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Abstract.  

In this article, a new proof for Fermat’s Last Conjecture is introduced. Also the widely popular “traditional” 

solution for the quadratic equation ax
2
+bx+c=0, is corrected (a new solution is introduced).  

 

Keywords: Nonlinearity; Fermat’s Last Conjecture; Quadratic Equations; Mathematical Cryptography; Prime 

Numbers; Adomian’s Method; Beal Conjecture; Iterated Solutions.              

 

 

1. Introduction. 

Fermat’s Last Conjecture has generated substantial debate during the last few centuries, and most proofs 

offered have been un-necessarily convoluted and inaccurate. See: Darmon & Merel (1997), Cai, Chen & Zhang 

(2015), Jones & Rouse (2013), Kumar (2014), Joseph (2015), Rahmawati, Sugandha, et. al. (2019), Ibarra & Dang 

(2006), Nemron (2008), Zhang (1991); Wiles (1995), and Faltings (1995). The large volume of post-1995 

Mathematicians’ published/un-published attempts to solve Fermat’s Last Conjecture implies that many researchers 

don’t believe or understand the 1993-1995 Wiles-related proofs of Fermat’s Last Conjecture (see Faltings (1995) 

and Wiles (1995)). Lolja (2018) categorially explained why Fermat’s Last Conjecture had not be proved as of 

2018.     

Chu (2008) and Lu & Wu (2016) studied dynamical systems pertaining to Diophantine equations. Luca, 

Moree & Weger (2011) discussed Group Theory as it relates to Diophantine Equations. On Homomorphisms, see: 

Wang & Chin (2012). Elia (2005), Jones, Sato, et. al. (1976) and Matijasevič (1981) noted that primes can also be 

represented as Diophantine equations or as polynomials (such as in Fermat’s equation). On uses of Diophantine 

Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012). Zadeh (2019) 

notes that Diophantine equations have been used in analytic functions.       

The quadratic equation ax
2
+bx+c=0, and its standard solutions are perhaps some of the most widely used 

equations. The error in its standard solutions is corrected in this article (a new solution is introduced). See: 
Adomian (1985), Abbaoui & Cherruault (1994), Otadi & Mosleh (2011), Kajania, Asady & Vencheh (2005), 

López, Robles & Martínez-Planel (2016), and Sastry (1988).    

 

 

2. Fermat’s Last Conjecture. 

For the equation a
x
+b

x
=c

x
 in positive integers, the following are combinations of a,b,c and x that appear to 

nullify Fermat’s Last Conjecture (but only in the Domain-Of-Real-Numbers), but the issue is that for each such 

combination, (c/a)
x
-(b/a)

x
 ≈1.0000000000000000000000 (the equation is not exactly equal to 

1.0000000000000000000000000 like in pythagorean triples): 

i) a = 71; b= 72; c = 90; x=3; and (c/a)
x
-(b/a)

x
 = 0.993967774.   

ii) a = 380; b= 412; c = 500; x=3; and (c/a)
x
-(b/a)

x
 = 1.003525878.   

iii) a = 3,816; b= 4,110; c = 5,000; x=3; and (c/a)
x
-(b/a)

x
 = 1.000097655.    

iv) a = 482,950; b= 613,000; c = 700,000; x=3; and (c/a)
x
-(b/a)

x
 = 1.000088826.   

v) a = 3,811,500; b= 4,113,160; c = 5,000,000; x= 3; and (c/a)x-(b/a)x = 1.000749834.    

vi) a = 56,590,000; b= 62,199,000; c = 75,000,000; x= 3; and (c/a)x-(b/a)x = 1.000106785.   

vii) a = 583,000,000; b= 680,202,900; c = 800,500,000; x=3; and (c/a)
x
-(b/a)

x
 = 1.000463103.   
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viii) a = 280,010; b= 357,010; c = 360,060; x=10; and (c/a)
x
-(b/a)

x
 = 1.007959.    

ix) a = 2,800,100; b= 3,570,100; c = 3,600,390; x=10; and (c/a)
x
-(b/a)

x
 =1.000752.    

x) a = 2,800,100; b= 3,570,100; c = 3,600,360; x=10; and (c/a)
x
-(b/a)

x
 =0.999723.   

 xi) a = 42,400; b= 42,500; c = 43,443; x= 30; and (c/a)
x
-(b/a)

x
 = 0.99986336.   

 xii) a = 4,240,000; b= 4,250,000; c = 4,345,000; x= 30; and (c/a)
x
-(b/a)

x
 = 1.009908.   

 xiii) a = 43,448; b= 43,379; c = 43,000; x= 150; and (c/a)
x
-(b/a)

x
 = 1.004094906.   

 xiv) a = 4,300,000; b= 4,337,990; c = 4,344,850; x= 150; and (c/a)
x
-(b/a)

x
 =1.000648.   

 xv) a = 424,400; b= 425,000; c = 425,005; x= 2,500; and (c/a)
x
-(b/a)

x
 = 1.020488.   

 xvi) a = 42,440,000; b= 42,500,006; c = 42,500,496; x= 2,500; and (c/a)
x
-(b/a)

x
 = 1.000135569.   

xvi) a = 424,999,999; b= 425,004,800; c = 425,007,071; x= 70,000; and (c/a)
x
-(b/a)

x
 = 1.0002.   

xvii) a = 42,499,992; b= 42,500,002; c = 42,500,293; x= 100,000; and (c/a)
x
-(b/a)

x
 = 1.006591792.   

xviii) a = 425,006,108; b= 425,006,999; c = 425,007,011; x= 1,500,000; and (c/a)
x
-(b/a)

x
 = 1.0042.   

xix) a = 42,500,228,000; b= 42,500,229,000; c = 42,500,231,800; x= 9,000,000; and (c/a)
x
-(b/a)

x
 = 

1.000173356. 

xx) a = 4,250,069,400; b= 4,250,069,990; c = 4,250,070,110; x= 9,000,000; and (c/a)
x
-(b/a)

x
 = 1.0092. 

xxi) a = 36,500,228,969; b= 36,500,230,385; c = 36,500,230,857; x= 25,000,000; and (c/a)
x
-(b/a)

x
 =  

1.006653657. 

xxii) a = 425,006,999,145; b= 425,006,999,280; c = 425,007,011,000; x= 25,000,000; and (c/a)
x
-(b/a)

x
 = 

1.0004.     

 

 

See the results and cited articles in Jones & Rouse (2013). Given the foregoing, Fermat’s Last Conjecture 

is or can be valid only in the Domain-Of-Integers, but not in the Domain-Of-Real-Numbers. Lolja (2018) explained 

the differences between the Domain-of-Integers and the Domain-Of-Lines. The new proof introduced here pertains 

only to the Domain-Of-Integers.   

 

 

Theorem-1: Fermat's Last Conjecture Which States That No Three Positive Integers a, b And c Satisfy The 

Equation a
x
+b

x
=c

x
 (Where x>2  Is A Positive Integer) Is Correct Only In The Domain-Of-Integers. 

Proof: 

In order for a
x
+b

x
=c

x
, to be valid, the two conditions c>b,a; and c>b≥a must hold, partly because  1= (c/a)

x
-(b/a)

x
.     

 

a
x
+b

x
=c

x
, and then divide both sides of the equation by a

x
, and subtract 1 from each side of the equation: 

b
x
/a

x
 = (c

x
/a

x
)-1; and 1= (c/a)

x
-(b/a)

x
.   

(b/a)
x
 = (c

x
/a

x
)-1, and (b/a) =

 x
√[(c

x
/a

x
)-1],    

 

In equation b
x
/a

x
 = (c

x
/a

x
)-1, for all positive integers (a,b,c) ɛ (1,+∞) and x ɛ (3,+∞), integer x cannot be less than 

three because of the following reasons:   

i) b
x
/a

x
 = (c

x
/a

x
)-1 is equivalent to 1 = (c/a)

x
-(b/a)

x
. The two terms [b

x
/a

x
] and [(c

x
/a

x
)-1] must be equal, or 

the condition 1=(c/a)
x
-(b/a)

x
 must exist and that cannot occur if x>2 because c>b>a, and because of 

compounding implicit in the polynomial. See Chapters 4, 5, 7 & 8 in Nwogugu (2017). That is, because 

c>b>a, and for all x>2, as (a,b,c,x)→+∞, [(c/a)-(b/a)]→+∞; and [{(c/a)
x
-(b/a)

x
}>1]→+∞; and [(c/a)

x
-

(b/a)
x
]≠1. There is a threshold at which such compounding takes effect and the smallest positive-integer 

value at which compounding can possibly start is x=2; and the smallest positive-integer values at which 

compounding can substantially distort the equation is x=2,3. Thus, Fermat’s Last Conjecture is correct in 

the Domain-Of-Integers.         

  

ii) a
x
/b

x
 = 1/[(c

x
/a

x
)-1]; and (a/b)

x
 = 1/[(c

x
/a

x
)-1]; and thus:  

Ln(a/b)
x 
= exp(1/[(c

x
/a

x
)-1]). However, this foregoing condition doesn’t hold. 

For all x>2, the term (1/[(c
x
/a

x
)-1]) will always be greater than one and exp(1/[(c

x
/a

x
)-1]) will be in the 

(2.718, +∞) range.  
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On the other hand, (a/b) will always be less than one because c>b>a, and for all x>2, (a/b)
x
 will also be less 

than one. As x→+∞, (a/b)
x
→0. Thus, Ln(a/b)

x
 is likely to be less than one for all x>2. Therefore, Ln(a/b)

x 
≠ 

exp(1/[(c
x
/a

x
)-1]) for all x>2; and thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.      

 

Also:  

(b/a)
x
 = (c

x
/a

x
)-1, and (b/a) =

 x
√[(c

x
/a

x
)-1], 

a
x
/b

x
 = 1/[(c

x
/a

x
)-1]; and (a/b)

x
 = 1/[(c

x
/a

x
)-1]; 

a/b = 
x
√{1/[(c

x
/a

x
)-1]}; 

a= b*
 x
√{1/[(c

x
/a

x
)-1]}; 

b = a/ 
x
√{1/[(c

x
/a

x
)-1]}; or b = a*

 x
√[(c

x
/a

x
)-1], 

 

Given the foregoing, the following additional are component “Sub-Theorems” (each of which can be presented as a 

separate complete theorem) that prove that Fermat’s Last Conjecture is correct in the Domain-Of-Integers.   

 

Sub-Theorem #1:  

First, in equations a
x
+b

x
=c

x
 and b

x
/a

x
 = (c

x
/a

x
)-1, for all positive integers (a,b,c) ɛ (1,+∞) and x ɛ (3,+∞), as 

x,a,b,c→+∞, (and for medium and large values of [x,a,b,c]), 1+b
x
/a

x
 → b

x
/a

x
, and the above implies that b

x
/a

x
 = 

c
x
/a

x
, or that b

x
 = c

x
, which is wrong because that condition/equation can exist iff a=0. Thus, Fermat’s Last 

Conjecture is correct in the Domain-Of-Integers.   

 

Sub-Theorem #2:  

Second, in equation a
x
+b

x
=c

x
, c>b≥a, and for all positive integers (a,b,c) ɛ (1,+∞) and x ɛ (3,+∞), as (a,b,c,x) →+∞ 

(and for medium and large values of [x,a,b,c]), a= b*
 x
√{1/[(c

x
/a

x
)-1]} becomes: 

a= b*
 x
√{1/[(c/a)

x
]} which is equivalent to a= b*

 
{1/(c/a)} which is equivalent to a= (ba)/c, or 1=b/c; all of which 

are not feasible since c>a,b; and c>b≥a. Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.     

 

 

Sub-Theorem #3:  

Third, in equation a
x
+b

x
=c

x
, c>b≥a, and for all positive integers (a,b,c) ɛ (1,+∞) and x ɛ (3,+∞), the amount a cannot 

be a positive integer, because in equation a= b*
 x
√{1/[(c

x
/a

x
)-1]}, the amount {1/[(c

x
/a

x
)-1]}, will always be greater 

than one (c>b>a) but may or may not be an integer, and thus the amount  
x
√{1/[(c

x
/a

x
)-1]} may or may not be an 

integer. Also, the amount  
x
√{1/[(c

x
/a

x
)-1]}→-∞ as x→+∞, thus a is not guaranteed to be an integer for all x ɛ 

(3,+∞). Thus, Fermat’s Last Conjecture is correct in the Domain-Of-Integers.     

 

Sub-Theorem #4:  

Third, in equation a
x
+b

x
=c

x
, c>b≥a, and for all positive integers (a,b,c) ɛ (1,+∞) and x ɛ (3,+∞), the amount b cannot 

be a positive integer, because in equation b = a*
 x
√[(c

x
/a

x
)-1], and for all x>2, the amount [(c

x
/a

x
)-1] will be greater 

than 1, and the amount 
x
√[(c

x
/a

x
)-1], may or may not be an integer and thus b is not guaranteed to be an integer for 

all x ɛ (3,+∞). Thus, Fermat’s Last Conjecture is correct.     

 

 ▄ 

 

 

3. A Critique Of The Traditional Solution For The Equation ax
2
+bx+c=0 And Why Its Wrong.  

 

Theorem-2: The Quadratic Equation ax
2
+bx+c=0, Has The Solutions x = [-2ab±({√-(c/a) + (b/2a)

2
}*4a

2
)]. 

Proof:  

In the existing literature, the quadratic equation ax
2
+bx+c=0 is traditionally solved as follows. 

 

Divide both sides of the equation by a: 

2.1) x
2
+bx/a +c/a = 0 

 

Move the last term in the left hand side to the right hand side of the equation: 
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2.2) x
2
 + bx/a = – c/a 

 

Add (b/2a)
2
 to both sides of the equation:  

 

2.3) x
2
+ bx/a + (b/2a)

2
 = -(c/a) + (b/2a)

2
 

 

Convert the left hand side into an equation of the type (x+y)
2
: 

2.4) [x+(b/2a)]
2
 = -(c/a) + (b/2a)

2
 

 

Use square-root format to simplify both sides of the equation: 

2.5) x+(b/2a) = √{-(c/a)+(b/2a)
2
} 

 

Subtract (b/2a) from both sides of the equation 

2.6) x = -(b/2a) ± √{-(c/a)+(b/2a)
2
} 

However, the foregoing purportedly results in the traditional and popular simplification x={-b± (√(b
2
 – 4ac)}/2a, 

which is wrong. The mistake in the traditional calculation is that its erroneously assumed that:      

 

2.7) {√(x +y)}*a = [√{(x*a)+(y*a)}]  

 

On the contrary, the correct simplification is as follows:  

 

Multiply the right hand side of the equation by 2a/2a: 

2.8) x = -(2ab/4a
2
) ± √{-(c/a)+(b/2a)

2
} 

 

Use a common denominator (4a
2
) for all terms in the right hand side of the equation: 

 

2.9) x = [-2ab ± ({√-(c/a) + (b/2a)
2
}*4a

2
)] 

 

The above is the correct simplification.    ▄ 

 

 

 

 

4. Conclusion.  

Fermat’s Last Conjecture is or can be correct but only in the Domain-Of-Integers, and the correct solution to the 

quadratic equation ax
2
+bx+c=0, is introduced herein.  
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