tanh (β(n̄J µ+ |Bext|)) (6)

With coupling coefficient treated as J = 1, and
the mean field value of objective tensor being µ.
n̄ is the average number of attended neighbours in
an attention ’meeting’ event. β = 1

kBT
= const

and |Bext| is the magnitude of magnetic external
field on the induced field direction. Target signal is
no longer treated as time-independent, in fact host
targets are not fundamentally different from guest
signals. There can be multiple targets converge
and interfere with each other to produce impulses
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with changing magnitude. During the estimation
of mean field, signals are viewed as discretized bi-
nary valued vectors along the target-inducing di-
rection in the viewpoints of higher ranked tensors.
This makes the ’opinion census’ towards all ele-
ments under a tensor become faster.

The complete iterative estimation procedure is

shown in Fig(4). Manifold neighbour shuffle is
applicable only if the kernel is no longer calcu-
lated as dot product; if some parameterised kernel
is used then the manifold would not be flat, hence
similarity and the attention weights aij(qi, kj) will
also be influenced, causing the attended neigh-
bours to be changed.

Figure 4: Boxes with arrows show aggregations. Overlapping aggregation is allowed in rank 0. Left attention
tower is unsquashed ranks, versus right tower is squashed on rank 1, using mean field approximation.

(a) tanh-like function for βn̄J < 1 (b) phase change for βn̄J > 1

Figure 5: non-linear activation function plotting µ against βBext

Plotting Eq(6) with β|Bext| on x-axis and
mean-field µ on y-axis, there are two types of acti-
vation function obtained depending on whether the
value of βn̄ > 1.0 or not. Our experiment in (4.1)

has proven the expected similarity between arriv-
ing signals will increase after training. Therefore
the number of similar signals exceeding threash-
old will also increase, causing the dipole-dipole
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interaction having more average number of simi-
lar neighbours, represented by n̄.

There would be a point where the continuous
activation function shown in Fig5(a) becomes a
discontinuous phase-transition allowed activation
function shown in Fig5(b) as n̄ increases.

5.2 Dissipative structure

The most signifficant effect of phase transition is
that small change in the external field can cause
huge change in the induced mean field. Ten-
sors are nested in the hierachial structure and each
tensor may exist in its critical state where phase
change can be triggered with a small perturbation
on the environment. If there are a large propor-
tion of tensors already in their critical state, then
avalanche of phase transition would occure easily.

Energy dissipated into the surrounding envi-
ronment in one switching cycle of mean field out-
put, is proportional to the area enclosed by hys-
teresis in 5(b). After the avalanche is stopped and
the network reaches a new stable state, the en-
tropy of the network is expected to be reduced.
Dipole signals would interact in space-time dia-
gram events with more constructive interference
and therefore having a lower entropy. As a re-
sult of second law of thermodynamics, the envi-
ronment receives the dissipated energy and the en-
tropy of environment would increase to ensure the

total entropy of universe Huniverse = Hsystem +
Henvironment to increase.

Sandpile model
[Bak et al.(1987)Bak, Tang, and Wiesenfeld] is a
good analogy towards the whole picture. High en-
tropy input signals with energy provided by signal
sources would forward propagate through differ-
ent distanced routes to be fed into the hierachial at-
tention tensor. Different abstraction level (on dif-
ferent ranks) of tensors would estimate their own
mean field output, to complete the pooling process
and then sending approximated signals to new des-
tinations. Meanwhile route probabilities are up-
dated by simple rule described in Eq4. This up-
date enables the mean field attentions to have a
lower entropy most of the time; also it doesn’t
require information back propagated from top-
layer, but only requires the nearby external mag-
netic field, so updating can be done locally. Be-
cause the local target field can change with time,
it is possible that within an attention tensor, phase
change can produce discontinuous output, trigger-
ing phase change in other tensors connected with it
after the signal travelling time. An avalanche can
propagate within a much larger region of brain just
like the sandpile model. Self-organization is ex-
pected to be observed after avalanche so that the
network system can maintain itself by comsuming
’negative entropy’ [Schrödinger(1962)].

6 Conclusion

Self-attention mechanism has been proven
successiful in rescent year transformer-based en-
coders. By realizing the physical interpretation
of self-attention being signal interactions, ising
model becomes a viable choice of modelling a
learning process. Despite the forces governing the
interaction remain unknown, its physical property
is assumed to be similar as magnetic force. By fix-
ing positions of signal sources and target region,
then setting signal travel speed to be constant,
space-time condition where an ising model inter-
action event takes place can be identified. This
brings the idea of travelling routes and construc-
tive interference defined same as in optics. Train-
ing process is trying to make constructive interfer-
ence among input and target signals at a specified
position. Once route probabilities are trained, no
matter whether target signal is still present or not,

constructive interference would retain, because the
input signals would still interfere with each other.

A constructive interference also suggests the
potential energy of system is minimized, therefore
by ignoring the dipole-dipole energy, but keep-
ing the dipole-target energy, an simplified energy-
based goal is proposed. Probabilities of routes
with different travelling time are updated for each
source-destination pair, in the aim of optimizing
our goal.

Two experiments were designed. One did a
4-class MNIST classification, showing good few-
shot performance, and it was immune to catas-
trophic forgetting. It also confirmed the induc-
tion by target signal was effective, as the expected
dipole-dipole similarity was highest in the correct
target’s position even if the target signal was ab-
sense. The second experiment did a in-phase/out-
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of-phase periodic wave pattern binary classifica-
tion, demonstrated time varying signals can also
be learned using this interference idea.

A failed NLP task attempt lead to the reconsid-
eration of using word vectors. A nested aggrega-
tion, mean field pooling and attention interaction
mechanism is proposed. It brought the following
features into our learner.

1. It has a fractal structure, with self-similarity
between different ranks and different scales.

2. Mean field pooling lowers the number of
updating routes towards the next destination
if the tensor learner is relaying signals. This
makes future calculations to be more effi-
cient.

3. Mean field brings back the previously ig-
nored dipole-dipole interaction. It allows
the tensor learner to have a critical state.
The constituent sub-ranked tensors can also
have their own critical states.

4. Avalanche of phase transition can occure
and propagate throughout the network sys-
tem containing a large number of learn-
ers. Avalanche magnitude versus fre-
quency graph may not obey the power
law, because we know human brain is ac-
tively maintaing the brain’s critical state
[Brochini et al.(2016)Brochini, Costa, and Abadi].
Therefore it is reasonable to assume that the
stopping condition of training is to keep the
tensors in network not too far from their
critical states.

5. Non-linearity and discontinuity emerge as a
consequence of phase transition.

All the evidences are pointing towards dissi-
pative structure and edge of chaos. It would be
interesting to study signal interference in such a
complex system.
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