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Project PROPHET™ : Brief report of preliminary results 

ABSTRACT 

Forecasting forthcoming "health events" is an extremely challenging task for the 

Remote Patient Monitoring systems (RPM systems) sector, which relies in real time 

information and communication technologies. Remote patient monitoring is a medical 

service which includes following and observing patients that are not in the same 

location with their health care provider. In general, the patient is equipped with a 

“smart” monitoring device, and the recorded data (vital signs) are securely 

transmitted via telecommunication networks to the health care provider. Modern 

remote patient monitoring devices are small, discrete and easy to wear, allowing 

"bearers" to move freely and with comfort. In this framework, MOKAAL pc has 

developed the IFS_RPM service (Integrated Facilitation Services for Remote Patient 

Monitoring) supplying the necessary ICT infrastructure, which is necessary for the 

provision of the RPM services. Following the completion of IFS_RPM project, 

MOKAAL pc launched a research project under the code name "PROPHETTM" . 

PROPHETTM main objective is to investigate the possibilities of introducing a real time 

predicting model based on remotely collected vital signs, that would utilize time 

series of metric data in conjunction with the information stored in the Electronic 

Health Records (EHR) of the "bearer", attempting to predict in real time, the 

probability of a "health event" occurring in the near future. 

To meet this objective, the PROPHETTM project team designed an evolutionary 

prototype of the "health event" forecasting model, which was developed and tested in 

a laboratory environment and it will be upgraded to a working prototype to be tested 

in real conditions, in order to be incorporated into the IFS_RPM system, after 

reaching its maturity state. 

INTRODUCTION 

Wearable Remote Patient Monitoring Devices are medical devices that are widely 

used to measure basic medical indexes, like ECG, HR, RR, oxygen saturation, body 

temperature, posture and physical exercise monitoring. 

Wearable RPM devices that are supported by advanced IT systems and advanced 

sensors, provide constant monitoring capabilities to observe and evaluate human 

physiology and consequently to assist in faster response to health events and 

application of the correct therapeutic protocol. Usually, in a health care environment, 

technology support is essential in implementing clinical trials, monitoring disease 

progress and increasing the decision making rate 

In the realization of the PROPHETTM project, MOKAAL used an RPM device 

manufactured by an established European brand, as the core component of the 

Wireless Body Area Network (WBAN) which was worn by each participant in the 

study. The said RPM device is a 3 lead ECG mobile monitoring system which allows 

clinicians to continuously record and monitor full disclosure ECG, heart rate, 

respiration rate and motion data, whilst allowing full patient mobility. The device 
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monitors for out of normal range vital signs and key cardiac arrhythmias (atrial 

fibrillation, tachycardia, bradycardia, ventricular fibrillation, and asystole). 

The PROPHETTM predicting model was developed with the use of laboratory data 

collected over a period of 260 days. The LAB Database comprises a main section of 

raw medical data, along with a number of periodical reports depicting the assessment 

of a personalized risk factor for each subject at a given moment. These reports were 

the outcome of regular medical tests and health status assessment of all participants, 

throughout the duration of the study. The predicting model uses machine learning 

techniques, to introduce a set of algorithms that teach the parameters of the model 

from a set of training data for which we know the results, aiming to predict with the 

greatest possible accuracy, the results to be obtained from the processing of the test 

data. 

The PROPHET™ predicting model is based on the Decision Tree algorithm 

principles. Decision Tree algorithm is a supervised learning algorithm, used to create 

a model capable to predict the class of a target variable, by implementing simple 

decision rules that were established during the processing of the training data subset. 

THE PROPHET™ LAB DATASET 

The LAB data were collected over a period of 260 days, with the participation of 10 

outpatients with diagnosed cardiovascular disease, wearing a RPM device for 12 

consecutive days per session, for a total of 60 days (5 sessions) throughout the 

duration of the study. The RPM device used is a small, lightweight, portable, non-

invasive, with rechargeable battery, connected to disposable electrodes placed on 

the patient's body. The device monitors for out of normal range vital signs and key 

cardiac arrhythmias (atrial fibrillation, tachycardia, bradycardia, ventricular fibrillation, 

and asystole). It also features patient-activated event recording, that allows patients 

to press the button when symptoms are felt. This triggers diagnostic quality ECG to 

be recorded and transmitted to an online database (IFS_RPM DB) over a wireless 

connection. The system provides full configurability of the duration and frequency of 

monitored data. The system also records continuously ECG on the device during 

monitoring to provide a back up to wireless transmission if required and to permit 

retrospective analysis of performance of the cardiac arrhythmia detection algorithms. 

MOKAAL’s “mhealth” viewing and analysis software, was used to import and review 

full disclosure data at the end of the evaluation. In conclusion, the RPM device 

incorporates the core functions of the traditional remote ECG monitoring devices into 

one single device : the full disclosure data from the Holter (7 days), the events (both 

auto‐captured and patient activated) transmitted immediately from the Event and 

implantable loop recorders. ECG measurements are rendered in μV per millisecond 

(ideally with a steady step), while respiratory rate measurements yield breaths per 

minute and heart rate measurements yield pulses per minute. Upon arrival of any 

time series instance into the PROPHET SERVER, the “mhealth” reception module 

performs a consistency check on the μV values of all 3 leads which are registered in 

the incoming observations, dumping any instance in which any of these values 

doesn’t match the acceptable ECG pattern 
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The structure of PROPHET™ lab dataset 

The main pool of LAB data was comprising time series (i.e. sequence of observations 

taken sequentially in time), carrying raw medical data collected from each participant 

(“bearer”) with the use of the WBAN. These data represented biological signals of the 

"bearer", which were constantly collected every 2,000 millsec (approx) by the RPM 

device and were stored locally (in the "Full Disclosure" dataset).  

The “Health Event” dataset is a subset of the "Full Disclosure" dataset, containing 

only those time series in which key cardiac arrhythmias or/and out of normal range 

vital signs were detected, i.e. atrial fibrillation, tachycardia, bradycardia, ventricular 

fibrillation, and asystole. Cardiac events are detected using arrhythmia detection 

algorithms running on the RPM device, while a patient-activated event button 

ensures ECG can be recorded during symptomatic periods. These algorithms are 

designed to detect and record Atrial Fibrillation and have been tested according to 

ANSI/AAMI EC57:2012. For any such event detected (both auto‐captured and patient 

activated), The device transmits immediately (in real time) a fix format message to 

the IFS_RPM Server in the central premises of MOKAAL. 

MAIN DATASET ("FULL DISCLOSURE") : summary technical information 

TIMESTAMP : Day of session (01,02, …), time (hh:mm:ss) 

− ECG : 3 Leads, Frequency response: 0.5Hz - 40Hz, Sample Rate: 360 samples 

per second, Resolution: 12 bit 

− EVENT DETECTION : Bradyarrhythmia, Tachycardia, Ventricular Fibrillation, 

Atrial Fibrillation, Supraventricular tachycardia, Asystole, Patient activated event 

recording 

− Heart Rate 

− Respiration Rate 

− Impedance Pneumography, Sample rate: 120 samples per second, Resolution: 12 

bit  

− ACTIVITY : 3-axis accelerometer, Scale: ±2G, Sample rate: 100 samples per 

second, Resolution: 12 bits on each axis 

“HEALTH EVENT” subset :  In addition to the information contained in the Main 

Dataset, this subset includes codes corresponding to the detected “health event” at 

that particular moment. 

Arrhythmias Monitored by RPM Device 

The Heart Rate averaging computation is as follows : The average of the last 12 

seconds R-to-R intervals (up to 16 intervals) for rates greater than or equal to 60BPM 

and average of last 8 R-to-R intervals for rates below 60BPM, the update rate of the 

Heart Rate on the display is once per update interval period. 

Asystole is a state of no cardiac electrical activity. The RPM device will trigger this 

arrhythmia when it is present for 10 consecutive seconds. Pause episodes are short 

term events (less than 10 seconds) which are not detected by the RPM device. 

Atrial Fibrillation is a cardiac arrhythmia (abnormal heart rhythm) that involves the 

two upper chambers (atria) of the heart. The RPM device will trigger this arrhythmia 
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when it is present for at least 15 consecutive seconds.  Episodes shorter than this 

are not recorded. 

Bradycardia is defined as a slow resting heart rate, the RPM device will trigger this 

arrhythmia when the average heart rate is continuously lower than a user configured 

threshold (default 50 BPM) for a 30 seconds confirmation time.  Episodes shorter 

than this are not recorded. 

Tachycardia is a fast heart rhythm, the RPM device will trigger this arrhythmia when 

the average heart rate is continuously higher than a user configured threshold 

(default 150BPM) for a 30 second confirmation period.  Episodes shorter than this 

are not recorded. 

Ventricular Fibrillation is a condition in which there is uncoordinated contraction of the 

cardiac muscle of the ventricles in the heart, making them quiver rather than contract 

properly and resulting in a random and chaotic fluctuation in the ECG signal of the 

patient. The RPM device will trigger this arrhythmia when it is present for at least 20 

consecutive seconds of clean signal or at least 29 consecutive seconds of signal with 

high noise levels.  Episodes shorter than this are not recorded. 

For implementing the predicting modelling machine  learning  algorithm (predictive 

algorithm), the PROPHET™ laboratory datasets were divided into 3 subsets : The 

TRAINING data subset that was used to adjust the parameters of the model so the 

machine be able to recognize patterns in the data set, the VALIDATION data subset 

that was used to improve the generalization capacity of the model as well as to 

improve the efficiency and the accuracy of the algorithm used to train the machine 

and the TEST data subset which is used to evaluate the ability of the machine in 

predicting upcoming "health events", based on its training. The  aim was to develop a 

tool that will search the 1st pool of data (the “full disclosure” dataset) to locate one or 

more repeating patterns of time series by processing the time coherent changes 

occurring in the 3 types of biosigns (ECG, RR, HR) collected by the RPM device, 

throughout the session. Then to locate the "health events” detected by the RPM 

device within the same session (stored in the "health events” dataset) and apply an 

algorithm to assess the correlation of the appearance of each pattern with the advent 

of detected health events. 

THE PREDICTIVE PATTERN 

In general terms, a pattern is a description of a state occurring over and over again 

within a given dataset. Patterns are used in solving problems, by overshooting 

personalized solutions. In the framework of the project, we focused in applying 

pattern mining in the supervised setting where we have marked a specific target 

variable and we want to identify patterns in the “Full Disclosure” TRAINING subset, 

capable in locating this variable in the “Health Event” dataset. The objective was to 

develop an algorithm for detecting predictive patterns that will eventually lead in 

predicting the target variable in the “Full Disclosure” TEST subset. 

The key challenge in building classification models for PROPHET dataset, was to 

define a group of representative features that would be able to express accurately 
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the time-sensitive aspect of the “Full Disclosure” dataset that is important for the 

prediction of the target variable. 

Both “Full Disclosure” and “Health Event” datasets are typical examples of temporal 

databases as they store data relating to time instances. The stored information is 

related to past and they are considered to be uni-temporal databases as they have 

one axis of time, namely the instances’ timestamps. Each data instance in both 

datasets, is associated with a single class label which means that all temporal 

observations are equally useful for classification. By definition, a classification model 

attempts to draw some conclusion from observed values. Given one or more inputs, 

a classification model will try to predict the value of one or more outcomes. Our aim 

was to develop a pattern mining technique that would take into account the local 

nature of decisions for monitoring and event detection problems. We decided to 

experiment with the Recent Temporal Pattern (RTP) mining framework [1], which 

mines frequent temporal patterns backward in time, starting from patterns related to 

the most recent observations. Our objective was to present a classification model 

that can accurately detect adverse health events and apply it in future RPM sessions 

for the same patient or for other patients with similar health conditions (i.e. suffering 

from some kind of cardiovascular disease). 

The application in PROPHET time series 

Assuming : (1) that PFD = {ti,xi}, i=1,n is the TRAINING dataset where xi ∈ ”Full 

Disclosure” and xi is a temporal instance of a multivariate dataset in the time interval 

between t1 and tn and (2) that PHE = {tj,yj}, j=1,n is the TRAINING dataset where yj 

∈ “Health Event” and yj is a target variable associated with xj at time tj in the time 

interval between t1 and tn, then our objective was to build a function f : X → Y that 

can detect and mark health events among unmarked instances in the TEST dataset.     

In PROPHET environment, every data observation xi is a record that contains 5 

discrete biosigns of a specific patient (a “bearer” of a RPM device), collected the 

given moment in time (ti) and the class label yj denotes whether a “health event” was 

diagnosed by the RPM device at the specific ti. Taken in account that classification is 

the process of predicting the target in a dataset of given temporal observations 

strings and that classification predictive modelling is the task of approximating a 

function {F} using input variables (x) to discrete output variables (y), our aim was to 

learn a classifier – which is a function that assigns a target to a temporal observation 

string – that could predict a forthcoming “health event”, with the lowest possible 

percentage of false negative results. 

The processing of PROPHET datasets of biosigns 

For learning the classifier, we applied a space transformation [T] : xi → (xi)' that 

mapped each observation x in the “Full Disclosure” dataset, to a numerical 

representation x' (a feature vector), preserving in parallel the predictive temporal 

features of x as much as possible. After applying [T], we employed Decision Tree to 

learn function {F}. 
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More specifically, we learn [T] from the biosign strings (i.e. the laboratory values) in 

the “Full Disclosure” dataset, with the use of temporal pattern mining, by applying the 

following steps : 

1. Define “cohorts” :  A cohort is a group of r successive instances registered in the 

"Full Disclosure" dataset. In the LAB environment r was originally set to 10. In the 

context of the temporal pattern mining proceedings, a “cohort” could be considered a 

standardized unit of temporal patterns. In this context, a temporal pattern in the 

PROPHET dataset is made of one or more successive cohorts. Cohorts do not 

overlap, therefore cohort c1 includes the observations collected within the time 

interval t1-t10, cohort c2 contains those collected within the time interval t10-t19 and so 

forth. 

2. Define a temporal abstraction1 pattern : All temporal instances were organized in 

cohorts and all cohorts were classified into 5 distinct abstract states as described in 

§6 of the “The LAB implementation” chapter. The “interval state” is defined as a state 

occurring during a distinct time interval. The interval state is denoted by (B,S,ts,te) 

where B is an observation in a temporal variable, S is a member of the abstractions’ 

values set (e.g. H=high, L=low) and ts,te the start time and end time (respectively) of 

the interval state.    

3. Define Multivariate State Sequence : After awarding each cohort a unique abstract 

state, every cohort cm (m=1, n/r) is represented in a dataset C as a Multivariate 

State Sequence (MSS). Each record of dataset C displays 2 timestamps (start – end 

of cohort’s instance). There is only one temporal relation between two successive 

cohorts (state intervals) in the PROPHET dataset, i.e. the "Finish-to-Start" relation.  

4. Temporal Patterns : A temporal pattern is defined as P = (<S1, ..., Sk>,R), where 

Si is the ith state of the pattern and R is an upper triangular matrix that defines the 

temporal relations between each state and all of its following states :  

i ∈ {1, ..., k−1} ∧ j ∈ {i+1, ..., k} : Ri,j ∈ {b, c} specifies the relation between Si and Sj 

(definition from “Mining Recent Temporal Patterns for Event Detection in Multivariate 

Time Series Data”, I. Batal, …). 

In the context of “PROPHET” project, R parameter is redundant as there is only one 

temporal relation between each state and all of its following states. A temporal 

pattern (TP) in the PROPHET dataset, is defined as a timeordered sequence of n 

successive valid cohorts Ci (i=1,n, n≥1) and its size is defined by the number of 

states it contains. So if a pattern contains k states, is defined as a k-pattern. 

Therefore, for a Multivariate State Sequence to contain a k-pattern, requires 

matching all k states of this pattern. 

5. Recent Temporal Patterns (RTP) : Generally, we accept that recent observations 

of biosigns (variables xi) are considered to be more predictive comparing to distant 

observations, in respect of predicting a forthcoming “health event”. Nevertheless, this 

is not always true. Therefore, in order for a temporal pattern (TP) to be considered a 

 
1 An abstraction is a general concept or idea, rather than something concrete or tangible. The    
goal of "abstracting" data is to reduce complexity by removing unnecessary information [1] 
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“Recent Temporal Pattern” (RTP) in regard of a specific target variable, we narrowed 

the aforementioned assumption in a limited number of temporal patterns in the 

TRAINING dataset, that meet the following condition : The time frame between the 

start time of the given TP and the detection time of the specific target variable (as 

stored in “Health Event” dataset) is less than 36 hours. 

Based on the above, the objective of identifying a predictive pattern that could be 

effectively integrated into the "health events" predicting model, seemed to be 

feasible. As we stated earlier in this report, the PROPHET™ predicting model is 

based on the Decision Tree algorithm principles and in particular it uses the “apriori” 

algorithm 

DECISION TREE ALGORITHM  

As stated above, machine learning classification is a three-step process : training 

step, validation step and prediction step. In the training step, the predicting model is 

developed based on given training data. In the validation step certain techniques are 

applied to improve the generalization capacity of the model as well as the efficiency 

and the accuracy of the algorithm used to train the machine. In the prediction step, 

the model is used to predict the response for given data. Decision Tree algorithm 

belongs to the family of supervised learning algorithms and is a typical example of a 

low bias algorithm. The reason for using a Decision Tree is to train a predicting 

model, capable to predict the class or value of a target variable by assimilating a set 

of simple decision rules, derived from already processed raw data. PROPHET 

predicting model is based on the “categorical variable” decision tree type, which 

includes categorical target variables that are divided into categories. This means that 

every stage of the decision process falls into one of the categories, and there are no 

in-betweens. 

Identifying Predictive Patterns – The concept 

Project’s objective was to predict a forthcoming health event (target event) within the 

timeframe of an RPM session. In responding the health event prediction challenge, 

an algorithm belonging to the Decision Tree (DT) family was employed, to search for 

predictive patterns in the “Full Disclosure” dataset. The goal was for the system to 

learn a set of rules of the form : patterntarget event, in order to be considered as 

classifier. The task of predicting future health events is associated with low accuracy, 

therefore the effectiveness evaluation of the system was based on recall and 

precision. Recall measured the percentage of target events that were successfully 

predicted (i.e. the reverse of “false negatives”) while precision reflects the percentage 

of predictions that were correct.  

A target variable is a time series instance that includes a "major health event" 

notification generated by the RPM device detection algorithms (i.e. “AFIB”, “TACHY”, 

“BRADY”, “VF”, “SVT”, “ASYS” or “ABF). Given that a cohort Ci is a timeordered 

sequence of m successive instances (m ranges between 3-15 in LAB proceedings), 

the Target Variable Cohort (TVC) is defined as a set of m successive valid instances 

that includes at least one target variable instance. Note that if the same cohort 
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displays medically incompatible values for HR or RR biosigns or includes 

contradictory "major health events", is characterized as "unreliable" and omitted.  

The way of solving the "target variable" prediction problem, was to learn a prediction 

procedure that could correctly predict the occurrence of possible "target variables" in 

the “near future”, given a sequence of Recent Temporal Patterns (RTP). The 

prediction procedure involves matching a set of learned RTPs over the “Full 

Disclosure” dataset and predicting the occurrence of a target variable if the match 

succeeds. Critical factors of this task were definitely (a) the “warning time” which 

defined as the “lead time” necessary for a prediction to be useful and (b) the 

monitoring time which determines how far into the future the prediction extends. In 

our approach we set a ceiling on the value of monitoring time, beyond which the 

prediction is considered of low importance. Solving the event prediction problem 

involves two steps : In the first step, a DT algorithm is used to search the space of 

RTPs, in order to identify sets of “equivalent” RTPs that, individually, could effectively 

predict  a subset of the target variables and collectively predict most of the target 

variables. The second step classified the RTPs from best to worst, by justifying the 

precision of their predictions and, consequently, prunes redundant patterns (i.e., 

those patterns that didn’t predict any target variables not already predicted by some 

“better” pattern). Based on this outcome, we produced a pool of prediction strategies, 

by adding one "promotable" RTP at a time and we gradually built a chart of 

acceptable strategies which were incorporated in the PROPHET concept.   

This chart, along with the relative cost of "false negatives" (missed target values) to 

"false positives" (false predictions), was used to determine the optimal prediction 

strategy. 

The task of mining RECENT TEMPORAL PATTERNS (RTP) 

Definition of “support” : Given a database DBRTP = {RTP1, RTP2……….RTPn} of n 

RTPs, and given a certain RTPm(r) where 1≤m≤n and r is the R-grade of RTPm(r), the 

support of RTPm(r) in the database DBRTP is defined as the total number of 

sequences in DBRTP that contain RTPm(r). The lowest acceptable value for the 

“support” of given RTP is called “minsup”.  

A key data mining problem is to detect sets of itemsets (i.e patterns), with 

occurrences that exceed a predefined minsup. A second and significant challenge, is 

the approximation of the level of a pattern’s “confidence” which is expressed as a 

conditional probability. 

Generic level-wise search algorithm 

RTP searching philosophy is based on the following  principle : The support for any 

given temporal pattern TP can be no greater than the support for any of its subsets. 

This means that if one subset of TP is not frequent, then TP cannot be frequent. 

Therefore, finding a temporal pattern with low support, relieves us of the obligation to 

consider any pattern that is a superset of TP. (antimonotonicity property). This 

property allowed us to narrow the search space significantly, by pruning all patterns 

based on the current level.  
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EVALUATION OF THE “PROPHET” PROTOTYPE 

In this section we present the results of the preliminary research towards the 

development of a real time predicting model, based on remotely collected vital signs 

with the use of a mobile, wearable WBAN. 

The LAB dataset(s) 

The PROPHET™ laboratory multivariate time series dataset (referred as “Full 

Disclosure” which is a superset of “Health Event” dataset) was divided into 3 subsets: 

The TRAINING, the VALIDATION and the TEST. Each instance of the dataset 

(observation row) contains the following variables : 

Timestamp (in dd:hh:mm:ss:ms format), Lead 1, Lead 2, Lead 3 (electrical activity in 

μV of V1 (RA/R) , V2 (LA/L) and V6 (LL/F) leads respectively), Heart Rate (beats per 

minute, integer), Respiratory Rate (respirations per minute, integer), “Health Event” 

encoded (displaying one of the following codes : “AFIB”, “TACHY”, “BRADY”, “VF”, 

“SVT”, “ASYS”, “ABF”, “NOEVT”, or it was left blank if no event occurred)2      

The identity of the study 

− Number of participating outpatients : 10 (2 groups of 5 persons) 

− Overall study duration : 260 days (FEB 2019 – OCT 2019) 

− Total number of completed sessions : 50 (5 sessions per participant) 

− Each session was scheduled to last 12 consecutive days. During each session, 

the participants (“bearers”) were wearing a Wireless Body Area Network (WBAN) 

pack, comprising of a the RPM device and a common MiFi router 

− Each session produced approximately 370,000 instances per outpatient, resulting 

in a total of approximately 18.5 million instances throughout the study . 

− For each patient, an idle period of 48 days was allowed between 2 consecutive 

sessions ("null" period) 

− Immediately after the end of each session, the doctors of the research team were 

performing an overall assessment of the health status of each participant 

Close to 70% of total instances population, was allocated for the use of the 

TRAINING and the VALIDATION subsets. 

  

 
2 Tachycardia (TACHY), Bradycardia (BRADY), Ventricular Fibrillation (VF), Atrial Fibrillation 
(AFIB), Supraventricular tachycardia (SVT), Asystole (ASYS), Bradyarrhythmia (ABF atrial 
brady-fibrillation), Patient activated event recording (NOEVT) 
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The LAB implementation  

DEFINITIONS EXTENSION 

COHORT : A cohort is already defined as a group of r successive instances 

registered in the "Full Disclosure" dataset. Observations included in a cohort 

component instances are used for calculating its R-grade value, in direct and 

exclusive dependence on the corresponding observations of the cohorts that 

"surround" a particular target variable, among those detected in the "Full Disclosure" 

dataset (as described in the "R-grade calculation model" paragraph). Any cohort that 

contains one or more instances with HR-class HIGH or LOW is labelled as HR-H or 

HR-L respectively. If a certain cohort contains both HIGH and LOW HR-classes, the 

system ignores it and excludes it from participating in any tasks of "predictive 

patterns detection" process. These cohorts are labelled as “unreliable”. Any cohort 

containing one instance with RR-class HIGH or LOW is labelled as RR-H or RR-L 

respectively. If a certain cohort contains more than one instances with RR-class ≠ ␢, 

is labelled as “unreliable”. 

PILOT TVC (Pilot Target Variable Cohort) :. A TVC used for the training of the 

predictive algorithm, is referred as “pilot TVC”  

TVAC : A “Target Variable Adjacent Cohorts” pool (TVAC) is defines as a set of k 

successive cohorts that include at least one "major health event" (i.e. “AFIB”, 

“TACHY”, “BRADY”, “VF”, “SVT”, “ASYS”, “ABF”, or “NOEVT”). Assuming that the 1st 

(if only) "major health event" is detected in instance Si, then the 1st cohort of this 

particular TVAC starts with instance S(i-(k/2)*m) and the last (kth) cohort ends with  

s(i+(k/2)*m). The value of k varied, depending on the “pattern dimension” (i.e. the 

number of cohorts included in a temporal pattern) as this has been defined, for each 

distinct lab trial   

RTP TAG RENDERING : Assuming that in the “Full Disclosure” TRAINING subset 

we detected a target variable (t_vari) in the instance registered in row ri, By definition 

there is a number of cohorts equal to the quotient{(i-k)/k}, that preceded the 1st cohort 

of the TVAC pool of this particular target variable. Let also assume that all preceding 

cohorts are valid (i.e. not “unreliable”). We set a new dataset [C(t_vari)] ⊆ C, 

containing only those cohorts that their abstract state (class) relative to t_vari, was 

better than “L” (low). Let n be the number of cohorts in C(t_vari). The prerequisite for 

a temporal pattern to be considered as a recent temporal pattern in regard to any 

specific TVC, is for the time frame between the start time of the given temporal 

pattern and the detection time of the particular TVC to be less than 36 hours. 

R-GRADE : The R-grade of a cohort represents the morbidity relevance of this 

particular cohort against each pilot TVC in the TRAINING and VALIDATION subsets 

or against each TVC set in the TEST subset, to be used as reference TVC for any 

distinct type of registered major health event. For consistency reasons in model's 

calculations, each TVC in the "TRAINING" and "VALIDATION" subsets, was given an 

"R-grade" = 4 
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“CONTROLLER” : The “controller” is a tool of the PROPHET prototype that its main 

task is to supervise the operation of the predicting model, for detecting signs of 

possible impending problems and either taking corrective actions, whenever these 

are dictated by unequivocally defined and non-misinterpretative instructions, or 

disclaims responsibility, simply notifying the system admin. The “controller” deals – 

among others – with a number of quality issues related to the model’s operation, 

such as monitoring the frequency of unreliable/invalid temporal instances, early 

warning for possible extreme deviations of the interim sampling results against the 

respective reference values, warning of upward trends of high variability cohorts 

population which could be detrimental to RTP reliability, etc 

LAB implementation workflow 

Tasks carried out during the implementation of PROPHET prototype in the LAB 

environment, by applying the predicting model’s concept, as presented in the 

previous chapters of the present report : 

1. Choosing an outpatient Pλ with a known cardiovascular disease, to whom a 

specific risk factor has been attributed, as evidenced by the medical 

examinations held a few days before the start of the 1st session (distinct types of 

attributable risk factor : "low –", "low", "low +", "intermediate", "high –", "high", 

"high +", "critical") 

2. Invoke the "Full Disclosure" dataset of session #1 for the outpatient Pλ (referring 

as D(Pλ,1)) 

3. In the TRAINING dataset we located those instances that carry identical target 

variables, i.e. instances displaying identical “major health events”. We then 

marked each health event group (HEg) of identical target variables, with a 

unique indicator (AFIB group, SVT group, etc). In cooperation with the MDs 

research team, we processed the TVCs of all members in every HEg, to produce 

one “combo” TVC for each HEg. Each “combo” TVC was used as the reference 

TVC for every distinct type of health event (i.e. the TVC of the pilot target 

variable) 

4. Next, a pilot target variable (tvarp) was selected from D(Pλ,1) (i.e. an instance in 

D(Pλ,1)  containing a “major health event” code ≠ <blank>). Definition of a typical 

tvar differs for each major health event, based on the medical assessment of the 

associated observation values. Taking “AFIB” as example, the MD team 

processed all the appearances of this particular major health event in the 

TRAINING subset along with their associated TVCs, in order to suggest a 

representative pilot TVC which was used as the reference “target variable” 

(tvarp) for training the algorithm of the predicting model 

5. Searching D(Pλ,1) to locate those cohorts that include the selected tvarp in its 

first appearance (tvarp.1) in D(Pλ,1) (Cm(tvarp.1), m=1-n, n=number of cohorts 

containing tvarp.1  



BRIEF REPORT ON “PROPHET” PRELIMINARY RESULTS                                                               12 

5.1.1. Setting up a table m rows X 8 cols containing all m consecutive instances 

which include the instance of the selected target variable (t_var). The 

column labels are : TIMESTAMP / LEAD#1 /LEAD#2 /LEAD#3 / HR / RR 

/ EVENT. This table is referred as TVC table (Target Variable Cohort 

table).  

NOTICE : If any cohort in a pool of Target Variable Adjacent Cohorts 

proved to be unreliable, the particular TVC is also labelled as "unreliable" 

and the system is instructed to ignore this particular target variable, 

moving on searching for the next reliable TVC 

5.1.2. Calculating the R-grade of all cohorts in D(Pλ,1) based on the particular 

TVAC that includes the pilot TVC 

R-grade calculation model 

After selecting a target variable in the “Full Disclosure” dataset and defining 

the TVC for the specific target variable, we generate a table [m rowsX8 cols] 

in which all values of TVC’s constituent instances are transferred. Any 

“reliable” (valid) TVC is labelled as follows : 

− If it contains at least one instance in which HIGH or LOW HR is detected, 

the TVC is labelled as HR-H or HR-L respectively, otherwise is labelled 

as HR-N (for normal) 

− If it contains one instance in which HIGH or LOW RR is detected, the 

TVC is labelled as RR-H or RR-L respectively, otherwise is labelled as 

RR-N (for normal). Note that a valid TVC cannot contain more than one 

instance carrying a RR observation, as the time between the start and the 

end of a TVC is less than one minute 

Then we start with the 1st cohort of the “Full Disclosure” dataset (1st examinee 

cohort) which contains the m first instances registered in the dataset. The 

following table depicts a visualized layout of any cohort (for m=10) : 

Session 
day 

Time     LEAD1    LEAD2    LEAD3 EVENT 
HR 

class 
RR 

class 

1 00:00:03 -0,12695 -0,22461 -0,09766 NIL N N 

1 00:00:06 -0,12207 -0,21973 -0,09766 NIL N N 

1 00:00:08 -0,11719 -0,20508 -0,08789 NIL N N 

1 00:00:11 -0,10742 -0,20508 -0,09766 NIL N N 

1 00:00:14 -0,08789 -0,19043 -0,10254 NIL N N 

1 00:00:17 -0,08301 -0,18555 -0,10254 NIL N N 

1 00:00:19 -0,10254 -0,18066 -0,07813 NIL N N 

1 00:00:22 -0,10742 -0,17578 -0,06836 NIL N N 

1 00:00:25 -0,12207 -0,19043 -0,06836 NIL N N 

1 00:00:28 -0,12695 -0,20508 -0,07813 NIL N N 

Where : LEAD1, 2, 3 display the electrical activity of each lead in mV, EVENT 

displays the code of a major “health event” if present, otherwise displays “NIL” 

and HR class / RR class display N for heart rate / respiratory rate within 

normal limits, while “H” stands for HIGH and “L” for LOW rates respectively.   
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For the experimental calculation of an examinee cohort's R-grade, the 

following data are used : 

a. The arithmetic means of the absolute values of Pearson's correlation 

coefficient formula, that is applied on the observations of each of the 3 

LEADs of the given examinee cohort, against the corresponding 

observations of each of the 3 LEADs of each of the m instances of the pilot 

TVC.  

b. The relevance degree between HR and RR measurements contained in 

the examinee cohort and the corresponding measurements in the pilot 

TVC, which is depicted in the following half matrices : 

 HR-N HR-L HR-H  RR-N RR-L RR-H 

HR-N 0,50 0,25 0,25 RR-N 0,50 0,25 0,25 

HR-L  0,5 0 RR-L  0,5 0 

HR-H   0,5 RR-H   0,5 

The R-grade value is calculated by the following formula : 

R-grade = ∑(xi*wi), i=1,5, where xi are the variables described above and wi 

are their relative weights of importance (wi≤1). The PROPHET prototype 

introduces a "health event" predicting model that operates using personalized 

patient-specific parameters. In this extent, the aforementioned weights of 

importance could be varied to reflect the current health status of each RPM 

service user  

By the end of this process, each valid cohort in the “Full Disclosure” dataset, 

had been awarded an individual R-grade, which was used for classifying all 

cohorts according to their ”morbidity level” in respect to the selected (pilot) 

TVC.  

6. Define a temporal abstraction pattern 

Assuming, for the sake of simplicity, that in the R-grade formula, all wi = 1, ∀i, 

then the range of R-grade values ranges between 0 and 4 (the theoretical value 

of 4 is achieved when x1 = x2 = x3 = 1 and x4 = x5 = 0,5). Using the R-grade 

value as a driver, we can assign an abstract state (class) to each examined 

cohort as follows (given that for any TVC R-grade=4) : 

Cohorts with R-grade < 0,50 are considered to display a "very loose" morbidity 

relevance (VL) to the pilot TVC, cohorts which their R-grade ranges between 

0,50 and 1,10, display a “loose” relevance (L), between 1,10 and 1,70 the class 

is marked as "average" (AV), while between 1,70 and 2,40 is considered as 

"high" (H) and between 2,40 and 3,00 is considered as "high+" (H+). Finally, an 

R-grade > 3,00 characterizes the class as excellent (E) 

 Therefore, a state is an abstraction of any given cohort. Given that a temporal 

pattern TP in the PROPHET dataset, is made of one or more valid successive 

cohorts Ci and each cohort has been assigned with exactly one abstract state 

(class), a temporal abstraction pattern is defined as TPt = (ASc1, ..., ASc k), 
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where ASci is the abstract state (class) of the ith cohort included in temporal 

pattern TPt. 

7. Define dataset C : We represent every cohort ci (i=1,n/r, where n=number of 

instances in the sample and r=cohort dimension) in a dataset C as a Multivariate 

State Sequence (MSS) without including any attributes that link any cohort with 

any particular target variable (i.e “R-grade” and “Abstract State”) Each record in 

dataset C displays a cohort’s row indicator along with 2 timestamps (start – end 

of cohort’s instance). Define temporal patterns (i.e. group of cohorts) possibly 

associated with the pilot target variable.  

In implementing the PROPHET LAB test plan, we experimented with different 

time frames for the duration of a temporal pattern. In a reverse approach and 

assuming that we set the duration of a trial temporal pattern to n minutes, we 

conclude that a typical temporal pattern should comprise (λ*n)-1 consecutive 

cohorts, where λ is an integer between 1–7, depending on the dimension r of the 

choice cohort (r=3-15 instances of 2,000 msec each). Based on this assumption 

and taking in account the definition of “recent temporal pattern”, we built a new 

dataset [RTP(t_vari)] containing only those temporal patterns derived from all 

possible combinations of the cohorts in dataset C(t_vari), that, at the same time, 

were matching the definition of “recent temporal pattern”. Next, a “combined 

abstract state” (combined class) was assigned to each entry in RTP(t_vari), for 

reflecting the relevance of each recent temporal pattern to TVAC. To assign a 

unique “combined class” for any recent temporal pattern in RTP(t_vari), we used 

the following procedure : Let Rj be an entry in RTP(t_vari) dataset, then Rj 

contains λ*n consecutive cohorts (Cj-C(j+2*n)), each of which is labelled with a 

unique ASci where ASci ∈ {VL, L, AV, H, H+, E}3, Each ASci derives from the R-

grade that has been assigned to the corresponding ci of any particular Rj, where 

Rj ∈ RTP(t_vari), as defined in chapter “LAB implementation workflow” (§6) 

8. In searching for frequent temporal patterns, we chose the “apriori” algorithm, 

which is a typical example of level-wise algorithm capable of discovering any 

type of pattern that satisfies antimonotonicity. The implementation of the 

algorithm was comprising the following steps,,in a generalized approach : (1) 

The initialization step in which frequent temporal patterns were located, using the 

values assigned to the minsup and n (minutes) parameters (2) The 2nd step 

where the system produced candidate temporal patterns (TP) by using the 

frequent TPs of the previous step. (3) Then, the TRAINING subset of the {X} 

DATASET  was scanned for entities of candidate temporal patterns (4) 

Attempting to identify recent temporal patterns (RTP) associated with a certain 

target variable, by “winnowing” the entities of candidate TPs and retaining only 

those that met the requirements set out in the RTP definition (5) The 5th and 

 
3 VL=very low, L=low, AV=average, H=high, H+=high plus and E=excellent 
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final step, where the algorithm conducted a quest in an attempt to extend 

frequent RTPs – related to a specific target value –  backward in time. 

9. By setting n=10 and minsup=6, we built C’ – a subset of C which contains only 

those FTPs matching the above values. Steps 1 thru 5 of §8 were followed, in 

building a new set R’ ⊆ RTP(t_vari). For this particular examinee case, 

RTP(t_vari) ≡ RTP(t_varp).  

10. Now, R’ looks like containing a number of frequent, recent temporal patterns, 

sharing the following common attributes : 

− Original value of n=10. NOTE : The n value characterizes any R’ set (R’10) 

− All instances of the cohorts that set up the patterns included in R’, had 

occurred 36 hours at earliest, prior to the pilot target variable recording 

− All patterns have a minsup ≥ 6 

− Each pattern is rated with one “combined class” in regard to the pilot target 

variable, displaying one of the following grades : VL (very low), L (low), AV 

(average), H (high), H+ (high plus) and E (excellent) 

10.a. Additional R'n sets were created, each one with a different n size (n=number of 

cohorts per pattern), n ranging between 20 and 40. 

A record in any R’n comprises the following data fields : Pattern ID (Patient ID, 

Session number, pattern s/n), number of cohorts in this pattern, pattern’s class, 

number of appearances, timestamps [session day/time] of 1st, 2nd...., last 

appearance, timestamp of pilot target variable appearance. 

THE PREDICTING MODEL 

The PROPHET concept is to introduce a reliable model for predicting upcoming 

“health events” with the use of an RPM device which continuously monitors the vital 

signs of its “bearer”, detecting out-of-normal-range HR and/or RR, as well as key 

cardiac arrhythmias. In achieving this goal, a more or less, traditional linear 

regression model was used. 

The evolution of time intervals that mediate between the successive appearances of 

a given RTP – member of a specific R'n, till the occurrence of its associated target 

variable, proved to be a critical factor for assessing the contribution of the given RTP  

in the reliability and accuracy of the predictive model. The PROPHET predicting 

model considers that only the RTPs with a class  ≥ AV are eligible to participate in 

decision making. These RTPs are referred to as "actionable” RTPs.  

Each R'n hosts 4 distinct subsets of actionable RTPs, each containing only the RTPs 

of a particular class. So any actionable RTP ∈ R'n, can only belong to one of the 

following "class groups" : AV, H, H+ or E. 

The LAB trials 

A scoring algorithm was developed to rank any RTP in any Rn’, according to the 

proximity of its morbidity relevance to the pilot TVAC, based both on the proximity of 

the "morbidity relevance" of each RTP's component cohorts to the pilot TVC, as well 

as on the variability of this latter attribute.  
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Based on this, each RTP of class ≥ AV, was assigned an R-grade equal to the  

value of R =                                                 . This value is then referred to as RTPx 

“pattern R-grade”, for any given x. 

Using the results of task 10.a above, we experimented with the linear regression 

analysis (LRA) model on a variety of n values (i.e. the dimension of R'n), against the 

selected pilot target variable (tvarp). For each distinct “class group” in any “n-

dimension” R'n, we applied the LRA model to calculate the values of the critical 

statistical parameters required to evaluate the predictive potential of each specific 

"class group", i.e. the R2, the Significance F and P-values, the coefficients and the 

trend of the regression equation representing the temporal evolution of the 

appearance of all its members, on the 36 hours interval prior the detection of the pilot 

target variable. In this approach, the explanatory (independent) variables are the 

integer hours h1, h2,..... h36, of the 36 hours trial time series and the predictor 

(dependent) variable corresponds to the number of times an RTP of a particular class 

appears each hour within the trial period (i.e. density of the occurrences of the 

specific RTP class, along the evolution of the independent variable). By extending 

the test process in the VALIDATION subset, it proved to be more constructive for the 

evaluation of the model, to quantify the "class density" by awarding a grade to each 

"trial hour" resulting from the formula : CAV*1,50+CH*2,50+CH+*4,00+CE*6,00 where Ci 

is the number of RTPs registered during this particular "trial hour" for i= AV/H/H+/E. 

The introduction of an equivalent feature for quantifying the evolution of the "class 

density" across  time series, allowed the use of numerical thresholds in evaluating 

the contribution of the "class density" parameter in the sensitivity of the predictive 

model. Nevertheless, during LAB trials, the "pattern R-grade" feature proved to be 

more consistent compared to that of the "class density", as it uses the ambiguity level 

in scoring any given RTP, by introducing the measurement of variability as an 

increasing/reducing factor of the overall pattern's score. In this approach we used the 

quarters of the hour as independent variables of the LRA model (thus x=1-144 for the 

36 hours trial), while the “pattern R-grade” of each RTP registered in the trial period, 

was used as predictor (dependent) variable, regardless of the value of its 

corresponding “class density” parameter.  

Conducting numerous trials of the LRA model, using all 4 "class groups" of RTPs in 

the TRAINING subset, led to the narrowing of options regarding the RTP dimension 

that serves best the optimal feasible solution for maximizing the results of the 

predictive algorithm 

The key experimental parameters that were differentiated in the process of 

evaluating the effectiveness of the predictive model, were : (1) The time span 

preceding the appearance of the pilot target variable in the TRAINING subset (the 

trial duration) (2) The dimension n of an RTP (n=number of component cohorts) (3) 

The cohort's m dimension (number of component instances).  

In the RTP population of any given 36-hour trial time series, each actionable RTP 

class is represented by a number of members, with each occupying exactly one of 

the 144 time slots that define the trial’s lifetime. Let a class AS (AV / H / H+ / E) 
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numbers k members in the RTP population of a trial set in the TRAINING subset for a 

certain pilot tvar and its relevant pilot TVC. Let also tj (j=1,k) the time slots that host 

the RTPs of the particular class and t0, t143 the starting times of the 1st and the last 

RTP respectively.   

By experimenting with the dimension n of the RTPs ∈ R'n, we arrived to the 

conclusion that the optimal feasible value for n=30, based on the values of the 

statistical parameters, as analyzed above. Given this and the fact that the duration of 

a cohort is ~ 30 secs, is concluded that  the duration of a typical RTP is 15 mins and 

therefore, the 36 hours trial comprises 144 RTPs 

Regarding the m parameter, the results of LRA model application, proved to be less 

accurate as the dimension m was decreased (trials were performed for m=3, 7, 10, 

12, 15). The LRA statistics were clearly improved by increasing the m dimension. 

Furthermore, experimenting with the time span preceding the appearance of the pilot 

target variable, proved that the increase of preceding time span to 48 hours (i.e. 

expanding the population of the RTP set, to cover a 48 hours period instead of 36), 

was directly contributing to the increase of the variability measurements, which is 

equivalent to reduced reliability of the "pattern R-grade", calculated for each RTP 

"older" than 36 hours.   

A summarized report on the results of evaluating the trial's alternative building 

blocks, is given under APPENDIX A 

The validation process : Validate the algorithm with VALIDATION subset 

Up to this point we came up with a consistent approach to designing the core entities 

of the PROPHET prototype, namely the modelling of the predictive algorithm, as well 

as the functional framework and the key attributes for the choice temporal pattern. 

These core entities were built around a single “health event” (i.e. the pilot target 

variable), detected in the TRAINING subset of the "Full Disclosure" dataset. Next we 

had to validate the functionality of PROPHET model over other health events 

detected in the same TRAINING dataset and in the same or subsequent sessions, 

provided that the patient's health status remains relatively unchanged during the 

examinee session in regard to the piloting session. In this context, the following steps 

had been taken to validate the effectiveness of the predictive algorithm : 

− Define a set {V} ⊂ VALIDATION dataset, comprising 36 continuing hours time 

series, to be used as trial period for tvar2, after making sure that there is at least 

one major health event registered in {V} 

− Check validity / reliability of all instances in the said trial period, dumping any 

unreliable / invalid entries 

− Assembly cohorts after setting m dimension to 15 

− Select a tvar (tvar2) in {V} that belongs to the same HEg with that of the pilot tvar 

(tvarp), after ensuring that RTP(tvarp) ∩ RTP(tvar2) = ∅.  

− Create respective TVC and TVAC entities for tvar2 

− Define and identify TPs registered in {V}, build RTP(tvar2) subset in {V} and run 

the procedure described in §9 of “LAB implementation workflow” chapter.  
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− Compare the TVC of tvarp to the TVC of tvar2, expressing their differences as 

percentage  

− Calculate the R-grades of all RTP(tvar2) members  

− Apply the “pattern R-grade” algorithm on {V}  

− Evaluate the results of LRA model   

− Compare the LRA results for tvar2 with those of tvarp, taking in account the figure 

representing their differences (%)  

− Draw inferences 

The validation process was repeated for all types of major health events in {V}, 

displaying the following results :  

 

Health event AFIB TACHY BRADY VF SVT ASYS ABF 

Number of runs 4 1 1 2 2 2 3 

Average percentage of 
differences from 
respective pilot tvar 
(tvarp)_[a] 

18,30% 5,50% 6,20% 22,00% 23,40% 20,50% 19,20% 

convergence 
factor  
(tvarr vs 
tvarp)_[b] 

RUN 1 90,00% 88,72% 88,79% 90,37% 90,51% 90,22% 90,09% 

RUN 2 65,00%     66,30% 66,79% 65,77% 65,32% 

RUN 3 78,00%           78,20% 

RUN 4 75,00%             

      

[a] After applying the model for both tvarp and tvarr (∀ r), we analysed the 

differences found in the respective LRA results related to key statistical figures. 

These differences were consolidated under a single value (%), which was used for 

adjusting the result of the convergence factor assessment.  

[b] The convergence factor gives the percentage at which the results of the 

application of LRA model for tvarp, converge to those of the respective health event 

tvarr (r : “AFIB”, “TACHY”, “BRADY”, “VF”, “SVT”, “ASYS”, “ABF”), separately for 

every run. 

Following the validation process, a reverse procedure was developed to improve the 

agility and the cohesiveness of the choice algorithm, based on a heuristic approach 

that emerged as a result of the validation process iterations, on the way to maximize 

the convergence factor values  

The predictive algorithm 

The evaluation process of the trials' results, provided the necessary information for 

selecting the optimal, functional predicting model as well as the values of its critical 

parameters. In this context, the process revealed that the “pattern R-grade” algorithm 

displays stronger predictive potentiality comparing to the respective performance of 

its competitor that implements the "density class" approach. Furthermore, for every 

Ri ∈ RTP(tvarp), i=1,n, n≤144, the threshold for the confidence level of their variability 

factor was set to 0,09. This assumption led in excluding from the model those 

patterns that displayed a variability factor higher than the set threshold, thus leading 
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to a subset of the RTP(tvarp), comprising patterns bearing an acceptable level of 

variability, which were then used in the validation repetitive process. Due to the 

somewhat low values of the convergence factor recorded sporadically during 

validation phase, the reverse process was invoked to adjust the model parameters 

and consequently eliminate the convergence deviations. On this route, we 

experimented with the RTP subset by disembarking a number of patterns that didn’t 

qualified as a result of the aforementioned corrective process. After elaborating the 

results of the "reverse process", we came up with a "temporarily final" version of the 

“pattern R-grade” algorithm, that was then implemented in the TEST subset 

environment, to assessing its ability in predicting upcoming "health events", based on 

its training. The parameters of the "temporary final" version of the algorithm, were 

configured as follows : 

− Cohort dimension (m) : 15 instances      

− RTP dimension : 30 cohorts     

− Minsup : 6          

− Number of actionable temporal patterns in the 36-hour timeframe : ≤ 144  

− Polynomial for calculating the “actionable RTP R-grade”, R =  

i=1,n, n=15 (cohort dimension) 

− LRA function y= f (x)         

y = actionable RTP “R-grade", x is a natural number representing the temporal 

order (order of appearance) of any entry in RTP() and a1...aλ coefficients 

determined and fine-tuned during the application of the model on the TRAINING 

and the VALIDATION subsets of the "Full Disclosure" dataset 

− Area Under the Curve (AUC) =     f (x)dx, n≤144, the core figure used in predicting 

the time of possible appearance of a major health event   

REFERENCE MAJOR HEALTH EVENT   

Atrial fibrillation (AFIB) was selected as the “reference major health event” to be used 

with the simulator. Target variable features that were set for a single type of “health 

event” (AFIB), to assessing the efficiency of the model with the VALIDATION subset : 

− Number of instances displaying AFIB health event (target instances) : 60  

− Number of non overlapping cohorts (TVC by definition) comprising at least one 

target instance : 9 

− Number of TVAC pools, that the intersection per pair is the blank set : 4  

− Weighted average of TVACs' R-grade (using the number of target instances 

included in each TVAC pool as weight factor) : 3,8 

− AUC target value of the reference LRA function y=f(x) : 250 (Calculated using the 

trapezoidal rule), where x = 1 to n, and n being the temporal order of the RTP 

entry, within which the AFIB event was detected (n≤144)   

Simulating the “real world” environment 

The real time operation of the PROPHET prototype, was simulated with the use of 

the RPM data time series, registered in the TEST subset of the “Full Disclosure” 

dataset  
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Preparatory actions : The following steps were taken when preparing the simulator of 

an RPM session for a specific patient P : 

Set “driver” temporal pattern : Assuming an ongoing real time RPM session, we 

define as the “driver actionable temporal pattern”, the 1st set of k consecutive m-

dimension cohorts (currently m=15, k=30), matching all relevant criteria set in the 

previous chapters and displaying an R-grade value ≥ (R-grade)min, where (R-

grade)min was determined during the training phase of the model (for PROPHET 

prototype trials (R-grade)min set to 1,40).  

Set “control cluster” : Next, we introduce the “control cluster” entity (CCi, i=1-(n/l)), 

as a set of l successive actionable TPs, each entity starting with TPi, ending with 

TP(i+l) and not overlapping with the next CC that starts with TP(i+l+1) and ends 

with TP(i+2l+1), where l is the CC dimension, set to 4 during simulator. 

Set the alarm threshold : The model’s training process, dictated a “health event 

alarm” threshold, linked to the AUC of f(x), calculated for x=1 and x=144, assuming 

that in the TRAINING subset, the target variable (i.e. the “health event”) is detected in 

the RTP corresponding to x=144 

False alarms : By definition, an alarm message is labelled as FALSE POSITIVE 

when the alarm procedure is unnecessarily activated, warning for a "health event" 

that will not going to occur within the set “tolerance time limits”. On the other hand, 

PROPHET "controller" registers a FALSE NEGATIVE incident, when a "health event" 

is detected which the model failed to predict within the set “tolerance time limits” 

Set the tolerance time limits : Let xa being the actual time slot in the active 

predictive period, within which the actual “major health event” occurred and xp the 

time slot in which the alarm procedure was activated, in warning of an impending 

"reference health event”. Then, the figure d = [(xa – xp)*15], represents the average 

temporal distance (in minutes) between the actual event and the corresponding 

alarm. A d<0 means that the alarm was triggered earlier than the actual event. In this 

case the tolerance time limit was set to (-240) mins, so if d is less than (-240) the 

alarm is labelled as FALSE POSITIVE. A d>0 means that the alarm was set off after 

the actual event. For this case the tolerance time limit was set to 15 mins, therefore, 

if d is greater than 15 the alarm is labelled as FALSE NEGATIVE.   

Set the predictive algorithm environment : Build a custom TVC (i.e. a TVC 

adapted exclusively for patient P), with m = 30, for being consistent to the optimal 

choice, for every major health event HEt (t : “AFIB”, “TACHY”, “BRADY”, “VF”, “SVT”, 

“ASYS”, “ABF”, or “NOEVT”) that could arise during the RPM session of patient P. 

The values of the custom TVC component instances’ parameters, could either 

derived from a prior exploratory RPM session of this particular patient (if any) or set 

by the MDs’ team, based on other patients’ RPM data, displaying similar EHR4 image 

with that of P. The TVAC pool associated to this particular custom TVC would be 

created using a similar – as above – approach 

Set the “entry timestamp” 

 
4 EHR : Electronic Health Record 
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Timestamp definition : a unique value, marking the moment in time that WBAN 

recorded a specific set of vital signs, concurrently measured 

Basic element in understanding the workflow of any out-of-the-LAB application of the 

predicting model, is the fact that the temporal pattern (TP) been registered in the 1st 

time slot (i.e. x1) of a real time session, could not treated proportionally with the TP 

registered in time slot x1 of the TRAINING model. At the starting point, the system 

locates the time slot (i.e. the independent variable x), optimally corresponding to the 

R-grade value of the driver temporal pattern, using the nearest R-grade value of the 

training R-grade pool, to that of the driver. We define this time slot as the “entry 

timestamp”. 

The predicting model workflow  

REFERENCE SESSION : The LRA defines a and b coefficients for y=a*x+b (y=R-

grade), where x  the temporal order (order of appearance) of actionable RTPs only. 

During classifier learning, the "TRAINING" session was set to start 36 hours prior the 

target health event (AFIB) detection. This means that the upper limit of the integral 

used for calculating the reference AUC value, was equal the number of actionable 

RTPs counted in the "TRAINING" session, till the occurrence of TVC (or TVAC for 

homogeneity reasons). In reference session we know that the AFIB event occurred 

36 hours since starting time slot. In this extent, the upper limit of the integral for the 

reference session will always be ≤ 144 (36h=36*60mins=144 quarters, using 15-

minute time slots as independent variables of the LRA model). When AFIB showed 

up, x=j (j≤144), yj=R-grade of “target” RTP, i.e. the RTP carrying the AFIB health 

event, therefore AUC=∫(a*x+b)dx, x=1,j. The AUC value for x=j is defined as the 

“target AUC” value. Given the “target AUC”, we proceeded in setting the sensitivity 

limits prior starting the real time RPM session (the actual session). 

ADJUSTMENT FACTOR (R-factor) : This is a real number <1, which is used in 

adjusting the actual R-grade values in order to maximize the predicting accuracy of 

the model, regarding the proximity of actual AUC value (i.e. the AUC value of f(x) the 

moment of the target health event detection in the actual session) versus the target 

AUC value, registered during the reference session. Steps taken in calculating the R-

factor : For each actionable RTP we define RTP/HR as the average of the heart rate 

(HR) measurements included in the instances that “belong” to this particular RTP. 

Respectively, we define as RTP/RR the average of the respiratory rates (RR) 

measurements included in the instances that “belong” to this particular RTP. For any 

given RTP, if both RTP/HR and RTP/RR are greater than the respective upper limits 

as set by the MD or both are lower than the respective lower limits, its R-factor is set 

to λ. If only one of these values was out of limits, the RTPs R-factor was set to λ’. 

Should both values ranged within valid limits, the R-factor set to zero. We considered 

that the R-factor of Reference session equals 1. Then, the R-factor for any examinee 

RPM session is resulting as the price of the polynomial R=[∑(RTP/R)λi-

Σ((RTP/actual)λi+Σ(RTP/R)λ'i-Σ((RTP/actual)λ'i]/1000. The above procedure was a 

result of experimenting with different sessions of the VALIDATION subset, in 

conjunction with the reference session of the TRAINING subset. When it comes for 
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actual RPM sessions, the model uses the R-grade values of the already registered n 

RTPs (let n=10) for projecting the R-grades values of future RTPs that are expected 

to be recorded during actual session. Subsequently, the system applies the 

aforementioned adjustment procedure on the projected R-grades. The actual AUC 

value is then calculated using the adjusted values of the projected R-grades.  

Although R-grade and R-factor figures are neither related nor interdependent as core 

constituents of the predicting model, their combination yields medically critical 

information, on which the MD team was based for setting the role of R-factor in 

adjusting the parameters of the predicting model in real time operation. 

Assuming that the matching independent variable x = n (n≤144), the PROPHET 

prototype begins applying the model for the entry timestamp onwards, building the 

relative RTPs in real time and assigning the corresponding adjusted R-grades to the 

actionable ones only. In parallel, the "Controller" is in charge of calculating and 

checking in real time, the ever evolving R-factor of the actual session. A high R-factor 

denotes unstable session environment, which could result in discriminating the 

reliability of R-grade regarding its predictive role. Should this factor is constantly 

increasing to reach a predefined alarm ceiling,, the "Controller" issues a warning 

message, leaving the decision for possible corrective actions to the PROPHET admin 

team. Another option in using the R-factor, is for the controller to put the model 

operation on hold, when the factor’s value exceeds a warning threshold and finally 

discontinue the process, should the value crosses upwards a critically high limit. 

The setting of the driver RTP R-grade in an actual session, yields the corresponding 

x value, let this be equal n. Then for every newcomer CCn, the system calculates in 

real time the AUC value of y=f(x) for x=1 and x=n, then for x=1 and x=n+1, and so 

forth. The alert mechanism is activating when AUC value of f(x) reaches the alarm 

threshold, which for PROPHET prototype trials was set to 250 (with a sensitivity 

factor ranging between -5% and 5%). 

Simulator results 

The aforementioned procedure was applied in the TEST data subset which was used 

for evaluating the machine's ability in predicting upcoming "health events", based on 

its training. The TEST subset comprised about 80 hours of continuous recording of 

vital signs, with the use of a WBAN worn by a single patient throughout the session. 

The use of simulator was confined in evaluating the model against the reference 

major health event (AFIB), only 

Results in numbers 

Simulator duration (hours) 80 

Number of time slots  323 

Number of complete RTPs 320 

Number of control clusters (r=5) 64 

entry timestamp (Driver RTP) day 5/00:00:01 

Number of actual reference health events 21 (AFIB) 

ALARM HISTORY 
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Sensitivity analysis 

Differentiations in test outcomes, resulting from selective changes in core parameter 

values : 

 

SENSITIVITY ANALYSIS RESULTS 

PARAMETER Sensitivity factor 
Tolerance time 

limits (d) 
"time slot" 

CHANGE 
Increase range 
limits to ±10% 

Increase range 
limits of “d” to 

-300<d<20 

Using "control cluster" instead 
(downgrading the timing 
detail by 1:5)  

ALARM HISTORY 

Number of total alarms  80 66 124 

Successful hits  16 15 17 

False positives  62 48 105 

False negatives or “no alarm”  5 6 4 

predicting success (%) 76,19% 71,43% 80,95% 

Number of total alarms  46 

Successful hits [(-240)<d<15] 14 

False positives [d<(-240)] 29 

  

False negatives [d>15] or “no alarm” 7 

predicting success (%) 66,67% 
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COMBINATION OF 

SENSITIVITY PARAMETERS 

combining 

sensitivity factor 

& tolerance time 

limits 

combining 

sensitivity factor 

& "control 

cluster" 

combining 

tolerance time 

limits & "control 

cluster" 

combining all 3 

sensitivity 

parameters 

ALARM HISTORY 

Number of actual reference 

health events 
21 21 21 21 

Number of total alarms  92 138 124 161 

Successful hits  17 18 18 19 

False positives  73 119 105 141 

False negatives or “no alarm”  4 3 3 2 

predicting success (%) 80,95% 85,71% 85,71% 90,48% 

 R2  Significance F 

 n=10 n=20 n=30 n=40  n=10 n=20 n=30 n=40 

m=3 0,075203 0,100271 0,200542 0,22561  1,63E-06 1,7E-06 1,61E-06 1,59E-06 

m=7 0,325881 0,401084 0,45122 0,436179  1,74E-06 1,77E-06 1,66E-06 1,53E-06 

m=10 0,501356 0,436179 0,461247 0,481301  
1,36E-06 1,33E-06 1,23E-06 1,31E-06 

m=12 0,526423 0,551491 0,486315 0,461247  1,29E-06 1,32E-06 1,18E-06 1,25E-06 

m=15 0,626694 0,511383 0,651762 0,526423  1,27E-06 1,33E-06 1,16E-06 1,43E-06 

 P-value (y)  standard deviation of absolute differences (%) 
between residuals and actual values  

 n=10 n=20 n=30 n=40  n=10 n=20 n=30 n=40 

m=3 0,048823 0,050858 0,04801 0,047603  32,20% 33,60% 39,20% 40,60% 

m=7 0,052078 0,052892 0,049637 0,045569  46,20% 50,40% 53,20% 52,36% 

m=10 0,040686 0,039872 0,036618 0,039059  78,40% 52,36% 53,76% 54,88% 

m=12 0,038652 0,039466 0,035397 0,037431  57,40% 58,80% 55,16% 53,76% 

m=15 0,037838 0,039872 0,034583 0,042721  63,00% 56,56% 28,00% 57,40% 
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CONCLUSIONS 

The results of testing the PROPHET prototype using real time RPM session data and 

simulating the dataflow of the session, yelded the following conclusions : 

− The model success rate in predicting upcoming health events, ranges between 

66% and 90% approximately, depending on the values assigned to the core 

parameters of the model.  

The trials revealed that the success rate of the model is directly proportional to the  

total number of alarms generated by the system. Therefore, adapting the model's 

parameters to achieve the highest possible success rate, eventually leads in 

increasing the number of false alarms. In turn, FALSE POSITIVES congestion, 

triggers a reasonless mobilization and consequently causing work overload to the 

doctors in charge operating the RPM system, thus, leading the predictive process in 

becoming toilsome and ultimately counterproductive.  

− For containing the oversized pool of false alarms, we needed to compromise with 

a lower success rate of the model. The results could be still considered 

moderately satisfactory with an average success rate of ~75%.  This approach 

has resulted in a reduction of false alarms to about 80, throughout the simulator's 

80-hour trial period, which is considered a marginally tolerable size. 

In summary, the present report introduces the PROPHET predicting model which 

was built on the predictive algorithm described here and incorporated into the 

PROPHET prototype, with the aim of evolving into a real time “health event” 

prediction tool, based on outpatients' vital signs, remotely collected with the use of a 

mobile, wearable WBAN 

Although the trials presented here, deal with only one type of major health event, 

namely atrial fibrillation, we reasonably believe that the procedures described, could 

be applied identically to any other type of major health event, without need modifying 

the logic or the workflow of the PROPHET model 

APPENDIX A 

LRA sensitivity results for all combinations of n, m, where n represents the dimension 

(number of cohorts) of the RTPs ∈ R'n and m the number of component instances of 

a cohort. Figure [1] depicts the evolution of the AUC values, within a selected period 

of the simulator session.  

 

 

 

 

 

 

Figure 1 
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In terms of numbers :  The preset AUC value was 249.13, while the real value when 

the AFIB event was detected was equal to 224.87, which corresponds to a deviation 

at the level of -9.74%. The model activated the alarm procedure when AUC was 

equal to 243.91, which would be considered a success hit should the sensitivity 

factor had been set to ±10%, but it would be registered as FALSE NEGATIVE in 

case the sensitivity factor was set to ±5%. 
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