
MAJORIZATION IN THE FRAMEWORK OF 2–CONVEX SYSTEMS
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Abstract. We define a 2-convex system by the restrictions x1+x2+ . . .+xn = ns , e(x1)+e(x2)+
. . .+ e(xn) = nk , x1 ≥ x2 ≥ . . . ≥ xn where e : I → R is a strictly convex function. We study
the variation intervals for xk and give a more general version of the Boyd-Hawkins inequalities.
Next we define a majorization relation on AS by x 4p y ⇔ Tk(x) ≤ Tk(y) ∀1 ≤ k ≤ p− 1
and Bk(x) ≤ Bk(y) ∀p+ 2 ≤ k ≤ n (for fixed 1 ≤ p ≤ n− 1 ) where Tk(x) = x1 + . . .+ xk ,
Bk(x) = xk + . . .+ xn . The following Karamata type theorem is given: if x,y ∈ AS and x 4p y
then f (x1)+ f (x2)+ . . .+ f (xn)≤ f (y1)+ f (y2)+ . . .+ f (yn) ∀ f : I→R 3-convex with respect
to e . As a consequence, we get an extended version of the equal variable method of V. Cı̂rtoaje

1. Introduction. The main results, definitions and notations

DEFINITION 1. Let I ⊂ R an interval. A continuous, strictly convex function
e : I→ R is called acceptable if it cannot be further extended by continuity on I .

Let m = inf(I) ∈R , M = sup(I) ∈R . If m /∈ I we infer from the above definition
that either m =−∞ , or m is finite but limx→m e(x) = +∞ (and similarly for M ).

We will study systems of the form (S) :


x1 + x2 + . . .+ xn = ns
e(x1)+ e(x2)+ . . .+ e(xn) = nk
x1 ≥ x2 ≥ . . .≥ xn

where

n≥ 3, e : I→ R is a continuous, strictly convex, acceptable function and s,k are real
constants with s ∈ I̊ . We call such a system 2-convex or (S)–sistem and use the nota-
tion S(e,s,k,n) . We denote the solutions set by AS . A necessary condition for AS to be
nonempty is that e(s)≤ k (by the convexity of e ). A nonempty (S)–system it’s called
trivial if AS has only one element. Because e is strictly convex we see that e(s) = k
⇔ AS = {(s,s . . . ,s)} , so (S) it’s trivial in this case. We will prove in the next sections
that AS is a compact and connected set.

REMARK 1. We can also consider 2-concave systems S(e,s,k,n) (for which the
function e is strictly concave) and their theory is completely similar. In practice, we
can associate to each concave system S(e,s,k,n) the convex system S′(−e,s,−k,n) for
which A′S = AS etc.

An important role in the study of the (S)–systems will be played by the so-called
p– invariants .

DEFINITION 2. Let S(e,s,k,n) be an (S)–system and 1 ≤ p ≤ n− 1. We say
that (S) admits invariants of order p if the following system

pa+(n− p)b = ns
pe(a)+(n− p)e(b) = nk
a≥ b
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is nonempty.

As we shall see, any such solution (ap,bp) is unique and we denote by (ap|bp)S
the n-tuple (ap, . . .ap,bp, . . .bp) ∈ AS . If (S) admits p–invariants ∀1≤ p≤ n−1 we
say that (S) is complete and in this case we consider the intervals

Ip :=


[an−1, a1] if p = 1,
[bp−1, ap] if 1 < p < n,
[bn−1, b1] if p = n

We will show that every system S(e,s,k,n) for which IS is an open interval is
complete and Ip is precisely the set of all possible values of component xp (x ∈ AS ).
This extends the known inequalities of Boyd-Hawkins (see [4], pg. 155).

It is particularly important to consider the ”poles” of the (S) . It is shown that there
is a single n-tuple ω (the lower pole) for which the minimum of x1 is achieved, respec-
tively a single n-tuple Ω (the upper pole) for which the maximum of xn is achieved.
Specifically, Ω = (a1|b1)S (if S has 1–invariants) respectively ω = (an−1|bn−1)S if S
has (n−1)–invariants but, in general, ω and Ω have the form:

Ω = (

r ≥ 0

M, . . .M,a,b . . .b)
ω = (a, . . .a,b,m . . .m

r ≥ 0

)

where m = inf(IS), M = sup(IS) with the observation that if m /∈ IS (or M /∈ IS ) then
r = 0.

For x ∈ Rn and 1 ≤ k ≤ n we consider the ”top” sums Tk(x) = x1 + . . .+ xk and
also the ”bottom” sums Bk(x) = xk + . . .+xn (by convention T0(x) = 0, Bn+1(x) = 0).

Given x,y ∈ Rn such that x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn then x 4 y
(in the classical sense of the majorization theory) if:

x1 ≤ y1

x1 + x2 ≤ y1 + y2

. . . . . . . . . . . . . . . . . . . . . . . .

x1 + . . .+ xn−1 ≤ y1 + . . .+ yn−1

x1 + x2 + . . .+ xn = y1 + y2 + . . .+ yn

that is, more concisely, if Tn(x) = Tn(y) and Tk(x)≤ Tk(y) ∀1≤ k ≤ n−1.
We state here the classical result of Hardy-Littlewood-Polya (also known as Kara-

mata’s theorem):

THEOREM 1. Let I ⊂ R , f : I→ R strictly convex and x,y ∈ In . If x 4 y then

f (x1)+ f (x2)+ . . .+ f (xn)≤ f (y1)+ f (y2)+ . . .+ f (yn)

Moreover, equality occurs if and only if x = y.

2



REMARK 2. The above condition Tk(x)≤ Tk(y) ∀1≤ k≤ n−1 can be replaced
with:

∃1≤ p≤ n such that

{
Tk(x)≤ Tk(y) ∀1≤ k ≤ p−1
Bk(x)≥ Bk(y) ∀p+1≤ k ≤ n

because Bk(x) ≥ Bk(y) ⇔ Tn(x)−Tk−1(x) ≥ Tn(y)−Tk−1(y) ⇔ Tk−1(x) ≤ Tk−1(y)
∀p+1 ≤ k ≤ n so Tk(x) ≤ Tk(y) ∀p ≤ k ≤ n−1 and these inequalities, together with
Tk(x)≤ Tk(y) ∀1≤ k ≤ p−1 give us Tk(x)≤ Tk(y) ∀1≤ k ≤ n−1.

Starting from this reformulation we will define in a very similar manner a ma-
jorization relation on AS :

DEFINITION 3. Let x,y∈AS and 1≤ p≤ n−1 a fixed index. We say that x4p y
if {

Tk(x)≤ Tk(y) ∀1≤ k ≤ p−1
Bk(x)≤ Bk(y) ∀p+2≤ k ≤ n

In order to state the main result of the article we need the following definition:

DEFINITION 4. Let f ,e : I ⊂ R→ R continuous on I , differentiable on I̊ . We
say that f is (strictly) 3-convex with respect to e if ∃g : J→ R (strictly) convex with
e′(I̊)⊂ J and such that f ′ = g◦ e′ .

REMARK 3. In the particular case e(x) = x2 this is equivalent with the standard
definition of 3-convex functions (see for example [3]).

Now the main result:

THEOREM 2. (Karamata for 2-convex systems) Let S(e,s,k,n) a 2-convex (or 2-
concave) system with e differentiable on I̊S , f : IS → R strictly 3-convex with respect
to e. Then ∀x,y ∈ AS with x 4p y we have:

f (x1)+ f (x2)+ . . .+ f (xn)≤ f (y1)+ f (y2)+ . . .+ f (yn)

Moreover, equality occurs if and only if x = y.

We will show that for any x ∈ AS ∃p,q so that ω 4p x 4q Ω and this allows us to
obtain the following corollary (a generalization for the equal variable theorem of Vasile
Cı̂rtoaje, see [1] and [2].

COROLLARY 1. (extension of the equal variable theorem) Let S(e,s,k,n) a 2-
convex (or 2-concave) system with e differentiable on I̊S , f : IS→ R strictly 3-convex
with respect to e. Then ∀x ∈ AS we have

E f (ω)≤ E f (x)≤ E f (Ω)

where E f (x) = f (x1)+ f (x2)+ . . .+ f (xn) and ω , Ω are the poles of the (S) . More-
over, equality occurs if and only if x = ω or x = Ω .
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2. The study of the invariants of an S(e,s,k,n) system

We start here the study of the invariants of an S(e,s,k,n) system (Definition 2).

LEMMA 1. If S(e,s,k,n) admits a pair (ap,bp) of invariants of order p for a
certain 1≤ p≤ n−1 then this pair is unique.

Proof. Suppose that (S) has a second pair of p–invariants (a′p,b
′
p) 6= (ap,bp) . We

have, for example, ap < a′p and then, using the relation pap +(n− p)bp = pa′p +(n−
p)b′p = ns we infer bp > b′p .

Thus (a′p, . . .a
′
p,b
′
p, . . .b

′
p) � (ap, . . .ap,bp, . . .bp) (strictly) and applying Kara-

mata to the strictly convex function e we obtain kn > kn , a contradiction.

LEMMA 2. If S(e,s,k,n) has e(s)< k and ∃(ap|bp)S then ap > s > bp .

Proof. From the definition of invariants, pap +(n− p)bp = ns and ap ≥ bp .
Thus p(ap− s)+(n− p)(bp− s) = 0 (∗) and we have the following cases :
Case 1. ap > s Then from (∗) it follows that bp < s and we get ap > s > bp
Case 2. ap = s Then from (∗) it follows that bp = s . On the other hand pe(ap)+

(n− p)e(bp) = nk ⇒ e(s) = k , contradiction.
Case 3. ap < s Then from (∗) it follows that bp > s which contradicts the fact

that ap ≥ bp .

2.1. The extremal properties of invariants

THEOREM 3. Let S(e,s,k,n) be a nonempty system and x ∈ AS .

(a) Let 1 ≤ p ≤ n− 1 . If ∃(ap|bp)S then xp ≤ ap with equality if and only if x =
(ap|bp)S .

(b) Let 2≤ p≤ n−1 . If ∃(ap−1|bp−1)S then xp ≥ bp−1 with equality if and only if
x = (ap−1|bp−1)S .

(c) If ∃(a1|b1)S then xn ≤ b1 with equality if and only if x = (a1|b1)S .

(d) If ∃(an−1|bn−1)S then x1 ≥ an−1 with equality if and only if x = (an−1|bn−1)S .

Proof. (a) Suppose that xp > ap . We will show that (x1, . . .xn)� (ap, . . .ap︸ ︷︷ ︸
p

,bp, . . .bp︸ ︷︷ ︸
n− p

) .

Because x1 ≥ . . .≥ xp > ap we get

x1 > ap, x1 + x2 > 2ap, . . . ,x1 + . . . + xp > pap (∗)

On the other hand, (x1 + . . .+ xp) + (xp+1 + . . .+ xn) = pap + (n− p)bp = ns , but
x1 + . . .+ xp > pap and thus xp+1 + . . .+ xn < (n− p)bp , so xp+1+...+xn

n−p < bp .

But xp+1 ≥ xp+2 ≥ . . .≥ xn⇒ xn ≤ xn+xn−1
2 ≤ xn+xn−1+xn−2

3 ≤ . . .≤ xn+...+xp+1
n−p < bp

and so we get xn < bp, xn + xn−1 < 2bp, . . . , (xn + . . .+ xp)< (n− p)bp (∗∗)
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From (∗) and (∗∗) it follows that x � (ap|bp)S and applying Karamata to the
strictly convex function e we get the contradiction kn > kn .

Therefore xp ≤ ap . If equality xp = ap holds, then xp ≥ ap and, following exactly
the above steps (from the xp > ap case), we get the (not necessarily strictly) majoriza-
tion x < (ap|bp)S . In fact, we must have x = (ap|bp)S otherwise x � (ap|bp)S and
applying Karamata to e we get again kn > kn , contradiction. Thus xp = ap imply
x = (ap|bp)S .

(b) Suppose that xp < bp−1 . We will show that x� (ap−1|bp−1)S .
Using bp−1 > xp ≥ xp+1 ≥ . . .≥ xn we get

xn < bp−1, (xn + xn−1)< 2bp−1, . . . ,(xn + . . .+ xp)< (n− p+1)bp−1 (∗)

On the other hand, (x1 + . . .+ xp−1)+(xp + . . .+ xn) = (p−1)ap−1 +(n− p+1)bp =
ns , but (xp + . . .+ xn) < (n− p+ 1)bp−1 and thus x1 + . . .+ xp−1 > (p− 1)ap−1 , so
x1+...+xp−1

p−1 > ap−1 .

But x1 ≥ x2 ≥ . . .≥ xp−1⇒ x1 ≥ x1+x2
2 ≥ x1+x2+x3

3 ≥ . . .≥ x1+...+xp−1
p−1 > ap−1

and so we get x1 > ap−1, x1 + x2 > 2ap−1, . . . , (x1 + . . .+ xp−1)> (p−1)ap−1(∗∗)
From (∗) and (∗∗) it follows that x � (ap|bp)S and applying Karamata to the

strictly convex function e we get kn > kn , contradiction.
Therefore xp ≥ bp−1 . If equality xp = bp−1 holds then xp ≤ bp−1 and, follow-

ing exactly the above steps (from the xp < bp−1 case) we get the (not necessarily
strictly) majorization x < (ap−1|bp−1)S . We must have x = (ap−1|bp−1)S otherwise
x � (ap−1|bp−1)S and applying Karamata to e we get again kn > kn , contradiction.
Thus xp = bp−1 imply x = (ap−1|bp−1)S .

For (c), (d) the proofs use similar arguments.

COROLLARY 2. If (S) has e(s)< k and admits (ap|bp)S , (aq|bq)S (p< q) then
ap > aq and bp > bq .

Proof. Let u = (ap|bp)S and v = (aq|bq)S . Notice that vp = aq (because p < q )
and applying theorem 3a we infer that vp ≤ ap that is, ap ≥ aq . But the equality case
ap = aq is not possible because, by the same theorem 3a, this would imply that u = v
and, using lemma 2 we get s > bp = up+1 = vp+1 = aq+1 > s , contradiction.

Thus ap > aq and by theorem 3b we get similarly that bp > bq .

EXAMPLE 1. Let S(e,s,k,n) a 2-convex system where k,s ∈ R, k ≥ s2 and e :
R→ R is given by e(x) = x2 . A straightforward computation shows that ∀ 1 ≤ p ≤
n−1 the system 2 has the solution (ap,bp) =

(
s+
√

n−p
p ∆, s−

√
p

n−p ∆

)
where ∆ =

k− s2 ≥ 0. Thus S is a complete system and ∀x = (x1,x2 . . .xn) ∈ AS we have xp ∈ Ip
where
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Ip =



[
s+
√

∆

n−1 , s+
√
(n−1)∆

]
if p = 1,[

s−
√

p−1
n−p+1 ∆, s+

√
n−p

p ∆

]
if 1 < p < n,[

s−
√
(n−1)∆, s−

√
∆

n−1

]
if p = n

We obtain in this way the well-known Boyd-Hawkins’s inequalities (see [4], pg. 155).
and we can get many examples of this type by simply choosing another complete
(S)–system, for example S(e,s,k,n) with s,k > 0, ks ≥ 1 and e : (0,∞)→ R given
by e(x) = 1

x etc.

2.2. Existence conditions for invariants

Let S(e,s,k,n) be un (S)–system and 1 ≤ p ≤ n− 1, I = IS , m = inf(I) ∈ R ,
M = sup(I) ∈ R .

Let gp : Jp→ R, gp(x) = pe(x)+(n− p)e( ns−px
n−p )− kn where Jp ⊂ I∩ [s,∞) is

the largest interval with the property that ns−px
n−p ∈ I∩ (−∞,s] .

REMARK 4. Jp can be specified more precisely as follows: we consider the lin-
ear decreasing function u : [s,∞)→ (−∞,s] given by u(x) = ns−px

n−p and we see that

Jp = J∩ I where J = u−1(I∩ (−∞,s]) =

{
[s, u−1(m)] if m ∈ I
[s, u−1(m)) if m /∈ I

=

{
[s,γp] if m ∈ I
[s,γp) if m /∈ I

and γp
de f
= ns−(n−p)m

p ∈ [s,∞] and finally we get for Jp the expression

If M < γp then Jp =

{
[s,M] if M ∈ I
[s,M) if M /∈ I

If M > γp then Jp =

{
[s,γp] if m ∈ I
[s,γp) if m /∈ I

If M = γp then Jp =

{
[s,M] if m ∈ I and M ∈ I
[s,M) if m /∈ I or M /∈ I

LEMMA 3. gp is strictly increasing on Jp

Proof. Let c,d ∈ J̊p with c < d . Then

gp(c)−gp(d) = p[e(c)− e(d)]+(n− p)
[

e
(

ns− pc
n− p

)
− e
(

ns− pd
n− p

)]
which can be written as

gp(c)−gp(d)
c−d

= p

e(c)− e(d)
c−d

−
e
(

ns−pc
n−p

)
− e
(

ns−pd
n−p

)
ns−pc
n−p −

ns−pd
n−p

 (1)
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We observe that d > ns−pd
n−p ⇔ d > s (true) and using the convexity of e we infer that

e(c)− e(d)
c−d

>
e(c)− e

(
ns−pd
n−p

)
c− ns−pd

n−p

(2)

Similarly, c > ns−pc
n−p ⇔ c > s (true) and from here we also get

e
(

ns−pd
n−p

)
− e(c)

ns−pd
n−p − c

>
e
(

ns−pd
n−p

)
− e
(

ns−pc
n−p

)
ns−pd
n−p −

ns−pc
n−p

(3)

From (2) and (3) we deduce that the right side of the relation (1) is positive ⇒
gp(c)−gp(d)

c−d > 0 ⇒ gp(c)− gp(d) < 0, ie gp is strictly increasing on J̊p , so also on
Jp because gp is continuous.

From this lemma we infer the existence of the limit

Lp
de f
= lim

x→supJp
gp(x) ∈ R

THEOREM 4. Let S(e,s,k,n) be an (S)–system with f (s) < k , 1 ≤ p ≤ n− 1
and Lp the limit defined above. Then (S) has invariants of order p if and only if{

Lp ≥ 0 if Jp is compact
Lp > 0 if Jp is not compact

Proof. We see that gp(s) = n(e(s)− k) < 0 and the theorem follows considering
that gp is strictly increasing (according to the previous lemma).

COROLLARY 3. Let S1(e,s,k1,n) and S2(e,s,k2,n) be two non-empty (S)–systems
with k1 ≤ k2 . If S2 has p– invariants for a certain 1 ≤ p ≤ n− 1 then S1 has also
p– invariants.

Proof. Let g1
p,g

2
p : Jp → R , g1

p(t) = pe(t) + (n− p)e( ns−pt
n−p )− k1n and g2

p(t) =
pe(t)+ (n− p)e( ns−pt

n−p )− k2n defined as above. Notice that g1
p(t)+ k1n = g2

p(t)+ k2n
∀t ∈ Jp and so

lim
t→supJp

g1
p(t) = lim

t→supJp
g2

p(t)+(k2− k1)n≥ 0

THEOREM 5. If S(e,s,k,n) has e(s) ≤ k and IS is an open interval then (S) is
non-empty and complete.

Proof. If e(s) = k then AS = {(s,s . . .s)} and the theorem is trivially true. We can
therefore assume from now on that e(s)< k .

7



Let 1 ≤ p ≤ n− 1 and gp : Jp → R , gp(x) = pe(x) + (n− p)e
(

ns−px
n−p

)
− kn .

According to remark 4 we have Jp =

{
[s,M) if M ≤ γp

[s,γp) if M > γp
and noting λ = supJp we

have to show that Lp = limx→λ gp(x)> 0.
Case 1. M = γp =+∞⇒ Jp = [s,+∞)
Observe that for x ∈ Jp , x > s we can write

gp(x) = p(x− s)

e(x)− e(s)
x− s

−
e
(

ns−px
n−p

)
− e(s)

ns−px
n−p − s

+n(e(s)− k) (4)

Let r1 < r2 arbitrarily fixed in (s,∞) . For any x > r2 ⇒ ns−px
n−p < s < r1 < r2 < x

and using the strict convexity of e we infer:

e
(

ns−px
n−p

)
− e(s)

ns−px
n−p − s︸ ︷︷ ︸

E1

<
e(r1)− e(s)

r1− s︸ ︷︷ ︸
E2

<
e(r2)− e(s)

r2− s︸ ︷︷ ︸
E3

<
e(x)− e(s)

x− s︸ ︷︷ ︸
E4

We see that E4−E1 > E3−E2
de f
= λ0 > 0 and thus for any x > r2 we have

gp(x) = p(x− s)(E4−E1)+n(e(s)− k)> pλ0(x− s)+n(e(s)− k)

therefore Lp = limx→∞ gp(x) = +∞ (so > 0).
Case 2. M < γp⇒ Jp = [s,M), λ = M .
Now M is finite ⇒ limx→M e(x) = +∞ (because e is an acceptable function). On

the other hand, M < γp =
ns−(n−p)m

p ⇒ m < ns−pM
n−p < s and so ns−pM

n−p ∈ IS . Therefore

lim
x→λ

gp(x) = lim
x→M

[
pe(x)+(n− p)e

(
ns− px
n− p

)
− kn

]
=+∞

Case 3. M > γp⇒ Jp = [s,γp), λ = γp .
Now γp is finite so m is also finite and limx→m e(x) =+∞ . Notice that ns−pγp

n−p =m

and so limx→γp e
(

ns−px
n−p

)
=+∞ . Therefore

lim
x→λ

gp(x) = lim
x→γp

[
pe(x)+(n− p)e

(
ns− px
n− p

)
− kn

]
=+∞

Case 4. M = γp <+∞⇒ Jp = [s,M), λ = M .
M and m are both finite so limx→m e(x) = +∞ , limx→M e(x) = +∞ . Notice that

ns−pM
n−p =

ns−pγp
n−p = m so limx→M e

(
ns−px
n−p

)
=+∞ . Therefore

lim
x→λ

gp(x) = lim
x→M

[
pe(x)+(n− p)e

(
ns− px
n− p

)
− kn

]
=+∞
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THEOREM 6. Let S(e,s,k,n) with AS 6= /0 and m = inf(IS) , M = sup(IS) . Then

(a) If M /∈ IS then (S) has the invariants of order 1

(b) If m /∈ IS then (S) has the invariants of order (n−1)

Proof. Notice that e(s)≥ k (because AS 6= /0) and let c = (c1 . . .cn) ∈ AS .
(a) If we also have m /∈ IS then IS is an open interval and the conclusion follows

from the theorem 5 and so we can further assume that IS = [m,M) , M finite or not.
Let g1 : J1→ R, g1(t) = e(t)+(n−1)e( ns−t

n−1 )− kn

According to remark 4, J1 =

{
[s,M) if M ≤ γ1

[s,γ1] if M > γ1
where γ1 = ns− (n−1)m

Case 1. M > γ1 then J1 = [s,γ1] and we have to show that g1(γ1)≥ 0.
Notice that m = ns−γ1

n−1 so g1(γ1)≥ 0⇔ e(γ1)+(n−1)e(m)≥ kn⇔

e(γ1)+(n−1)e(m)≥ kn = e(c1)+ . . .e(cn)

and this follows from Karamata because, obviously, (γ1,m, . . . ,m)< (c1,c2, . . .cn) .
Case 2. M < γ1 (this case is only possible if M is finite)
Now J1 = [s,M) and we have to show that limt→M g1(t)> 0.
But M < γ1 , thus s ≤ ns−M

n−1 < m and so ns−M
n−1 ∈ IS and using also the fact that

limr→M e(r) = +∞ (e being an acceptable function) we infer that

lim
t→M

g1(t) = lim
t→M

[
e(t)+(n−1)e

(
ns− t
n−1

)
− kn

]
=+∞

Case 3. M = γ1 (this case is only possible if M is finite)
In this case we also have J1 = [s,M) and we have to show that limt→M g1(t)> 0.
Notice that M = γ1⇒ ns−M

n−1 =m and we see that limr→M e(r)= limr→m e(r)=+∞

(because M,m are finite and e is an acceptable function). Therefore

lim
t→M

g1(t) = lim
t→M

[
e(t)+(n−1)e

(
ns− t
n−1

)
− kn

]
=+∞

(b) can be proved in a similar manner.

LEMMA 4. Let I = [m,M] a compact interval, s ∈ I̊ and C = {x ∈ In|x1 + x2 +
. . .xn = ns} . Then ∃!u ∈C of the form u = (M, . . .M︸ ︷︷ ︸

l0

,θ ,m, . . .m︸ ︷︷ ︸
n− l0−1

) where 0≤ l0 ≤ n−1

and θ ∈ [m,M) .

Proof. Let λ = s−m
M−m ∈ (0,1) and l0 = [nλ ] ∈ {0, . . .n−1}

Next we define θ = ns− l0M− (n− l0− 1)m and a straightforward calculation

give us θ = m+{nλ}(M−m) ∈ [m,M) and u
de f
= (M, . . .M︸ ︷︷ ︸

l0

,θ ,m, . . .m︸ ︷︷ ︸
n− l0−1

) ∈C
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For uniqueness, we notice that if u′ = (M, . . .M︸ ︷︷ ︸
l′0

,θ ′,m, . . .m︸ ︷︷ ︸
n− l′0−1

) ∈ C with 0 ≤ l′0 ≤

n−1 and θ ′ ∈ [m,M) then θ ′= ns− l′0M−(n− l′0−1)m and from here we immediately
get that nλ − l′0 =

θ ′−m
M−m ∈ [0,1) so l′0 = [nλ ] = l0 etc.

THEOREM 7. Let S(e,s,k,n) with AS 6= /0 and m = inf IS , M = sup IS . Then:

(a) If M ∈ IS and (S) has no invariants of order 1 then there are solutions x ∈ AS
of the form x = (M,x2 . . .xn)

(b) If m∈ IS and (S) has no invariants of order n−1 then there are solutions x∈ AS
of the form x = (x1 . . .xn−1,m)

Proof. (a) Let ω ∈ AS . We consider two cases.
Case 1 IS is compact, so IS = [m,M] .
According to lemma 4, ns has an unique representation of the form ns = l0M +

θ +(n− l0−1)m with θ ∈ [m,M) and 0≤ l0 ≤ n−1. First we shall show that l0 ≥ 1.

If l0 = 0 then we consider ũ
de f
= (θ ,m . . .m) , k̃

de f
= e(θ)+(n−1)e(m)

n and, after noticing
that (ω1,ω2 . . .ωn)4 (θ ,m . . .m) , we infer from Karamata that k ≤ k̃ . But, obviously,
S̃(e,s, k̃,n) has invariants of order 1 (because ũ ∈ AS̃) and using the corollary 3 we
conclude that (S) also has invariants of order 1, contradiction. Therefore l0 ≥ 1.

Next, we prove that M ≤ γ1
de f
= ns− (n− 1)m . If not, M > γ1 and from γ1 ≥ m

we get γ1 ∈ [m,M) , so ns = γ1 +(n−1)m⇒ l0 = 0, contradiction. Therefore M ≤ γ1

and from here we also infer that δ
de f
= ns−M

n−1 ∈ [m,M] .

Let g1 : J1→R , g1(t)= e(t)+(n−1)e
( ns−t

n−1

)
−kn where J1 =

{
[s,M] if M < γ1,

[s,γ1] if M ≥ γ1,

but, according to the above observation, M ≤ γ1 so J1 = [s,M] .
But (S) has no invariants of order 1 and by theorem 4, we infer that g1(M) < 0

so e(M)+(n−1)e(δ )< kn .
Next we define C = {(x2, . . .xn)∈ In−1|M≥ x2 ≥ . . .≥ xn, M+x2+ . . .+xn = ns}

and we see that C is a convex set (so it is also connected). Let u
de f
= (M, . . .M︸ ︷︷ ︸

l0 ≥ 1

,θ ,m, . . .m︸ ︷︷ ︸
n− l0−1

)

respectively v
de f
= (M,δ . . .δ ) and it’s clear that u,v ∈C .

Let E : C→ R , E(x2, . . .xn) = e(x2)+ . . .e(xn) . We see that E(v)< kn , because
g1(M) < 0. On the other hand, we notice that ω 4 u and using Karamata we get
E(ω) ≤ E(u) , therefore E(u) ≥ kn . But E is a continuous function and C is a con-
nected set and therefore we deduce that ∃x ∈C with E(x) = kn which means that (S)
has the solution (M,x2, . . .xn) .

Case 2. I is a non compact interval. This case can be reduced to the previous
(compact) case. Indeed, we will first choose an m < m1 < M such that m1 < ωn and
let I1 = [m1,M] , e1 = e

∣∣I1 . It’s clear that S1(e1,s,k,n) is non-empty and has no invari-
ants of order 1(because they would be valid for (S) as well) and so, according to the
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compact case, we will find a solution (M,x2 . . .xn) ∈ AS1 but, obviously, this is also a
solution for S .

2.3. AS is a compact set

THEOREM 8. For any S(e,s,k,n) the set AS is compact.

Proof. We can assume that AS 6= /0 . Let m = inf(I) ∈R , M = sup(I) ∈R . We will
first show that there is a compact interval J ⊂ IS with AS ⊂ Jn .

Let x be an arbitrary point in AS . According to theorem 6, if M /∈ IS then
∃(a1|b1)S and, using theorem 3, we infer that x1 ≤ a1 . Similarly, if m /∈ IS then
∃(an−1|bn−1)S and xn ≥ bn−1 . Thus, if we define

m0 =

{
m if m ∈ IS

bn−1 if m /∈ IS
, M0 =

{
M if M ∈ IS

a1 if M /∈ IS
and J = [m0,M0] it follows that

x ∈ Jn and therefore AS ⊂ Jn .
Next, we see that we can write AS = A1∩A2∩E1 . . .∩En−1 where

Ep = {x ∈ Rn|xp+1− xp ≤ 0} ∀1≤ p≤ n−1

A1 = {x ∈ Rn|x1 + x2 + . . .xn = ns}
A2 = {x ∈ Jn|e(x1)+ e(x2)+ . . .e(xn) = nk}

and, because these sets are all closed sets we conclude that AS is a compact set.

3. Functional dependence. The Tε transforms

3.1. The n = 3 case

LEMMA 5. Let S(e,s,k,3) be an (S)–system and let x,y ∈ AS , x = (x1,x2,x3) ,
y = (y1,y2,y3) with x1 ≤ y1 . Then y1 ≥ x1 ≥ x2 ≥ y2 ≥ y3 ≥ x3

Proof. We have to show that x2 ≥ y2 and also that y3 ≥ x3 , the other inequalities
being obvious. If x3 > y3 then, using the fact that x1≤ y1 , we deduce that x≺ y (strictly
majorization) and from Karamata we get e(x1)+ e(x2)+ e(x3)< e(y1)+ e(y2)+ e(y3)
so 3k < 3k , a contradiction. Thus x3 ≤ y3 . Next, if x2 < y2 then using x1 ≤ y1 we infer
that x1 + x2 < y1 + y2 so x3 > y3 and further we get a contradiction exactly as above.
So we also have x2 ≥ y2 .

LEMMA 6. Let S(e,s,k,3) be an (S)–system and let x,y ∈ AS , x = (x1,x2,x3) ,
y = (y1,y2,y3) . If x1 = y1 (respectively x2 = y2 or x3 = y3 ) then x = y.

Proof. Let x1 = y1 . Suppose that x3 6= y3 . Then, for example, x3 > y3 and from this
we get immediately that x≺ y (strict) and applying Karamata to the function e we get
3k < 3k , a contradiction. So x3 = y3 and from here we also get x2 = 3s− (x1 + x3) =
3s− (y1 + y3) = y2 , therefore x = y .

11



Because AS is a compact set we infer that Pk
de f
= Prk(AS) (k = 1,2,3) are also

compact sets and let mk = min(Pk) , Mk = max(Pk) (k = 1,2,3). Thus Pk ⊆ Ik
de f
=

[mk,Mk] (k = 1,2,3). From now on, we denote by ω the point (unique, according
to the lemma 6) for which ω1 = m1 , respectively by Ω the unique point for which
Ω3 = M3 .

LEMMA 7. Let Ik = [mk,Mk] and ω,Ω as above. Then:

(a) ω = (m1,M2,m3) and Ω = (M1,m2,M3)

(b) M1 ≥ m1 ≥M2 ≥ m2 ≥M3 ≥ m3

Proof. 1) Let ω = (ω1,ω2,ω3) so ω1 = m1 and let x = (x1,x2,x3) ∈ AS be an ar-
bitrary point. Then x3 ≥ ω3 because otherwise, using the fact that x1 ≥ m1 = ω1 , we
infer that ω ≺ x (strictly) and applying Karamata to the function e we arrive at the
contradiction 3k < 3k . Because x ∈ AS is arbitrary we deduce that ω3 = m3 . At the
same time x2 = 3s− (x1 + x3) ≤ 3s− (ω1 +ω3) = ω2 but x is an arbitrary point so
ω2 = M2 . Therefore ω = (m1,M2,m3) and we get similarly that Ω = (M1,m2,M3) .

2) According to (a), (m1,M2,m3) ∈ AS , (M1,m2,M3) ∈ AS but, obviously, m1 ≤ M1
so, using lemma 5, we get M1 ≥ m1 ≥M2 ≥ m2 ≥M3 ≥ m3 .

LEMMA 8. Let IS = [m,M] and ω,Ω as above. Then:

(a) Ω is of the form

{
(a1,b1,b1) = (a1|b1)S if S has 1–invariants
(M,a,b) if S doesn’t have 1–invariants

(b) ω is of the form

{
(a2,a2,b2) = (a2|b2)S if S has 2–invariants
(a,b,m) if S doesn’t have 2–invariants

Proof. (a) If ∃(a1|b1)S then, using the extremal properties of invariants, we deduce
that ∀x ∈ AS x3 ≤ b1 and so we must have b1 = M3 = Ω3 ⇒ (a1|b1)S = Ω .

If @(a1|b1)S then, according to theorem 7 we deduce (S) has solutions of the form
(M,a,b) . This means that M1 = M but, according to the lemma 7, Ω = (M1,m2,M3) =
(M,m2,M3) and we infer (using lemma 6) that Ω = (M,a,b) .

(b) can be proved in a similar manner.

LEMMA 9. A non-empty system S(e,s,k,3) is trivial if and only if ω = Ω .

Proof. If (S) is trivial it’s clear that ω = Ω .
If ω = Ω ⇒ (m1,M2,m3) = (M1,m2,M3) so mk = Mk (k = 1,2,3) and clearly

|AS|= 1 so (S) is trivial.

REMARK 5. Thus, if S(e,s,k,3) is non-trivial, then ω 6= Ω and it’s clear that
mk 6= Mk , so I̊k 6= /0 (k = 1,2,3) . We also infer that ∀x ∈ AS with x1 ∈ I̊1 we have
x2 ∈ I̊2 and x3 ∈ I̊3 (because if, for example, x2 = m2 then x = Ω etc.) and also that
∀x ∈ AS with x1 ∈ I̊1⇒ x1 > x2 > x3 .
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LEMMA 10. Let S(e,s,k,3) be a non-empty (S)–system and Ik = [mk,Mk] as
above. Then:

(a) For any x1 ∈ I1 ∃!(x2,x3) ∈ I2× I3 with (x1,x2,x3) ∈ AS

(b) For any x3 ∈ I3 ∃!(x1,x2) ∈ I1× I2 with (x1,x2,x3) ∈ AS

Proof. (a) Fix x0
1 ∈ I1 . If x0

1 = m1 or x0
1 = M1 then the conclusion follows (because

ω,Ω ∈ AS ) so we can assume x0
1 ∈ (m1,M1) . Let f0 = f

∣∣[m,x0
1] .

Because ω = (m1,M2,m3)∈AS and x0
1 >m1 ≥M2 ≥m3 ≥m it follows that s∈ (m,x0

1)
so we have a well-defined (S)–system S( f0,s,k,3) for which ω ∈ AS0 and so AS0 6= /0 .

Observe that AS0 ⊂ AS and also that, if S0 has the 1–invariants (a0
1,b

0
1) then they

are valid for S as well.

We now show that S0 doesn’t have 1− invariants.
Case 1. (S) doesn’t have 1− invariants. According to the previous observation, neither
(S0) doesn’t have 1− invariants.
Case 2. (S) has 1− invariants (a1,b1) so M1 = a1 . Suppose (S0) has also 1− invariants
(a0

1,b
0
1) and then, according to the previous observation, (a0

1,b
0
1) are valid 1− invariants

for (S) as well and so (a1,b1) = (a0
1,b

0
1) ⇒ a0

1 = a1 = M1 . But M1 > x0
1 ≥ a0

1 and so
we get a contradiction.

Therefore (S0) is non-empty and without 1− invariants. According to Theorem 7a,
(S0) has a solution of the form (x0

1,x
0
2,x

0
3) ∈ AS0 ⊂ AS and this is unique (according to

Lemma 6).

(b) Fix x0
3 ∈ I3 . If x0

3 =m3 or x0
3 =M3 then the conclusion follows (because ω,Ω∈AS )

so we can assume x0
3 ∈ (m3,M3) . Let f0 = f

∣∣[x0
3,M] .

Because Ω = (M1,m2,M3) ∈ AS and M ≥ M1 ≥ m2 ≥ M3 > x0
3 it follows that s ∈

(x0
3,M) so we have a well-defined (S)–system S( f0,s,k,3) for which Ω ∈ AS0 and so

AS0 6= /0 .

Observe that AS0 ⊂ AS and also that, if S0 has the 2–invariants (a0
2,b

0
2) then they

are valid for S as well.

We now show that S0 doesn’t have 2− invariants.
Case 1. (S) doesn’t have 2− invariants. According to the previous observation, neither
(S0) doesn’t have 2− invariants.
Case 2. (S) has 2− invariants (a2,b2) so m3 = b2 . Suppose (S0) has also 2− invariants
(a0

2,b
0
2) and then, according to the previous observation, (a0

2,b
0
2) would be valid 2− invariants

for (S) as well and so (a2,b2) = (a0
2,b

0
2) ⇒ b0

2 = b2 = m3 . But m3 < x0
3 ≤ b0

2 and so
we get a contradiction.

Therefore (S0) is non-empty and without 2− invariants. According to Theorem 7b
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(S0) has a solution of the form (x0
1,x

0
2,x

0
3) ∈ AS0 ⊂ AS and this is unique (according to

Lemma 6).

THEOREM 9. (the functional dependence) Let S(e,s,k,3) be a non-empty system
and Ik = [mk,Mk] as above. Then ∃!u : I1→ I2,v : I1→ I3 bijective, continuous, mono-
tonic functions (u decreasing, v increasing) such that AS = {(t,u(t),v(t))|t ∈ I1} .

Proof. According to Lemma 10a, ∀x1 ∈ I1 ∃!(x2,x3)∈ I2× I3 with (x1,x2,x3)∈ AS
therefore ∃! the functions u : I1 → I2,v : I1 → I3 with AS = {(t,u(t),v(t))|t ∈ I1} . It
remains to show that they are continuous, bijective and strictly monotone.

But Lemma 10b also give us the unique functions ũ : I1→ I2, ṽ : I1→ I3 with the prop-

erty AS = {(ṽ(t), ũ(t), t)|t ∈ I3} and so, for any fixed (x0
1,x

0
2,x

0
3) ⇒

{
x0

1 = ṽ(x0
3) = ṽ(v(x0

1))

x0
3 = v(x0

1) = v(ṽ(x0
3))

and this means that v, ṽ are inverse of each other, so they are bijective functions.
Now we show that v is an increasing function on I1 . If not, it follows that ∃x1 < x′1 ∈ I1
with v(x1)> v(x′1) . This imply that (x′1,u(x

′
1),v(x

′
1))� (x1,u(x1),v(x1)) (strictly) and,

applying Karamata to the function e we get the contradiction 3k < 3k . Therefore v
is increasing, in fact strictly increasing (because of bijectivity) and from here we also
infer the continuity, because, in general, a bijective and monotone function f : I → J
(where I,J are intervals) is continuous.

In the u : I1 → I2 case, we use the relation u(x1) = 3s− x1− v(x1) and we immedi-
ately infer the continuity of u and also that u is strictly decreasing, hence also injec-
tive. It remains to show that u is surjective. But Ω = (M1,m2,M3) ∈ AS ⇒ m2 =
u(M1)⇒ m2 ∈ Im(u) and, similarly, M2 ∈ Im(u) and from continuity of u we deduce
that Im(u) = [m2,M2] so u is also surjective.

THEOREM 10. Let S(e,s,k,3) be a nontrivial system and u : I1→ I2, v : I1→ I3
as above. If, in addition, e is differentiable on I̊S then e ∈C1(I̊S) and u,v ∈C1(I̊1) .

Proof. Because e is strictly convex ⇒ e′ is strictly increasing on I̊S and, using also
the intermediate value property of e′ , we infer that e′ is continuous, hence e ∈C1(I̊S) .

Because (S) is nontrivial it follows (according to Remark 5) that I̊k 6= /0 (k =
1,2,3) . Next let F : I̊1× I̊2× I̊3 → R2, F(x1,x2,x3) = (F1(x1,x2,x3),F2(x1,x2,x3))
where {

F1(x1,x2,x3) = x1 + x2 + x3−3s
F2(x1,x2,x3) = e(x1)+ e(x2)+ e(x3)−3k

Fix c1 ∈ I̊1 and let c2 = u(c1) ∈ I̊2 , c3 = v(c1) ∈ I̊3 . Observe that c1 > c2 > c3 (see
Remark 5) and also that F(c1,c2,c3) = 0. The determinant of the Jacobian matrix

∂F1

∂x2
(c)

∂F1

∂x3
(c)

∂F2

∂x2
(c)

∂F2

∂x3
(c)


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is e′(c2)− e′(c3) 6= 0 (because e′ is strictly monotone and c2 > c3 ). Therefore, by
implicit function theorem applied to the C1 class function F ⇒ ∃Ic1 ⊂ I̊1, Ic2 ⊂
I̊2, Ic3 ⊂ I̊3 open intervals centered in c1,c2 respectively c3 and the C1 class func-
tion g : Ic1 → Ic2 × Ic3 , g(x1) = (g1(x1),g2(x1)) such that ∀(x1,x2,x3) ∈ Ic1 × Ic2 × Ic3
we have the equivalence:

F(x1,x2,x3) = 0⇔ (x2,x3) = (g1(x1),g2(x1))

But ∀(x1,x2,x3)∈ Ic1×Ic2×Ic3⇒ x1 > x2 > x3 so F(x1,x2,x3) = 0⇔ (x1,x2,x3)∈AS .
On the other hand, we know that AS = {(t,u(t),v(t))|t ∈ I1} so g1 ≡ u

∣∣Ic1 , g2 ≡ v
∣∣Ic2 .

We conclude that u,v ∈C1(I̊1) .

3.2. The Tε transforms. Preliminaries

Let S(e,s,k,n) be an (S)–system given by


x1 + x2 + . . .+ xn = ns (1)
e(x1)+ e(x2)+ . . .+ e(xn) = nk (2)
x1 ≥ x2 ≥ . . .≥ xn (3)

Fix c= (c1, . . .cn)∈AS , 1≤ i< j < k≤ n and let S′(e,s′,k′,3) be the (S)–system
given by 

x′1 + x′2 + x′3 = ci + c j + ck = 3s′

e(x′1)+ e(x′2)+ e(x′3) = e(ci)+ e(c j)+ e(ck) = 3k′

x′1 ≥ x′2 ≥ x′3

Obviously, AS′ 6= /0 . As in the previous section, we consider the intervals x′k ∈ I′k =
[m′k,M

′
k](k = 1,2,3) and, according to Theorem 9, ∃! the functions u : I′1 → I′2, v :

I′1→ I′3 continuous, bijective, strictly monotonic (u decreasing, v increasing) such that
AS′ = {(t,u(t),v(t))|t ∈ I′1} .

For any t ∈ I′1 = [m′1,M
′
1] we consider the n-tuple D(t) constructed from c by replac-

ing (ci,c j,ck) with (t,u(t),v(t)) , thus defining a continuous function D = D[ci,c j,ck] :
I′1 → Rn . Notice that for any t ∈ I′1 , the n-tuple D(t) satisfies the equalities (1) and
(2) of the initial (S)–system, but not necessarily the ordering condition (3) .

DEFINITION 5. Let 1≤ i < j < k ≤ n .

(a) We say that x ∈ In
S satisfies the ”ascending” condition (A+

i, j,k) if


xi <

{
M if i = 1
xi−1 if i > 1

x j > x j+1

xk < xk−1
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(b) We say that x ∈ In
S satisfies the ”descending” condition (A−i, j,k) if

xi > xi+1

x j < x j−1

xk >

{
m if k = n
xk+1 if k < n

LEMMA 11. Let S(e,r,k,n) be a non-empty (S)–system, c ∈ AS , 1 ≤ i < j <
k ≤ n and D = D[ci,c j,ck] : I′1 = [m′1,M

′
1]→ Rn as above.

(a) If c satisfies the (A+
i, j,k) condition, then ci < M′1 and there is a largest interval

J+ = [ci,ci + ε∗T ] ⊂ I′1 (ε∗T > 0) with the property that D(J+) ⊂ AS and D(t)
satisfies (A+

i, j,k) ∀t ∈ [ci,ci + ε∗T ) .

(b) If c satisfies the (A−i, j,k) condition, then ci > m′1 and there is a largest interval
J− = [ci− ε∗B,ci] ⊂ I′1 (ε∗B > 0) with the property that D(J−) ⊂ AS and D(t)
satisfies (A−i, j,k) ∀t ∈ (ci− ε∗B,ci] .

Proof. (a) According to Lemma 8, Ω′=

{
(a′1,b

′
1,b
′
1) if S′ has 1–invariants

(M,a′,b′) if S′ doesn’t have 1–invariants
and from this it follows that (ci,c j,ck) 6= Ω′ (otherwise we have either c j = ck , ei-
ther ci = M , impossible). On the other hand, according to Lemma 7, we know that
Ω′ = (M′1,m

′
2,M

′
3) and because (ci,c j,ck) 6= Ω′ it follows that ci < M′1 .

The point D(ci) = c satisfies the strict inequalities in (A+
i, j,k) and using the con-

tinuity of D we deduce that ∃ε > 0 such that ∀t ∈ [ci,ci− ε) , the point D(t) also
satisfies the strict inequalities in (A+

i, j,k) .
It’s clear that D(t) also satisfies the ordering condition (3) hence D(t) ∈ AS ∀t ∈

[ci,ci + ε) . Next we define

ε
∗
T = sup{ε > 0|D(t) satisfies (A+

i, j,k) ∀t ∈ [ci,ci + ε)}

and let J+ = [ci,ci + ε∗T ] . It’s clear that D(t) ∈ AS ∀t ∈ [ci,ci + ε∗T ) and, at the same
time D(ci + ε∗T ) ∈ AS because we can choose a sequence (tm)m≥1 ⊂ [ci,ci + ε∗T ) with
tm→ ci + ε∗T and from continuity of D we infer that D(tm)→ D(ci + ε∗T ) , but D(tm) ∈
AS and AS is a compact set, hence D(ci + ε∗T ) ∈ AS .

REMARK 6. Let d∗ = D(ci + ε∗T ) ∈ AS . Because d∗l = cl ∀l 6= i, j,k we have

M ≥ . . .≥ ci−1 ≥ d∗i ≥ . . .≥ d∗j ≥ c j+1 ≥ . . .≥ ck−1 ≥ . . .≥ d∗k

On the other hand, it’s clear that d∗ cannot satisfies the strict conditions in A+
i, j,k (oth-

erwise, following exactly the above steps, we could extend the interval J+ but this
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contradict the maximality of J+ ) and from this we infer that d∗ must satisfy at least
one of the following equalities

d∗i =

{
M if i = 1
ci−1 if i > 1

d∗j = d∗k if j+1 = k
d∗j = c j+1 if j+1 < k
d∗k = ck−1 if j+1 < k

LEMMA 12. Let c ∈ AS satisfying the A+
i, j,k condition and let J+ be the interval

given by Lemma 11. Then ∀t ∈ J+ the points c and D(t) belong to the same connected
component of AS .

Proof. Let C1 ⊂ AS the connected component that contains c . Using the continuity

of D it follows that C2
de f
= D(J+) is a connected set and c∈C2 ⊂ AS . Thus C1∪C2 is a

connected subset of AS and, from the maximality of C1 , we infer that C2 ⊂C1 etc.

3.3. The Tε transforms

Let S(e,s,k,n) be an (S)–system, 1≤ i < j < k≤ n , c∈ AS and D = D[ci,c j,ck] :
I′1→ Rn defined as in previous section.

We have seen that if c satisfies the A+
i, j,k condition then exists a largest interval

J+ = [ci,ci + ε∗T ] (ε∗T > 0) with the property that D(J+)⊂ AS .
Similarly, if c satisfies the A−i, j,k condition then exists a largest interval J− =

[ci− ε∗B,ci] (ε∗B > 0) with the property that D(J−)⊂ AS .

DEFINITION 6. Let c satisfying the A+
i, j,k condition and ε ∈ [0,ε∗T ] . We say that

the n-tuple c′ ∈ AS is a T+
ε (i, j,k)[c] transform of c and we write c′ = T+

ε (i, j,k)[c] if
c′ = D(ci + ε) .

The T−ε (i, j,k)[c] transforms are similarly defined.
We notice that when we apply to c a T+

ε (i, j,k)[c] transform (for example) then
ci and ck ”increase” and c j ”decreases” (the precise meaning is that c′i > ci , c′k > ck
and c′j < c j ). This follows, of course, from the monotony of the u and v functions
(u is strictly decreasing and v strictly increasing). We can also observe that c′i + c′j =
3s−c′k < 3s−ck = ci+c j so, by applying a T+

ε transform, the sum ci+c j (or c j +ck )
”decreases”.

A T+
ε |T−ε transform is called strict if ε ∈ (0,ε∗T ) , respectively ε ∈ (0,ε∗B) . We

notice that if c′ = T+
ε (i, j,k)[c] is a strict transform then c′ still satisfies the A+

i, j,k con-
dition (respectively A−i, j,k in the T−ε case).

LEMMA 13. (a) If x ∈ AS satisfies the A+
i, j,k condition then there is a chain of

strict transforms of type T+
ε that map x to an y ∈ AS with yn > xn .

(b) If x ∈ AS satisfies the A−i, j,k condition then there is a chain of strict transforms of
type T−ε that map x to an y ∈ AS with y1 < x1 .
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Proof. (a) Case 1 k = n . We can apply to x a strict transform y = T+
ε (i, j,n)[x]

and, obviously, yn > xn .
Case 2 k < n . We start by applying to x a strict transform x′ = T+

ε (i, j,k)[x] for
which, obviously, x′k > xk and so we are sure that we also have x′k > x′k+1 = xk+1 . If
k+1 = n we continue exactly as in the case 1. If not, we apply to x′ a strict transform
x′′ = T+

ε (i, j,k+1)[x′] for which x′′k+1 > x′′k+2 = xk+2 and so on.
For (b) the proof is similar to the above.

3.4. The poles ω,Ω

Let S(e,s,k,n) be an (S)–system. Because AS is a compact set it follows that

Pk
de f
= Prk(AS) (k= 1,2 . . .n ) are also compact sets and let mk =min(Pk) , Mk =max(Pk)

(k = 1,2 . . .n ), hence Pk ⊆ Ik
de f
= [mk,Mk] (k = 1,2 . . .n )

In particular, we deduce that there exists points ω ∈ AS for which ω1 = m1 (or
points Ω ∈ AS for which Ωn = Mn ).

LEMMA 14. Let Ω ∈ AS for which Ωn = Mn . Then Ω is of the form

Ω = (M, . . .M︸ ︷︷ ︸
r ≥ 0

,a,b . . .b)

where r ≥ 0 and a,b ∈ IS with a≥ b = Mn

Proof. We can start, obviously, by writing Ω in the form Ω=(M, . . .M︸ ︷︷ ︸
r ≥ 0

,Ωr+1, . . .Ωn) .

If r ≥ n−2 our problem is solved, so we can assume r ≤ n−3 with Ωr+1 6= M .
If there exists r + 1 < i < n with Ωi > Ωi+1 then, considering that Ωr+1 < M , we
infer that Ω satisfies the A+

r+1,i,i+1 condition hence, according to Lemma 13, there is a
chain of strict transforms of type T+

ε that map Ω to an Ω′ ∈ AS with Ω′n > Ωn = Mn ,
a contradiction. Therefore Ωr+2 = . . .= Ωn etc.

LEMMA 15. If Ω,Ω′ ∈AS are of the form


Ω = (M, . . .M,︸ ︷︷ ︸

r ≥ 0

a,b . . .b)

Ω′ = (M, . . .M,︸ ︷︷ ︸
r′ ≥ 0

a′,b′ . . .b′)
where

a≥ b, a′ ≥ b′ then Ω = Ω′ .

Proof. Without loss of generality we may assume that b≥ b′ and from this we infer{
Tk(Ω)≤ Tk(Ω

′) ∀k = 1 . . .r
Bk(Ω)≥ Bk(Ω

′) ∀k = r+2 . . .n

and this means Ω 4 Ω′ (according to Remark 2). Suppose Ω 6= Ω′ . Then Ω′ ≺ Ω

(strictly) and applying Karamata to the strictly convex function e we get kn < kn , a
contradiction.
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THEOREM 11. Let S(e,s,k,n) an (S)–system and m = inf(IS) , M = sup(IS) .
Then:

(a) There exists a unique point Ω ∈ AS for which Ωn = Mn . Moreover, it is of the
form

Ω = (M, . . .M︸ ︷︷ ︸
r ≥ 0

,a,b, . . .b)

Conversely, ∀Ω′ ∈ AS of the form Ω′ = (M, . . .M︸ ︷︷ ︸
r′ ≥ 0

,a′,b′, . . .b′) ⇒ Ω′ = Ω .

(b) There exists a unique point ω ∈ AS for which ω1 = m1 . Moreover, it is of the
form

ω = (a, . . .a,b,m, . . .m︸ ︷︷ ︸
r ≥ 0

)

Conversely, ∀ω ′ ∈ AS of the form ω ′ = (a′, . . .a′,b′,m, . . .m︸ ︷︷ ︸
r′ ≥ 0

) ⇒ ω ′ = ω .

Proof. (a) Let Ω,Ω′ ∈ AS two points for which Ωn = Ω′n = Mn . Then, according

to Lemma 14, Ω and Ω′ are of the form


Ω = (M, . . .M,︸ ︷︷ ︸

r ≥ 0

a,b . . .b)

Ω′ = (M, . . .M,︸ ︷︷ ︸
r′ ≥ 0

a′,b′ . . .b′)
and applying

Lemma 15 we infer Ω = Ω′ . The converse follows, obviously, from Lemma 15.
(b) The lemmas 14 and 15 has similar versions for the ω case and after that the

proof is similar to the above.

REMARK 7. We call these two points Ω , ω the poles of the system (upper and
lower) and we can show that [m1,M1] = [ω1,Ω1] and [mn,Mn] = [ωn,Ωn] . For the first
equality, for example, we observe that, by definition, ω1 = m1 . On the other hand,
Ω is of the form (M, . . .M︸ ︷︷ ︸

r ≥ 0

,a,b, . . .b) . If r > 0 then, Ω1 = M = M1 and if r = 0

then Ω = (a1|b1)S but, in this case, a1 = M1 (according to Theorem 3a) and so again
Ω1 = M1 .

REMARK 8. If x 6= Ω we can prove that there exist 1 ≤ i < j < n such that
x satisfies the (A+

i, j, j+1) condition. According to Theorem 11, x is not of the form
(M, . . .M︸ ︷︷ ︸

r ≥ 0

,a,b, . . .b) (*). It’s clear then that ∃i ≤ n− 2 with xi < M and, supposing i

minimal with this property, we also find i < j < j+1≤ n with x j > x j+1 , otherwise x
would be of the form (*).

Similarly, if x 6= ω we deduce that there exist 1 ≤ i < i+ 1 < j ≤ n such that x
satisfies the (A−i,i+1, j) condition.

THEOREM 12. Let S(e,s,k,n) be a non-empty (S)–system. The following asser-
tions are equivalent:
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(a) |AS|= 1 (that is, S is trivial)

(b) ω = Ω

(c) ∃x ∈ AS of the form x = (θ ,θ , . . . ,θ) or x = (M, . . .M︸ ︷︷ ︸
r ≥ 0

,θ ,m, . . .m︸ ︷︷ ︸
t ≥ 0

)

Proof. (a)⇒ (b) it’s obvious.
(b)⇒ (a) If ω = Ω then, according to remark 7, we infer that m1 = M1 and so,

for an arbitrary x ∈ AS we deduce that x1 = m1 . But this means, according to Theorem
11, that x = ω . Hence AS = {ω} etc.

(c)⇒ (b) From Theorem 11 we know that for any point Ω′ ∈ AS of the form
Ω′ = (M, . . .M︸ ︷︷ ︸

r′ ≥ 0

,a′,b′, . . .b′) ⇒ Ω′ = Ω . But x , in either of the two variants, is also of

that form and so x = Ω . In a similar manner we deduce that x = ω hence Ω = ω .
(b)⇒ (c) Let Ω = (M, . . .M︸ ︷︷ ︸

r ≥ 0

,a,b, . . .b) , ω = (a′, . . .a′,b′,m, . . .m︸ ︷︷ ︸
r′ ≥ 0

) .

Case 1 r > 0. We know that ω = Ω hence a′ = M and ω = (M, . . .M,b′,m, . . .m︸ ︷︷ ︸
r′ ≥ 0

)

Case 2 r′> 0. Using ω =Ω it follows that b=m hence Ω=(M, . . .M︸ ︷︷ ︸
r ≥ 0

,a,m, . . .m)

Case 3. r = 0, r′ = 0. Then ω = Ω⇔ (a,b . . .b) = (a′, . . .a′,b′) hence a = a′ =
b = b′ = θ and ω = (θ ,θ , . . . ,θ) .

3.5. AS is a connected set

THEOREM 13. Let S(e,s,k,n) be an (S)–system. Then AS is a connected set.

Proof. Suppose that AS is not connected, hence there exist at least two connected
components that are also compact sets, because AS is compact. Let C1 be the con-
nected component that contains the point Ω and let C2 6=C1 be another one. Using the
compactness of C2 , we can choose a point x = (x1,x2, . . .xn) ∈C2 with maximal xn .

According to Remark 8 ⇒ there exist indices i < j < k such that x satisfies the
”ascending” condition A+

i, j,k and applying Lemma 13a, we get a chain of strict T+
ε

transforms that map x to an y with yn > xn .
On the other hand, according to Lemma 12, for any w′ = T+

ε (i, j,k)[w] transform,
the point w′ belongs to the same connected component as w , hence x and y are both
contained in C2 . But yn > xn and this contradicts the maximality of xn .

COROLLARY 4. Let S(e,k,s,n) be an (S)–system and Ir = [mr,Mr],1≤ r ≤ n.
If Pr = Prr(AS) then Pr = Ir , hence Ir is exactly the set of all possible values of the xr
component (x ∈ AS ).
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4. Extension of the Karamata’s inequality and related results

4.1. The 4p and � relations

Fix 1≤ p≤ n−1 and let x,y ∈ AS .

y = (
T zone

y1, y2, . . . yp−1, yp, yp+1,
B zone

yp+2, . . . yn−1,yn)

x = (x1, x2, . . . xp−1

T zone

, xp, yp+1, yp+2, . . . xn−1,xn

B zone

)

By definition,

x 4p y⇔

{
Tk(x)≤ Tk(y) ∀1≤ k ≤ p−1
Bk(x)≤ Bk(y) ∀p+2≤ k ≤ n

(5)

where Tk(x) = x1 + . . .+ xk (top sums) and Bk(x) = xk + . . .+ xn (bottom sums).
Note that for p = 1 the definition is equivalent to Bk(x) ≤ Bk(y) ∀3 ≤ k ≤ n

(that is, the T zone is empty) and for p = n−1 the definition is equivalent to Tk(x)≤
Tk(y) ∀1≤ k ≤ n−2 (so B zone is empty).

We also consider the strict version of this relation, that is, we say that x ≺p y if
x 4p y and at least one of the inequalities (5) is strict.

LEMMA 16. Let x,y ∈ AS . If x 4p y then x1 ≤ y1 and xn ≤ yn .

Proof. If p≥ 2 the definition (5) implies in particular that T1(x)≤ T1(y) so x1≤ y1 .
If p = 1 then (5) ⇔ Bk(x) ≤ Bk(y) ∀3 ≤ k ≤ n and if x1 > y1 we infer x � y but,
applying Karamata to e , we arrive to the contradiction kn > kn . Hence x1 ≤ y1 and we
can prove similarly that xn ≤ yn .

DEFINITION 7. Let x ∈ AS and 1≤ i1 < i2 < .. . < ir ≤ n (fixed indices).

(a) We define xr (xi1 , . . .xir) as being that (n− r) tuple constructed from x by re-
moving the components xi1 , . . .xir .

(b) We define a ”reduced” system S′(e,k′,s′,n′) (where n′ = n− r) by:
t ′1 + . . .+ t ′n′ = ns− (xi1 + . . .+ xir) = n′s′

e(t ′1)+ . . .+ e(t ′n′) = nk− (e(xi1)+ . . .+ e(xir)) = n′k′

t ′1 ≥ t ′2 ≥ . . .≥ t ′n′

denoted also by Ŝ[xi1 ,xi2 . . .xir ] .

Notice that xr (xi1 , . . .xir) ∈ Ŝ[xi1 ,xi2 . . .xir ]

LEMMA 17. Let x,y ∈ AS with x 4p y and suppose ∃r with xr = yr . If x′ =
xr (xr) and y′ = yr (yr) then ∃1≤ p′ ≤ n′−1 such that x′ 4p′ y′ (where n′ = n−1 ).

Proof. It’ clear that x,y ∈ Ŝ[xr] and we can choose p′ = p−1 (if p≥ 2) or p′ = 1
(if p = 1) so, in general, we can choose p′ ∈ {p−1, p} .
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LEMMA 18. Let x,y∈ AS and 1≤ p,q≤ n−1 . If x 4p y and y 4q x then x = y.

Proof. The proof is by induction on n . Using Lemma 16, we first observe that
x 4p y⇒ x1 ≤ y1 and y 4q x⇒ y1 ≤ x1 , hence x1 = y1 .

For n = 3 the conclusion follows directly from Lemma 6.
If n > 3 we consider the points x′ = xr (x1) and y′ = yr (y1) so, according to

Lemma 17, ∃1 ≤ p′,q′ ≤ n′− 1 with x′ 4p′ y′ and y′ 4q′ x′ (where n′ = n− 1). But
x′,y′ ∈ AS′ where S′(e,s′,k′,n′) is the reduced system Ŝ[x1] and so, by the induction
hypothesis, it follows that x′ = y′ , hence x = y .

THEOREM 14. 4p is an order relation on AS

Proof. The reflexivity and transitivity are evident and antisymmetry follows from
Lemma 18.

COROLLARY 5. Let x,y ∈ AS with x 4p y. Then x≺p y⇔ x 6= y

Proof. If x≺p y then it’s clear that x 6= y .
If x 6= y then at least one of the inequalities (5) is strict. Otherwise, we would have

at the same time x 4p y and y 4p x , hence x = y .

LEMMA 19. Let x,y ∈ AS with x ≺p y. Then ∃ r ≤ p < p+ 1 ≤ t such that
xr < yr, xt < yt .

Proof. We will show that ∃r ≤ p such that xr < yr . Otherwise, xi > yi ∀1≤ i≤ p
hence Ti(x)> Ti(y) ∀1≤ i≤ p but this, together with the Bi(x)≤Bi(y) ( i= p+2 . . .n )
inequalities, implies that x� y (strictly) and, applying Karamata to the strictly convex
function e , we get nk > nk , a contradiction.

THEOREM 15. Let ω,Ω be the poles of the S(e,s,k,n) and let x ∈ AS be an
arbitrary point. Then there exists 1≤ p,q≤ n−1 such that Ω <p x <q ω .

Proof. We will show that ∃1 ≤ p ≤ n− 1 such that Ω <p x . We know that Ω is

of the form Ω=
1 . . . r−1 r r+1 r+2 . . . n

( )M, . . . M, a, b, b, . . . b for some r≥ 1

and, by the definition of Ω , we know that xn ≤ b .
It’s clear that Tk(Ω)≥ Tk(x) ∀1≤ k≤ r−1 and, if it happens that Bk(Ω)≥ Bk(x)

∀r + 2 ≤ k ≤ n , then it follows trivially that Ω <r x . If not, there exists an index
r+ 2 ≤ k ≤ n such that Bk(Ω) < Bk(x) and we suppose k largest with this property.
Because Ωn = b≥ xn we see that k < n .

So we have, for now, Bi(Ω)≥ Bi(x) ∀k+1≤ i≤ n and Bk(Ω)< Bk(x) . We will
prove that Ω <k−1 x and for this we need that Tj(Ω) ≥ Tj(x) ∀1 ≤ j ≤ k− 2. We
already know that Tj(Ω)≥ Tj(x) ∀1≤ j ≤ r−1, so we can assume r ≤ j ≤ k−2. If,
by reductio ad absurdum, there exists r ≤ j ≤ k−2 such that Tj(Ω)< Tj(x) then

M(r−1)+a+( j− r)b < x1 + . . .+ x j (6)
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But Bk(Ω)< Bk(x)⇒

(n− k+1)b < xk + . . .+ xn (7)

and from (6) and (7) we infer

M(r−1)+a+[n− r− (k− j−1)]b < (x1 + . . .+ x j)+(xk + . . .+ xn)

⇒ ns− (k− j−1)b < ns− (x j+1 + . . .+ xk−1)

⇒ (k− j−1)b > x j+1 + . . .+ xk−1

Hence b > xk−1 but from (7) it also follows that b < xk ≤ xk−1 , a contradiction.
The proof for x <q ω is similar to the above.

DEFINITION 8. If x,y ∈ AS we say that x� y if ∃1≤ p≤ n−1 with x 4p y

REMARK 9. The � relation is, obviously, reflexive and antisymmetric (accord-
ing to Lemma 18) but, unfortunately, it’s not also transitive so, in general, � is not an
order relation.

The fact that it is not transitive follows from a counterexample. We consider the
system S(e, 2

5 ,
44
5 ,5) where e : R→ R, e(x) = x2 and we will arrive at a counterex-

ample by a convenient deformation of the following points in AS :

z = (3+

√
35
2

, 3−
√

35
2

, 0, −3
2
, −5

2
)

y = (3+2
√

2, 3−2
√

2, 0, −1, −3)

x = (3+
3
√

3
2

, 3− 3
√

3
2

, 0, −1
2
, −7

2
)

First, observe that


x1 < y1 < z1, x5 < y5 < z5

x1 + x2 = y1 + y2 = z1 + z2 = 6
x4 + x5 = y4 + y5 = z4 + z5 =−4

.

Next, we see that x1 > x2 > x3 so there exist strict transforms x′ = T−ε (1,2,3)[x] .
We have x′1 < x1 and x′1 + x′2 > x1 + x2 = 6.

Similarly, we can apply to z a transform z′ = T+
ε (3,4,5)[z] , we have z′5 > z5 and

also z′4 + z′5 < z4 + z5 =−4.
Finally, we see that x′ 42 y , y 43 z′ but it’s not possible to choose an index 1 ≤

p≤ 4 with x′ 4p z′ because x′1 + x′2 > 6 = z′1 + z′2 and x′4 + x′5 =−4 > z′4 + z′5 .

4.2. The perturbation lemmas

DEFINITION 9. Fix 1≤ p≤ n−1 and let x,y ∈ AS with x 4p y . We say that:

(a) there exist equal sums in (T) if ∃1≤ k ≤ p−1 with Tk(x) = Tk(y) .

(b) all (T)-sums are distinct if Tk(x) 6= Tk(y) ∀1≤ k ≤ p−1.
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(and similarly for B-zone)

y = (
T zone

y1, y2, . . . yp−1, yp, yp+1,
B zone

yp+2, . . . yn−1,yn)

x = (x1, x2, . . . xp−1

T zone

, xp, yp+1, yp+2, . . . xn−1,xn

B zone

)

If there exist equal sums in (T), we also consider the extreme indices a ≤ b such

that

{
Ta(x) = Ta(y), Tb(x) = Tb(y)
Tk(x)< Tk(y), ∀k ∈ {1 . . .a−1}∪{b+1 . . . p−1}

Similarly, if there exist equal sums in (B), we consider the extreme indices c ≤ d

such that

{
Bc(x) = Bc(y), Bd(x) = Bd(y)
Bk(x)< Bk(y), ∀k ∈ {p+2 . . .c−1}∪{d +1 . . .n}

LEMMA 20. Fix 1≤ p≤ n−1 and let x,y ∈ AS with x 4p y.

A) 1) If x1 < y1 then ∃2≤ i≤ n−1 with xi > xi+1

2) If xn < yn then ∃1≤ i≤ n−2 with yi > yi+1

B) 1) If x1 < y1 and there exist equal sums in (T ) then ∃1 ≤ i ≤ a− 1 with
yi > yi+1

2) If xn < yn and there exist equal sums in (B) then ∃d ≤ i ≤ n− 1 with
xi > xi+1

Proof. (A) If (1) is not true, then xi = xi+1 ∀2≤ i≤ n−1 ⇒ x2 = x3 = . . .= xn
and so x = (a1|b1)S ⇒ x1 = a1 . But, from the extremal properties of invariants we
know that y1 ≤ a1 hence y1 ≤ x1 , a contradiction. For (2) the proof is similar.

B) If (1) is not true, then yi = yi+1 ∀1≤ i≤ a−1 ⇒ y1 = . . .= ya and so y1 =
Ta(y)

a .
On the other hand, Ta(x) = Ta(y) and, obviously, x1 ≥ Ta(x)

a = Ta(y)
a hence x1 ≥ y1 , a

contradiction. The proof of (2) is similar.

LEMMA 21. Fix 1≤ p≤ n−1 and let x,y ∈ AS with x 4p y and x1 < y1

A) If all (T)-sums are distinct and, also, all (B)-sums are distinct then there exist
strict transforms z = T+

ε (1, i, i+1)[x] with 2≤ i≤ n−1 such that z 4p y

B) If all (T)-sums are distinct but there exists equal sums in (B) then there exist
strict transforms z = T+

ε (1, i, i+1)[x] with d ≤ i≤ n−1 such that z 4p y

C) Suppose there exists equal sums in (T )

(a) If Ta+1(x)≤ Ta+1(y) then there exist strict transforms z= T+
ε (1,a,a+1)[y]

such that z 4p y
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(b) If Ta+1(x) > Ta+1(y) then p ≥ 2 and there exist strict transforms z =
T+

ε (1, i, i+1)[y] such that z 4p−1 y.

Proof. A) By hypothesis, we have

{
Tk(x)< Tk(y) ∀1≤ k ≤ p−1
Bk(x)< Bk(y) ∀p+2≤ k ≤ n

and, accord-

ing to Lemma 20 (A1) we know that ∃2≤ i≤ n−1 with xi > xi+1 . Because the above
inequalities are strict, there exists an ε > 0 such that the transform z = T+

ε (1, i, i+1)[x]

still verify the strict inequalities

{
Tk(z)< Tk(y) ∀1≤ k ≤ p−1
Bk(z)< Bk(y) ∀p+2≤ k ≤ n

hence z 4p y .

B) According to Lemma 20 (B2) we know that ∃d ≤ i ≤ n− 1 such that xi > xi+1 .
Because i+ 1 > d we have Bi+1(x) < Bi+1(y) [∗] and, by hypothesis, we also have
Tk(x)< Tk(y) ∀1≤ k ≤ p−1 [∗∗]

Because the inequalities [∗] and [∗∗] are strict there exists an ε > 0 such that the
transform z = T+

ε (1, i, i+1)[x] still verify the strict inequalities{
Tk(z)< Tk(y) ∀1≤ k ≤ p−1
Bi+1(z)< Bi+1(y)

and so it only remains to show that Bk(z)< Bk(y) ∀p+2≤ k ≤ n, k 6= i+1
We notice that for k 6= i+ 1 a Bk(x) sum can contains either the both terms xi

and xi+1 , either none of them. In the first case it’s clear that by the z = T+
ε (1, i, i+1)[x]

transform the sum xi+xi+1 can only decrease to zi+zi+1 and definitely Bk(z)< Bk(y) .
In the second case, the sum Bk(x) obviously remains unaffected by the z = T+

ε (1, i, i+
1)[x] transform, hence Bk(z) = Bk(x)≤ Bk(y) .

C1) We first show that xa > xa+1 . Because T1(x) < T1(y) it’s clear that a ≥ 2. We
have Ta−1(x) < Ta−1(y) and Ta(x) = Ta(y) , therefore xa > ya . On the other hand,
Ta+1(x) ≤ Ta+1(y) and using again Ta(x) = Ta(y) we have xa+1 ≤ ya+1 . Hence xa >
ya ≥ ya+1 ≥ xa+1⇒ xa > xa+1 (so there exists transforms of type T+

ε (1,a,a+1)[z]).
Furthermore, we know that Tk(x) < Tk(y) ∀1 ≤ k ≤ a− 1 and because all these

inequalities are strict it is clear that we can find an ε > 0 small enough so that the z =
T+

ε (1,a,a+1)[y] transform still verify the inequalities Tk(z)< Tk(y) ∀1≤ k ≤ a−1.
The remaining Tk(x) sums can either contain the terms x1,xa (if k = a ), either

all x1,xa,xa+1 terms. In the first case the sum x1 + xa can only decrease to z1 + za so
definitely Tk(z)< Tk(y) and in the latter the sum Tk(x) obviously remains unchanged,
so Tk(z) = Tk(x)≤ Tk(y) .

Regarding the sums Bk with p+ 2 ≤ k ≤ n it is obvious that they are unaffected
by the z = T+

ε (1,a,a+1)[x] transform, hence Bk(z) = Bk(x)≤ Bk(y) ∀p+2≤ k ≤ n .

C2) In this case it’s clear that a= p−1 (if a< p−1⇒ a+1< p⇒ Ta+1(x)< Ta+1(y) ,
impossible) and so Tp(x)> Tp(y) (because p = a+1) ⇒ ns−Tp(x)< ns−Tp(y)⇒
Bp+1(x)< Bp+1(y) , hence

25



{
Tk(x)< Tk(y) ∀1≤ k ≤ p−2
Bk(x)≤ Bk(y) ∀p+1≤ k ≤ n

⇒ x≺p−1 y

Because all Tk sums (1≤ k ≤ p−2) are distinct we can apply Lemma 21 A1) or
B1) to find a strict transform z = T+

ε (1, i, i+1)[x] such that z 4p−1 y .

THEOREM 16. Let x,y ∈ AS with x� y and x1 < y1 . Then there exists a strict
transform z = T+

ε (1, i, i+1)[x] with z� y.

Proof. The conclusion follows from Lemma 21.

4.3. The Karamata’s inequality for (S)–systems

THEOREM 17. Let S(e,s,k,3) be a non-empty 2-convex (or 2-concave) system
with e differentiable on I̊S and f : IS→ R strictly 3-convex with respect to e. Then

∀x,y ∈ AS, x1 < y1⇒ f (x1)+ f (x2)+ f (x3)< f (y1)+ f (y2)+ f (y3)

Proof. Because f is strictly 3-convex with respect to e ⇒ ∃g : J → R strictly
convex with e′(I̊S)⊂ J such that f ′ = g◦ e′ .

Case 1. (S) is a 2-convex system. We will prove this case using a proof scheme
similar to the one in [1] or [2], adapted to our more general framework.

According to Theorem 9 and 10 we know that ∃!u : I1→ I2,v : I1→ I3 continuous
on IS , differentiable in I̊S , bijective, strictly monotonic (u decreasing, v increasing) and
such that AS = {(t,u(t),v(t))|t ∈ I1} . We can, certainly, assume that (S) is nontrivial,
hence (see Remark 5) I̊k 6= /0 (k = 1,2,3) and ∀x∈ AS with x1 ∈ I̊1 ⇒ x2 = u(x1)∈ I̊2 ,
x3 = v(x1) ∈ I̊3 and x1 > x2 > x3 . For such a x1 ∈ I̊1 we can write:{

x1 +u(x1)+ v(x1) = 3s
e(x1)+ e(u(x1))+ e(v(x1)) = 3k

⇒

{
u′(x1)+ v′(x1) = 0
e′(x1)+ e′(u(x1))u′(x1)+ e′(v(x1))v′(x1) = 0

and infer immediately that

u′(x1) =
e′(x1)− e′(x3)

e′(x3)− e′(x2)
, v′(x1) =

e′(x1)− e′(x2)

e′(x2)− e′(x3)
(8)

Let S : I̊1→ R⇒ S(x1) = e(x1)+ e(u(x1))+ e(v(x1)) . By differentiating we get

∀x1 ∈ I̊1, S′(x1) = f ′(x1)+ f ′(u(x1))u′(x1)+ f ′(v(x1))v′(x1)

S′(x1) = f ′(x1)+ f ′(x2)
e′(x1)− e′(x3)

e′(x3)− e′(x2)
)+ f ′(x3)

e′(x1)− e′(x2)

e′(x2)− e′(x3)
(9)

(noticing that x1 > x2 > x3⇒ e′(x1)> e′(x2)> e′(x3) because e′ is strictly increasing)
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We have f ′(xk) = g(e′(xk)) (k = 1,2,3) and, using the notation e′(xk) = yk , we
can write (9) as

S′(x1)

(y1− y3)(y1− y2)
=

g(y1)

(y1− y3)(y1− y2)
+

g(y2)

(y2− y1)(y2− y3)
+

g(y3)

(y3− y1)(y3− y2)

By the strictly convexity of g we deduce that the right side of the above relation
is strictly positive and because (y1− y3)(y1− y2)> 0 we infer that S′(x1)> 0 ∀x1 ∈ I̊1
so S is strictly increasing on I̊1 , in fact on IS (because S is continuous on IS ) and
we conclude that ∀x,y ∈ AS, x1 < y1 ⇒ S(x1) < S(x2)⇒ f (x1) + f (x2) + f (x3) <
f (y1)+ f (y2)+ f (y3) .

Case 2. (S) is a 2-concave system, so now e is a strictly concave function on IS .
We consider the dual system S′(h,s,k′,3) where k′ = −k and h : IS → R, h = −e is
strictly convex and clearly AS = AS′ .

By hypothesis, we know that ∃g : J→ R strictly convex with e′(I̊S)⊂ J such that
f ′ = g ◦ e′ . Let g1 : −J → R, g1(y) = g(−y) and it’s clear that g1 is also strictly
convex and f ′(x) = g(e′(x)) = g1(−e′(x)) = g1(h′(x)) , hence f ′ = g1 ◦h′ .

In this way, we can apply the Case 1 to the system (S′) and we conclude again
that ∀x,y ∈ AS = AS′ , x1 < y1⇒ f (x1)+ f (x2)+ f (x3)< f (y1)+ f (y2)+ f (y3) .

REMARK 10. If IS is an open interval, we can give a more direct proof (not based
on the functional dependence), using an interesting technique from [5] and [6].

Let x,y ∈ AS with x1 < y1 . According to Lemma 5 we have y1 ≥ x1 ≥ x2 ≥ y2 ≥
y3 ≥ x3 and let A1 = [x1,y1], A2 = [y2,x2], A3 = [x3,y3] and Bk = e′(Ak) (k = 1,2,3) .
We observe that the intervals Ak have mutual disjoint interiors and so the intervals Bk
also have mutual disjoint interiors (because e′ is a strictly increasing function).

Next, we consider the linear function L : R→R, L(r) = α +β r that agree with g

at the endpoints of B2 and because g is convex we have

{
g(r)≤ L(r) ∀r ∈ B2

g(r)≥ L(r) ∀r ∈ B1∪B3

and so E1
de f
=
∫

A1
g(e′(t))dt+

∫
A3

g(e′(t))dt ≥
∫

A1
L(e′(t))dt+

∫
A3

L(e′(t))dt =α(l(A1)+

l(A3)) + β

[∫
A1

e′(t)dt +
∫

A3
e′(t)dt

]
and we observe that l(A1) + l(A3) = l(A2) be-

cause x1 + x2 + x3 = y1 + y2 + y3 and
∫

A1
e′(t)dt +

∫
A3

e′(t)dt =
∫

A2
e′(t)dt because

e(x1)+ e(x2)+ e(x3) = e(y1)+ e(y2)+ e(y3) . Hence

E1 ≥ αl(A2)+β

∫
A2

e′(t)dt =
∫

A2

L(e′(t))dt ≥
∫

A2

g(e′(t))dt
de f
= E2

But g(e′(t)) = f ′(t) ∀t ∈ IS so E1 =
∫

A1
f ′(t)dt+

∫
A3

f ′(t)dt = f (y1)− f (x1)+ f (y3)−
f (x3) and E2 =

∫
A2

f ′(t)dt = f (x2)− f (y2) etc.

THEOREM 18. Let S(e,s,k,n) be a non-empty 2-convex (or 2-concave) system
with e differentiable on I̊S and f : IS→ R strictly 3-convex with respect to e. Then

∀x,y ∈ AS, x� y⇒ E f (x)≤ E f (y) (10)

where E f (x) = f (x1)+ f (x2)+ . . .+ f (xn) . The equality holds if and only if x = y.
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Proof. First we will prove the inequality (10) by induction on n and next we will
discuss the equality case.

If n = 3 then x 4p y⇒ x1 ≤ y1 (according to Lemma 16) and the inequality (10)
follows directly from Theorem 17. Suppose now that n > 3.

Case 1) x1 = y1 . Let x′ = (x2, . . . ,xn) , y′ = (y2, . . . ,yn) . It’s clear (accord-
ing to Lemma 17) that x′� y′ and that x′,y′ ∈ AS′ where S′(e,s′,k′,n− 1) is the re-
duced system Ŝ[x1](see Definition 7). By induction hypothesis, E f (x′)≤ E f (y′) hence
E f (x) = f (x1)+E f (x′)≤ f (y1)+E f (y′) = E f (y) .

Case 2) x1 6= y1 , that is, according to Lemma 16, x1 < y1 .
Let Mx = {z ∈ AS|z� y and E f (z) ≥ E f (x)} , λ = sup{z1|z ∈Mx} and (zm)m≥1 ⊂Mx
with zm

1 → λ . Because AS is a compact set it follows that (zm)m≥1 has convergent
subsequences and so we can assume (zm)m≥1 is convergent (if not, we replace it with
a convergent subsequence). Let zm −→ z̃ ∈ AS . Notice that z̃1 = λ ≤ y1 (because
zm � y ∀m and so, according to Lemma 16, zm

1 ≤ y1 ).
We will prove that z̃ ∈ Mx . Knowing that E f (zm) ≥ E f (x) ∀m ≥ 1 and using

the continuity of f we infer that E f (z̃) ≥ E f (x) . It remains to show that z̃� y . But
zm � y⇒ ∃1 ≤ pm ≤ n− 1 with zm 4pm y and clearly we can find an index p that
appears an infinite number of times, so we can consider a subsequence (ml)l≥1 such
that zml 4p y for any l ≥ 1. But

zml 4p y⇔

{
Tk(x)≤ Tk(zml ) ∀1≤ k ≤ p−1
Bk(x)≤ Bk(zml ) ∀p+2≤ k ≤ n

By passing to the limit as l→ ∞ it follows that z̃ 4p y , hence z̃� y and so z̃ ∈Mx .
Next we will prove that z̃1 = y1 . Suppose that z̃1 < y1 . Then, using the fact that

z̃�y we can apply Theorem 16 to get a strict transform w= T+
ε (1, i, i+1)[z̃] with w�y .

Observe that E f (w)>E f (z̃) ⇔ f (w1)+ f (wi)+ f (wi+1)> f (z̃1)+ f (z̃i)+ f (z̃i+1) and
this is true according to Theorem 17 because w1 > z̃1 . Thus E f (w) > E f (z̃) ≥ E f (x)
and it follows that w ∈Mx . But w1 > z̃1 = λ and this contradicts the maximality of λ .

Hence z̃1 = y1 . But z̃�y and applying the induction hypothesis exactly as in Case
1 we deduce that E f (y)≥ E f (z̃) . But E f (z̃)≥ E f (x) and our inequality (10) is proved.

We discuss now the equality case. We will show that if x ≺p y (strictly) then
E f (x) < E f (y) . Let r be the first index 1 ≤ r ≤ p with the property that xr < yr
(see Lemma 19), hence xi = yi ∀1 ≤ i ≤ r− 1. Let x′ = (xr, . . .xn), y′ = (yr, . . .yn)
and clearly x′,y′ ∈ AS′ where S′(e,s′,k′,n′) is the reduced system Ŝ[x1, . . .xr−1](see
Definition 7), n′ = n− r+1.

Using Lemma 17 it follows that x′�y′ . We observe that E f (y)−E f (x) = E f (y′)−
E f (x′) , so it’s enough to prove that E f (y′)−E f (x′)> 0. Because x′1 = xr < yr = y′1 we
find, according to Theorem 16 applied to (S′) , a strict transform z′ = T+

ε (1, i, i+1)[x′]
with z′� y′ . But, according to Theorem 17,

E f (z′)−E f (x′) = f (z′1)+ f (z′i)+ f (z′i+1)− ( f (x′1)+ f (x′i)+ f (x′i+1))> 0

because z′1 > x′1 and so E f (z′) > E f (x′) . But, according to inequality (10) previously
proved, we also have E f (y′)≥ E f (z′) , therefore E f (y′)−E f (x′)> 0.
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REMARK 11. Our Karamata type theorem doesn’t have a converse (in contrast
to the classical Karamata’s theorem) because � is not an order relation. To remedy
this situation, we can try to define a relation x 44 y⇔ ∃z0, . . .zr ∈ AS with x = z0 �

z1 . . .� zr−1 � zr = y and it’s easy to prove that this is actually an order relation and,
obviously, Theorem 18 remains true if we use 44 instead � . Moreover, it’s plausible
to think that this version of Theorem 18 has a corresponding converse, but this is only
our conjecture.

THEOREM 19. (extended version of the V. Cı̂rtoaje equal variable theorem) Let
S(e,s,k,n) be a non-empty 2-convex (or 2-concave) system with e differentiable on
I̊S and f : IS → R strictly 3-convex with respect to e. Then ∀x ∈ AS the following
inequality holds

E f (ω)≤ E f (x)≤ E f (Ω)

where E f (x) = f (x1) + f (x2) + . . .+ f (xn) and ω , Ω are the poles of the (S). The
equality occurs if and only if x = ω or x = Ω .

Proof. Follows immediately by Theorem 15 and 18.

REMARK 12. V. Cı̂rtoaje’s original theorems correspond to the particular case of
an S(e,s,k,n) system where e is of the form e(x) = xr (see [1] and [2]).

REMARK 13. Let S(e,s,k,n) be a 2-convex (or 2-concave) system with e differ-
entiable on I̊S . We can further extend the previous theorems by replacing E f by more
general classes of functions. More precisely, we will say that E : In

S → R satisfies the
Schur-Ostrowski (SO) condition with respect to S(e,s,k,n) if E is continuous on In

S ,
differentiable on I̊n

S and verifies the condition:[
∂iE(x)−∂ jE(x)
e′(xi)− e′(x j)

−
∂kE(x)−∂ jE(x)
e′(xk)− e′(x j)

]
(e′(xi)−e′(xk))> 0 ∀x∈ I̊n

S ,xi 6= x j 6= xk (11)

If S(e,s,k,n) is a 2-convex (or 2-concave) system with e differentiable on I̊S and
f : IS→R is strictly 3-convex with respect to e , we can show that E f actually satisfies
(SO) with respect to (S). We know that f ′ = g ◦ e′ (g strictly convex) and we see that
∂lE f (x) = f ′(xl) = g(e′(xl)) , l = 1,2,3 hence, using the notation yl = e′(xl) we can
write the condition (11) as[

g(yi)−g(y j)

yi− y j
−

g(yk)−g(y j)

yk− y j

]
(yi− yk)> 0

and this is true because g is a strictly convex function and so the first factor of the above
expression has the sign of (yi− yk) .

If S(e,s,k,n) is a 2-convex (or 2-concave) system with e differentiable on I̊S and
E : I3

S → R satisfies (SO) with respect to (S) we can also get a more general version
of Theorem 17. The proof is largely the same. We similarly define S : I̊1 → R given
by S(x1) = E(x1,u(x1),v(x1)) ⇒ S′(x1) = ∂1E(x)+∂2E(x)u′(x1)+∂3E(x)v′(x1) and
using the equivalent expressions (8) for u′,v′ we can further write:

S(x1)
e′(x1)− e′(x3)

e′(x1)− e′(x2)
=

[
∂1E(x)−∂2E(x)
e′(x1)− e′(x2)

− ∂3E(x)−∂2E(x)
e′(x3)− e′(x2)

]
(e′(x1)− e′(x3))
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and so, using the condition (11), we infer that S′(x1)> 0 etc.
The proof of the theorem 18 can also be adapted, leading to the following more

general version:

THEOREM A. Let S(e,s,k,n) be a 2-convex (or 2-concave) system with e differ-
entiable on I̊S and E : In

S → R that satisfies (SO) with respect to (S). Then:

∀x,y ∈ AS, x� y⇒ E(x)≤ E(y)

Equality holds if and only if x = y

We have also the following version of Theorem 19:

THEOREM B. Let S(e,s,k,n) be a 2-convex (or 2-concave) system with e differ-
entiable on I̊S and E : In

S → R that satisfies (SO) with respect to (S). Then ∀x ∈ AS

E(ω)≤ E(x)≤ E(Ω)

where ω , Ω are the poles of the (S). Equality holds if and only if x = ω or x = Ω .

REMARK 14. The idea of a Schur criterion of type (11) can already be found in
[7] where systems of type (S) are discussed under the particular hypothesis e : R→
R, e(x) = x2 , but with a different definition of the majorization on (S), more precisely
a�3 b⇔∀ f : R→ R, f (3) ≥ 0⇒ ∑

n
i=1 f (ai)≥ ∑

n
i=1 f (bi) .
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