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Abstract
The CL equations governing instability to Langmuir circulation (LC) are solved by three approximate methods, viz:

a small-/ asymptotic expansion where / is the spanwise wavenumber, a power series method, and a Galerkin method.
Interest is focused on the CL2 instability mechanism to LC and how it is influenced by stratification throughout
the layer in which LC live. Some results are provided to illustrate the CL2 instability and how it is affected by
nonlinearities.

1 Introduction

Langmuir circulation (LC) is a system of counter-rotating vortices that forms below wind driven waves in the upper
ocean when the wind speed exceeds 3 m/s (Leibovich, 1983) and occupies the region of fluid that is sheared by the
wind. Moreover LC is made visible by its surface footprints as almost parallel streaks or windrows on the ocean
surface, with spacings of up to hundreds of meters (Plueddemann et al., 1996; Thorpe, 2004) and can extend for
several kilometers in the direction of the wind (Thorpe, 2004). LC helps mix and form a region called the mixed layer
(Langmuir, 1938) and in doing so this alters the variation with depth of density and temperature (Smith, 1992), on
occasion to such a degree that the bottom of the layer is defined by a sharp change in temperature (density) known as
a thermocline (pycnocline). Of interest in the present study is the role stratification plays on the evolution of LC in
layers bounded by a thermocline.

The prevailing theory for LC is due to Craik & Leibovich (1976), who derived a set of evolution equations to
describe them known as the CL equations. Two instability mechanisms to excite LC follow from the CL equations
(Leibovich, 1980) and both rest upon the interaction between shear U’ in the surface layer resulting from the wind
and differential Lagrangian drift D’ that results from the wave field. They are denoted CL1 and CL2. However CL2,
which assumes that the drift does not vary cross stream to the wind, is considered the more likely instability to occur
in Nature and is the mechanism studied in this paper.

Of course, to ensure the problem is well posed, boundary conditions must be specified at the free surface and some
distance below it. Neumann conditions are an obvious choice but, when imposed on finite layers as opposed to infinite
ones (in the sense of deep water waves), the linear least stable wavenumber /. in usual circumstances is zero. This
oddity was explained by Cox & Leibovich (1993), who noted that Neumann conditions ignore coupling between the
perturbation flow and the extra stress it produces, implying that mixed boundary conditions that reflect that extra stress
of magnitude y, should be imposed. In doing so they found that /. is nonzero when 7y is nonzero and also that /. <« 1
when y < 1. In view of that they chose to use perturbation methods to study the instability to CL2 of the simplest
case U’ = D’ = 1 in the small [ limit, followed by Hayes & Phillips (2016) who allowed D’ and U’ to be arbitrary
functions of depth, while Hayes & Phillips (2017) studied the role of nonlinearities. In fact Cox & Leibovich (1993)
also allowed for thermal stratification of slope H* = 1 and magnitude S whereas Hayes & Phillips (2016, 2017) set
S =0.

Our object here is to consider the role of nonlinearities when S is nonzero and D’, U’, H’ are arbitrary functions
of depth. The governing equations are stated in §2. Then in §3 and §4 we outline solution methods for the respective
linearised and nonlinear problems. In §5 we discuss our results on how the parameters and nonlinearities affect the
CL2 instability to LC in the small / limit when S is nonzero. This includes a revisit of Figure 3 of Cox & Leibovich
(1993). In §6 we conclude this paper and discuss some possibilities for further work on LC.

2 Problem description
2.1 CL2 equations

The CL2 equations follow from perturbations to the CL equations, where the perturbation velocity u = (u, v, w) and
perturbation temperature 6 are each defined for position X = (x,y,z) and time . We take the x axis to be in the
direction of the imposed shear, the y axis is in the spanwise direction, and the z axis is in the vertical direction. The
flow is assumed to be independent of x. In dimensionless form, the CL2 equations are then (Craik & Leibovich, 1976)
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where J is the Jacobian J(a, b) = a,b, — a;by. To satisfy the continuity equation the stream function ¢ is defined by
v =, and w = —f,. We further have that U’ and H” must satisfy
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where T and ¢ are disparate time scales and F', G are due to body forces and heat sources respectively. The differential
drift D’ results from the Stokes drift whose details depend on the wavefield. We can thus take D’, U’, H' to be arbitrary
functions of z. Herein we allow D’, U’, H’ to each be arbitrary polynomials of z
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where A,, B, and C, are arbitrary constant coefficients. The Rayleigh number is denoted by R, the magnitude of the
stratification is denoted by S, and 7 # 0 is an inverse Prandtl number. Nonlinearities are accounted for through the
Jacobian J. When nonlinearities are assumed to be small we discard J to yield the linearised CL2 equations. When
S =0, equations (2.1.1), (2.1.2) are those used in Hayes & Phillips (2017).

2.2 Boundary conditions

We will use mixed boundary conditions on the top and bottom of the layer of fluid that are similar to those introduced
by Cox & Leibovich (1993)
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where y;, B fori = 1,2,3,4, j = 1,2 are constants. We set z = 0 at the top of the layer and z = -1 at the bottom of the
layer.

3 Linear methods

3.1 Linear perturbation solution

We seek a perturbation solution to the linearised version of the CL2 equations (2.1.1), (2.1.2), (2.1.3) with boundary
conditions (2.2.1) and (2.2.2) using [ < 1 as a small parameter. This calculation is an extension of the work of Cox &
Leibovich (1993) and Hayes & Phillips (2016). We assume
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Here ¥o+1, Uk, and 8y are each functions of z. To proceed we substitute the above expansions (3.1.1-3.1.3) into the
linear CL2 equations and boundary conditions, equate like powers of /, and solve the resulting equations at successive
orders in /. To equate like powers of / we can use the Cauchy product formula (Hardy, 1949)
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In §3.1.1 we take the calculation to O(/*). In §3.1.2 an algorithm is derived so we can take the perturbation solution to
O(IP) for any integer P > 0 within computational limits. The algorithm can then be coded into Maple. The solutions
we obtain may then be used to validate more general numerical calculations. The ¢; and ¢; ; appearing here are given
in the Appendix. It turns out that the linear perturbation solution separates into two separate cases. We have case I:
—B1.0 + B2061.0 + P20 # 0 and case II: =80 + S2.081,0 + B2.0 = 0. This becomes evident when applying the boundary
conditions for 6.



3.1.1 The first few orders
At O(I°) we have

uy =0 (3.1.5)
with boundary conditions
uy=0 on z=0,-1. (3.1.6)
So
uyp = Co (3.1.7)
where ¢ is an arbitrary constant. Without affecting o- we may let
up = 1. (3.1.8)
Also at O(I) we have
76y =0 (3.1.9)
with boundary conditions
6y +B1060=0 on z=0 (3.1.10)
and
96+ﬂ2,000=0 on z=-1. (3.1.11)
For case I we find
6o =c3 =0. (3.1.12)
For case II we find .
0o = c3(=P1oz+ 1) = c36p (3.1.13)
where c3 is an arbitrary constant.
At O(I') we have
l,bllm = —D'Roug + S6y (3.1.14)
with boundary conditions
Y =¢1=0on z=0,-1. (3.1.15)

Solving (3.1.14), (3.1.15) gives
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where 1]/1, @] are devoid of Ry, S, and c3. Notice here that since multiple layers of LC occurred with D’ as a linear
function of z in Hayes & Phillips (2016), this then means that here even with D’ = U’ = H’ = 1 we can have multiple
layers of LC due to 6 being linear in z.

At O(1?) we have
uy = U'y1 + upoy + ug (3.1.17)
with boundary conditions
uy =0 on z=0,-1. (3.1.18)
Solving (3.1.17), (3.1.18) gives
Z 22
uz:ff U’y dzdz+u0(0'2+l)3+c8z+09. (3.1.19)

The constant of integration cg is chosen so that there is no net flux of fluid due to the perturbation flow

fo uydz = 0. (3.1.20)
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Also at O(1?) we have
10y = Y1 H' + 6p(T + 02) (3.1.21)
with boundary conditions
05+ B1o62 +Br1260 =0 on z=0 (3.1.22)
and
0 + B2t + B2260 =0 on z=-1. (3.1.23)
We find
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For case Il we have 6, = 65 + ¢; 1@2 where 6, and éz are independent of c¢;;. The boundary conditions lead to equations
for 0. For case I we find

0
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For case II there are two equations involving o> which can be written as the matrix equation for v = (ug, c3)”

Mv=0 (3.1.26)

where the elements of the 2 X 2 matrix M are given in the Appendix. For a nontrivial solution the determinant of M
must be zero, M| 1M>5 — M1 M5 = 0. This leads to a quadratic equation

ao-% +boy+c=0 (3.1.27)

for o5 where a, b, c are in the Appendix. The quadratic formula gives
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The matrix equation then yields
c3 = Mo (3.129)
Mo 1.
At O(P) we have
Yy = 2+ oy ~ (Rottg + Roun)D' + 56, (3.1.30)
with boundary conditions
Yy =¢3=0on z=0,-1. (3.1.31)

Solving (3.1.30), (3.1.31) gives
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For case I we have 3 = {3 — Rzzﬁg + Slp3 where /3,03, 3 are each independent of R, and S. For case II we have

W3 = 3 — Rz + c113 where 3,03, U3 are each independent of R, and c;;. The dependence on S appears too
complicated to isolate for case II.

At O(I*) we have
Lti( = ugo4 + up(1 +O’2)+lﬁ3U’ (3.1.33)
with boundary conditions
uy +yup=0 on z=0 (3.1.34)
and
uy +y4up =0 on z=-1. (3.1.35)
Solving (3.1.33), (3.1.34), (3.1.35) gives
Z 4 ZZ
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where the constant of integration cy7 is chosen so to exclude net mass transfer as before
0
f usdz = 0. (3.1.37)
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Also at O(I*) we have
T@Z = l,bj,H/ + (T +02)0, + 6y04 (3.1.38)
with boundary conditions
9:1 +,31,()94 +ﬂ1,292 +ﬁ1,490 =0on z=0 (3.1.39)
and
9:1 +,32)()94 +,32’292 +ﬁ2,490 =0 on z=-1. (3.1.40)
We find
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The boundary conditions lead to equations for 4. For case I we find
oy g y
oi== [ T Ralls 4 SUR) 4T~ T (3.142)
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For case 1II there are two equations for o4 which can be written as the matrix equation for w = (074, a)’

Nw = q (3.1.43)

where the elements of the 2 X 2 matrix N and the elements of the 2 X 1 vector q are given in the Appendix. Solving
this matrix equation then yields

N - N
cip = 1,192 2,191 (3.1.44)

and
@1 Nip, Niig—Naiqi
o4 = —

N1 Nig NapNijg — NaiNip

This calculation recovers Cox & Leibovich (1993) on setting U’ = D’ = H’ = 1 and recovers Hayes & Phillips (2016)
on setting S = 0.

(3.1.45)

3.1.2 Linear perturbation solution algorithm
At O(1%)) for integer j > 2 we have

j-1

Uy; = Z W2 j—m+2)02m+2 + Ujo + U'hajy (3.1.46)
m=0
with boundary conditions
u'zj + ’72142/‘_4 =0 on z=0 (3.1.47)
and
u’2j+74u2j_4=0 on z=-1. (3.1.48)

Consistent with our progression above we choose the constant of integration so that

0
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where ¢; ; is the Kronecker delta
1, i=j
Oi.j ={ 0 izl (3.1.50)

On solving for u; we find
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Also at O(1*/) for integer j > 2 we have
j_] o Hl
0y; = Z 02j-(om+2) ZUA Orjo+ —ynj (3.1.52)
=0 T T
with boundary conditions
J
6, + Zﬁl,zmezj_z,,, =0 onz=0 (3.1.53)
m=0
and
J
6, + Z Baambrjam =0 on z=—1. (3.1.54)
m=0



On solving for 6,; we find

z J=1 z
o
bhj = f f Z 02j-2m+2) 2;"+2 dzdz + f f 0rj 2 dzdz
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Z H/
+ff 7#/2,‘_1 dzdz + cojz+ 3. (3.1.55)

For case IT we have 6; = 65 + c3_j6j where 65; and 65 are independent of c; ;.
At O(I%*1) we have

J Jj=1
Vi = - Z D'uzj omRom + S 62 + Z Uy i am-102m+2
m=0 m=0
j-2
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with boundary conditions
ll’g]q.] +71§0/2j_3 = l//2j+1 =0 on z=0 (3.1.57)
and ., _
Yy + Y33 = Y241 =0 on z=-1. (3.1.58)

On solving for ;.1 we find

¥4 ] Z j_l
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For case II we have ;1 = U i1 — Ro j&g i1+ c3, jLZg j+1 where U s U j+1, and U j+1 are independent of R;; and
c3,j. The boundary conditions lead to equations for ;. For case I we find
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For case II there are two equations for o5; which can be written as a matrix equation for w = (o}, C3,]'_1)T as

Nw =q (3.1.61)

where the elements of the 2 X 2 matrix N and the elements of the 2 x 1 vector q which here depend on j are given in
the Appendix. Solving this matrix equation then yields
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(3.1.62)
Nop iN11,j— NoiN12,j
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qij  Nizj, Nijqej—N2iquj
g9

J= - :
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The above calculation can then be coded in Maple within a loop. This calculation recovers Hayes & Phillips (2016)
on setting S = 0.

(3.1.63)

3.2 Linear power series method

Consistent with the perturbation method above, we assume

¥ =iAee”, u = BePe”, and 6 = Cel’e”! (3.2.1)



where A = A(z), B = B(2), and C = C(z). We substitute (3.2.1) into the linearised CL2 equations which leads to

A" — QP +0)A” + (I + Po)A+ RD'Bl - SCl = 0, (3.2.2)
B’ — (P +0)B-IAU =0, (3.2.3)
and
7C" — (1> + 0)C - IAH’ = 0. (3.2.4)
Substituting (3.2.1) into the boundary conditions leads to
A" +yiA =B +y,B=C'"+BiC=A=0o0n z=0 3.2.5)
and
A" +vy3A' =B +y4B=C"+B,C=A=0 on z=-1. (3.2.6)
In the linear power series method we let
4+M 2+M 2+M
A= Z an?", B = Z b, and C = Z en?" (3.2.7)
m=0 m=0 m=0

We then substitute (3.2.7) into the differential equations (3.2.2), (3.2.3), (3.2.4) and boundary conditions (3.2.5),
(3.2.6). Equating like powers of z in accordance with Theorem A in the Appendix then leads to a set of algebraic
equations. These algebraic equations can then be solved numerically. To produce some of the results, numerical
methods were combined. All of our linear power series method codes used adaptive Newton’s method for systems of
algebraic equations. When the minimum turning point on the neutral curve was required the Golden section algorithm
was used. When finding the point where Re o = 0 the bisection method was used. Since the numerical methods used
here are iterative, rapid convergence depended upon initial guesses and the perturbation solution results shined light
on appropriate initial guesses. For case II where o has two branches, different complex valued initial guesses must be
used to find both of the branches of o-. We here set by = 1.

3.3 Linear Galerkin method

As in the linear power series method, we seek solutions of the form
¥ =iAee”, u = BePe”, and 6 = Cel’e” (3.3.1)

which leads, as above, to (3.2.2) through (3.2.6). However, we here express A, B, and C in terms of orthogonal basis
functions premultiplied by coefficients

M M-2 M-2
A= Z anPy, B = Z byP,,, and C = Z P (3.3.2)
m=0 m=0 m=0

Here P, = P,,(z) are shifted Legendre basis functions on z € [—1, 0] defined by

P = (L2 - 1y (3.3.3)
m = ) g x=2z+1 9.
and satisfy
ﬁ PiP;dz o 6; ;. 3.3.4)
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We substitute expansions (3.3.1) into the linearised CL2 equations to obtain equations in z whose residuals ry, 2, 3
can be expanded as

(o)

r = Zai*Pi, = Z b P, r3= Z crP; (3.3.5)
i=0 i=0

i=0
where
al o (ri, Py, b} oc{ry, P;), c o< (r3, P;). (3.3.6)
In the Galerkin method we require
(r1, Pi) =(r2, Pj) = (r3, P;) = 0. (3.3.7)
That is, we require
0 0 0
f rledZ:f rszd12f r3P;dz=0 (3.3.8)
-1 -1 -1
for j = 0,1,2,...,M — 4, which yield algebraic equations for the unknown coefficients. The basis functions do not

inherently satisfy the boundary conditions and extra equations are found by substituting into the boundary conditions.
This technique is known as the tau-method. The resulting algebraic equations are then treated much the same as in
the linear power series method. For consistency with the linear power series solutions we herein choose by so that
B0 =1.



4 Nonlinear methods

4.1 Nonlinear perturbation solution

We seek a nonlinear perturbation solution to the CL2 equations (2.1.1), (2.1.2), (2.1.3) with boundary conditions (2.2.1)
and (2.2.2) in the small / limit. This calculation is an extension of the work of Hayes & Phillips (2017). Consistent

with the linear perturbation solution we write

Y=1ly, T="Ft ¢(,2,0 =9Y,2,T), uyzt)=izT), 00,21 =0(,zT),

and .
Py Bi= ) Biawl™.
k=0

Equation (2.1.1) then becomes
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while equation (2.1.2) becomes
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and equation (2.1.3) becomes
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The boundary conditions become
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¥ = Z ‘szlzk, = Z u2k12k, 0= Z @2k12k
k=0 k=0
and

R= Z Ropl2*
k=0
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where Wy, 1k, and @y, are functions of Y, z, and 7. These expansions are consistent with those from the linear
perturbation solution. We substitute (4.1.8) and (4.1.9) into (4.1.3 — 4.1.7) and equate like powers of / using the

Cauchy product formula.
At O(?F) we have

—u —u ’ —u

0

with boundary conditions

17}
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3
= aY‘Pz(k Hu’ +Z aY‘Pz(k m— 1)6 Uy — r; 7 Yo tk—m-— 1)6Yu2m

(4.1.10)

4.1.11)



0
a—uzk + Y42y =0 on z=-1, 4.1.12)
4

and
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with boundary conditions

k
0
2O + > B1am®s-2m =0 on z=0, (4.1.14)
< m=0
P k
6_®2k + Zﬁ2,2m®2k—2m =0 on z=-1 (4.1.15)
< m=0
At O(I%**1) we have
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m=0
with boundary conditions
9? 0
oz -5 Vor +716—‘P2(k 2 =%¥% =0 on z=0, 4.1.17)
9? 0
02‘I‘2k+736 Wok-2) =P =0 on z=-1. (4.1.18)

The equations above are to be solved for every integer k > 0. As in the linear perturbation solution, the nonlinear
perturbation solution separates into two separate cases, that is case I: =810 + 520810 + B20 # 0 and case II: -8 +

B20B1,0 +P20=0

4.1.1 The first few orders

At O(I°) we have
6211()
0 _ 4.1.19
922 ( )
with boundary conditions
M _ ) on z=0,.-1. (4.1.20)
0z
The solution to this problem is
1wy = 1o(Y, T) (4.121)
where (Y, T) is arbitrary.
Also at O(I°) we have
90
— =0 4.1.22
622 ( )
with boundary conditions
00
— +B1090 =0 on 2=0, (4.1.23)
Z



o)
= 4 $20® =0 on z=-1. (4.1.24)
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For case I the solution to this problem is
O =c3(,T) =0. (4.1.25)
For case 1II the solution to this problem is
09 = c3(Y, T)(~Broz+ 1) = c3(Y, T)Oy (4.1.26)
where c3(Y, T) is arbitrary.
At O(I") we have
84‘PO 8110 (9@0
—— =-RyD'— +S5— 4.1.27
o7 %oy T oy (4127)
with boundary conditions
)
—— =% =0 on z=0,-1. (4.1.28)
922

The solution to this problem can be found to be

74
Yy = —RO%ffff D’dzdzdzdz+Sffff @dzdzdza’z

+ea(Y, T) +c5(Y, T)— +ce(Y, Tz + c7(Y, T)
AEASLEA' (4.1.29)

where ¥y, ¥, are independent of Ry, 19, S, and c3(Y, T). Note that ¥y = ¢ and ¥, = /1 where iy and {; are from
the linear problem (3.1.16).

At O(1%) we have
82112 5110 62110 (9‘1’0 a‘Po 6110 a‘Po 6110
— e ——-— Ut ——— - ——— 4.1.30
0z2  oT 9Y? 9Y 8z 0Y 08Y 0z ( )
with boundary conditions
0
22 0 on z=0,-1. 4.131)
0z

We find

* 0P oYy 0
112——ff 0U’dzd ff a—oﬁdzdz

oug
+(% 6;20)Z + (Y. T)z+ co(V, T) = iy + fiaco(Y,T) (4.1.32)

where c9(Y, T') is an arbitrary function of Y and T'. Here {i, and i1, are independent of c9(Y, T').
Also at O(?) we have
#0, 00y 3’0y ¥y 0%y 00, 0¥, 60,

—=— 17— -——H+——77 - —— 4.1.33
o2 ~ar Tarr oy o oY oY &z (139
with boundary conditions
00
6—Z2+,310®2 +B1200=0 on z=0, (4.1.34)
%+ﬂ20®2 +52200=0 on z=-1. (4.1.35)
Z
We find
¢ 90y 1 < 626)0 ¢ 0¥y H' ¢ 10%) 60,
e (] G [ s []
“ 1 0% 06
+H -6—°ﬂdzdz+cm<YT>z+cn<YT> (4.1.36)
T 0z dY

For case II we have @, = @yc11(Y,T) + ©, where @, and ©, are independent of ¢ (Y, T). The boundary conditions
lead to further equations which differ for the separate cases. For case I we find

110 82110 8‘1‘0 ,
) 4.1.
aT  ay? f vd 4137



If we now use (4.1.29) for ¥ we obtain an equation for 11

611() 8211() fo ~
— - 1-R U'dz|=0 4.1.38
o ar2 o YU’ dz ( )
which on making use of equation (3.1.25) becomes
g 62110
— =0. 4.1.39
ar oy (*-1.39)

A periodic in y Fourier cosine solution to equation (4.1.39) is (Hayes & Phillips, 2017)

W (Y, T) = Z hye”P’T cos p¥ (4.1.40)
p=0

where h,, are constant coefficients. For case II, we have two coupled nonlinear partial differential equations for 1y and
c3(Y,T) as (4.1.37) and a further lengthy equation in the Appendix. In special cases such as 3;»,, = 0 for m # 1 these
partial differential equations are then linear and exact solutions can be found. Moreover when (5,2, = 0 for m # 1
there are two equations in terms of 1y and c3(Y, T) as

9 62 a .
g fo (R0 “O B+ 5 2B dz, (4.1.41)
Ldes _ ey 0( Rty +Sac3‘P) dz - Biacs + B (4.1.42)
—_—— = — _ —_— C C ..
p (9T ayz 1 06Y2 0 6Y2 0 Z—pP1,2C3 2,2C3.
We assume . -
ug = pr(T) cospY, c3= ng(T) cos pY. (4.1.43)
p=0 p=0

Substituting into the two coupled partial differential equations for 1 and c¢3 and equating like harmonics yields
Fo(T) + apfo(T) + byg,y(T) = 0, (4.1.44)
ep(T) + cpfp(T) +dygp(T) =0 (4.1.45)
where the constants a,, b,, ¢, d), are given in the Appendix. If b, # 0 we find
_fp(T) - apfp(T)
b, ’

f;U(T) +(a, + a’p)fly(T) + (dpap — cpbp) fp(T) = 0. 4.1.47)
The latter is a simple second order differential equation. We will omit the expressions for f,(T'), g,(T'). Note for this
case that (a, + d,)/7 = b and (dpa, — c,b,)/T = ¢ when p = 1 where b and c appear in (3.1.28).
At O(P) we have

gp(T) =

(4.1.46)

64‘1”2 (')3‘1’() 34“1"0 (911() (9112 0@2
= -2 —RyD'— —Ry)D'— +8§ —=
az* 0Tdz> 9Y?97? Yy Yy Yy
MNPy | 9% W
+ =2 4.1.48
BY 07 0z 9Yo ( )
with boundary conditions
Y,
=¥,=0on z=0,-1. (4.1.49)
07>
The solution to this problem can be found to be
ik ¢ 62‘11
¥, = ff —Odd —ff i fff D’Rz—dzdza'zdz
© 00,
ffff DRo—dzdzdzdz+S ffff —dzdzdzdz
“ 9% a’% <0 0°¥)
dzdzdzdz — —— —dzdzdzd
ffff ¥ ovo o ffff oY o e
+en(y, T) +ci3(Y, T) +cu(, T)z+ 15V, T). (4.1.50)
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For case I we have ¥, = ‘i’z -R¥ +S ‘i’g where ‘i’z, P,, and ‘i’z are each independent of R, and S. For case II we
have ¥, = ¥, + ¥, a@a(;’,T) +¥, ‘%”a(YKT) where ¥,, ¥, and ¥, are each independent of ¢o(Y, T') and ¢;1(¥, T).
At O(I*) we have

82114 _ 3112 (92112 6‘“}’2 ,
. ) SR
6‘1’2 611() 6‘1’0 6112 (9‘1’2 611() 6‘1’0 8112

"oy o ov o e ov e o (4.1.51)

with boundary conditions as

P

B Fu0=0 on z=0, (4.1.52)
0z

% + 7410 =0 on z=—1. (4.1.53)
Z

We find

Zallz Zazuz Za\Pz ’

Za‘f'o 5112 Za‘PQ 6110 ffz a“Po 6u2
- — 2 dzdz + oy dedzt —2Z24dzd
f@Y()zZfo cacr dc ay

+c16(Y, Tz + c17(Y, T) (4.1.54)
where c17(Y, T) is arbitrary.
Also at O(I*) we have
9%0, 40, 0’0, 0¥,
T = —_— T — _H
872 oT 0Y? oY
P P g P
_Qaﬂ_ﬂ@jL&@Jra_‘)@ (4.1.55)

aY 0z Y 0z 0z 0Y 0z oY

with boundary conditions as

00
6—;+,310@4 +B1202 + 1409 =0 on z=0, (4.1.56)
004
a—+ﬁ20®4 + 62202 + 52409 =0 on z=-1. (4.1.57)

We find

2160 29’0 29V, H'
ff ——2dz z—ff 2dzdz ff —27dzdz

N 16‘1’2 00 “1 0% 00, N 16‘1’2 8@0
_ff‘rﬁY azddz_ff aY Bzdd ff dzdz

1 0%y 00
+ f f SE0TR2 Gzt eng(V Tz + cro(X. ). (4.1.58)
T 0z 0Y

The boundary conditions lead to equations for c9(¥, T') and c{(¥, T). For case I we have a single partial differential
equation for cy(Y, T) appearing as

auz 0 (92112
| 22y 20 dz
ﬁ ar ©F L ayz f
0¥ ouy (9\1"0 oy

— ——Zdz- — dz = Yo + Y4119 = 0. 4.1.59
oY o z oz oY Yalo + Y4llo ( )

For case II we have two coupled partial differential equations in terms of co(Y, T') and ¢11(Y, T') as (4.1.59) and a further
very lengthy equation in the Appendix. At higher orders the complexity of the calculation becomes unwieldy. This
calculation recovers Hayes & Phillips (2017) on setting S = 0. For time varying solutions it may be more convenient
to use numerical methods such as those in §4.2, §4.3.
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4.1.2 Nonlinear perturbation solution algorithm

In light of the nonlinear perturbation solution above we let

L o L o L o
¥ =" WyepsinmV)P, =Y 3 i cosmV), O =" %" @y cosmy) (4.1.60)
m=0 k=0 m=0 k=0 m=0 k=0
with . -
R=>"Rul*, vi =19, Bi=) Binl™ (4.1.61)
k=0 k=0

where Wok i, U2k,m, and @y, are functions of z and 7. We substitute (4.1.60), (4.1.61) into equations (4.1.3) to (4.1.7)
and discard harmonics in Y in the residuals that are of higher order than in the expansion of the solution in accordance
with Theorem B in the Appendix. We then equate like harmonics in Y and like powers of / and then need to solve
the resulting equations for Wo s, Uk m, and Oy, at each order in /. With the nonlinear perturbation solution we are
particularly interested in the nonlinear steady states, for which we set 3/0T = 0. In this case, arbitrary constants of
integration will appear in the nonlinear perturbation solution. We choose them so that u; jl,.-o = 6;00;,1. Note that
while this choice is dissimilar to that in the linear perturbation solutions it is similar to that in the linear numerical
solutions. We found that the nonlinear steady states appear to require restrictions on the boundary conditions at O(/®)
such as y3 = y4 = 0. This may be related to observations where LC tend to curl up near the bottom of the mixed layer.
This calculation recovers Hayes & Phillips (2017) on setting S = 0.

4.2 Nonlinear power series method

Here we look for solutions of the form

L 4+M L 2+M L 2+M
U= > ampsinkl", u= " bugcoskly)", 6= > > cppcos(kly)s" 4.2.1)
k=0 m=0 k=0 m=0 k=0 m=0

where the coefficients ay, k, bk, and ¢, are unknown functions of ¢. Here y is a Fourier sine series in y while # and
6 are both Fourier cosine series in y; each are Maclaurin series in z. Substituting into the governing equations and
equating the appropriate like coefficients in accordance with Theorem A and Theorem B leads to a system of nonlinear
ordinary differential equations for a, k, bk, and ¢, x which can be numerically solved for by using methods such as
the Runge—Kutta method. In the case for which da,, x/dt = db,,, x/dt = dcy, i /dt = 0O this leads to a system of algebraic
equations. These algebraic equations are treated much the same as in the linear power series method. We here set
bp.1 = 1 for consistency with the nonlinear perturbation solutions.

4.3 Nonlinear Galerkin method

In this method we look for solutions of the form

L M L M-2 L M-2
U= > aniPusin(kly), u= "> buiPucostkly), 0= Y " cniPpcos(kly) 4.3.1)
k=0 m=0 k=0 m=0 k=0 m=0

where dpk, bk, and ¢, are unknown functions of ¢. Here ¥ is a Fourier sine series in y while u and 6 are Fourier
cosine series’ in y. Different are the basis functions. P, (z) are shifted Legendre basis functions on z € [-1,0]. We
substitute these expansions into the CL2 equations, discard the higher order harmonics, and collect like trigonometrical
terms in accordance with Theorem B to obtain a set of equations in z and ¢ whose residuals we call ry ;(z, 1), r2,(z, 1),
and r3;(z, £). In the Galerkin method we require

0 0 0
f r,iPjdz = f riPjdz = f r3iPjdz =0 (4.3.2)
-1 -1 -1

fori=0,1,...,L,and j=0,1,..., M —4. We obtain the further equations required to close the system by substitution
of (4.3.1) into the boundary conditions. This results in a system of nonlinear ordinary differential equations which can
be solved numerically by using methods such as the Runge—Kutta method. For the case of nonlinear steady states they
reduce to a set of algebraic equations. Once again, these algebraic equations are treated much the same as in the linear
power series method. Herein we choose by ; so that the coefficient of cos(ly) in ul,—¢ is unity for consistency with the
nonlinear perturbation solutions and nonlinear power series solutions.

5 Results

In this section we are interested in how the parameters and nonlinearities affect the CL2 instability to LC over a
restricted parameter range. For case I we let 8,2, = 0 for m # 0 and for case II we let 3;2,, = 0 for m # 1. Herein
€ = 0 is for the linear case and € = 1 is for its nonlinear counterpart. We here choose L = 1 and 15 < M < 20.
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5.1 Growth rate

We consider first the growth rate 0. For case I we find that o is real valued and for case II o is complex valued where
we see that in accord with (3.1.28) there are two solutions. When Re o < 0 the motion is stable and when Re o > 0
the motion is unstable. When o~ = 0 there is neutral instability. The instability is oscillatory when Im o # 0. The

growth rate o from the linear perturbation solution to 0(14) for case I where D’, U’, H’ are constants is

691((ﬂ2 _ 2077)ﬁ1 + 2077ﬁ2 _ 5544)RD/U/SH/

= (-530R2D"*U” — 67320RD'U’ — LWL H P
7 = 70833600 (B2 = DBy + Bo)T )
RD'U'
+(=1+ 50 W +y4 =2 (5.1.1)

and the growth rate o from the linear perturbation solution to O(I?) for case Il where D’, U’, H' are constants is

1 RD'U’ SH
o= 5( 0 B2 —Pra+ DT - 20 - 1 (5.1.2)
RD'U’ RD'U" SH’ SH’
2 _ _ _ _ — 1\2\2
i\/( 120 ) =2 120 ( 120 TBia—Poa+ D+ D+ (—120 +7(B12—Poa+ )= DA

There can be uncertainty in deciding when case I or case II is appropriate. What happens is either the case I result or
the case II result will converge or both case I and case II result will converge each for separate parts of the domain
of discourse, and the appropriate case is that which converges. This is the competition between case I and case II as
mentioned in Cox & Leibovich (1993). A good indication of whether the instability is case I or case II is whenever
o4 > o0 for case I then o for case I is likely to diverge and so the appropriate instability is then case II. Plots of o
which do illustrate this competition are shown in Figures 1, 2. Plots of Re o~ vs R and Im o vs R for case II are shown

0.08 1 0.0101°
0.064
Imo 0.0054

Re o 0.04 4

200 490 600 800 1000
0.02 R

—0.005+

o
ﬂ 400 600 800 1000
R

—0.02- —0.010-

Figure 1: Plots of linear growth rate (left) Re o vs R and (right) Im o vs R for 8, = 1/100. Here D’ = U’ =
H =1,5 =100,7/=1/10, y; = 1/20000, y, = 1/10000, v3 = v4 = 0,8, =0, and 7 = 1/10.

0.08 7 0.08
0.06+ 0.06 4
o 0.04 4 o 0.04
0.024 0.02
o o
_/ﬁo 400 = 600 800 1000 200 400 ® 600 800 1000

-0.02~ -0.02-

Figure 2: Plots of linear growth rate o~ vs R for (left) 8y = 1/10 and (right) 8y = 1. Here D’ = U’ = H' =1,
S =100,1=1/10, y, = 1/20000, v, = 1/10000, y3 = y4 = 0,8, = 0, and 7 = 1/10.

in Figure 1 and plots of o vs R for case I and case II are shown in Figure 2. In these plots we see that the instability
changes from case II to case I as B increases. We also see that the fluid motion switches from stable to unstable as R
increases and so here increasing R is destabilising. It is then quite obvious from (5.1.1) and (5.1.2) how the parameters
would affect o in the small / limit where the expressions are valid. For example, increasing D’ or U’ is destabilising
whenever increasing R is destabilising, and increasing H’ is stabilising whenever increasing S is stabilising. For the
boundary conditions of Cox & Leibovich (1993) we see in case I that increasing R or 7 is destabilising and increasing
S is stabilising. We also see in case I that increasing y, — 4 is stabilising. For case II with the boundary conditions of
Cox & Leibovich (1993) and on assuming o remains complex we see that increasing R, D’, or U’ is destabilising and
increasing S, H’, or T is stabilising.
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5.2 Neutral instability

For case II, we see from (3.1.28) that neutral instability for which o = 0 is seldom possible. Linear neutral curves
and nonlinear steady states do exist for case I. From the case I linear and nonlinear perturbation solution for neutral

instability at O(/*) we have

Ry= — (5.2.1)

f_ollﬁlU’dz

From the case I linear perturbation solution for neutral instability at O(/*) we have

0 ~ o _ _
W+ SY)U dz+uo(y, —ve) - .
R, = Ly =Ry + Ry(y, —7,) + RaS. (5.2.2)

f_ol lZl3U'dZ

From the case I nonlinear perturbation solution for neutral instability at 0(14) we have

o, _
R, = (Sf Ua—YdZ—721‘0+74uo+f 6Y2 f

8‘1’0 (9112 f ¥ o f .
- oy =R+ R R 2.
Y 61 0z oY DY a’z 2+ Ro(yy —74) + RoS. (5.2.3)

In these equations R, Rz, and R, are each independent of y; and S. Also note that nonlinear R, is here projected onto
amode in Y. We here choose L = 1 in the nonlinear expansions. For both the case I linear and nonlinear problems the
expression for R appears as

N

o o R
R =Ry + Ry + RyS)2 + 1—22()/2 —ya) ... (5.2.4)
The neutral curve from the perturbation solution to O(I*) for case I where D’, U’, H' are constants is

5455 2 691 (B2 DB+ B — WDSHE 1550 €2 120 120(y2 — y4)

= + + + + 525
231 D'U’ 5544 T™D’'U((B2 — 1)B1 + 52) 21 puBs DU D'U'2 ( )

Here it is evident that 5455 1 1550

- €
- + , 5.2.6
*T 231 DU 21 DUB 620
2077 2077 5544 7y
%, = 691 (B2 — %57 )81 + o1 B2 — o )H (52.7)
5544 DU (B2 — 1)B1 + B2) ’ -
. 120

Ry = —— =Ry. 5.2.8
2 Dl U/ 0 ( )
We plot linear neutral curves and nonlinear steady states as R vs [ in the small / limit in Figure 3 (left). For this case,

Figure 3: (left) Plots of neutral curve R vs [, linear (top) and nonlinear (bottom). (right) Plot of d = R, — Ry..
vsl. Here D’ = U’ = H =1, S = 100, v; = 1/20000, v, = 1/10000, v3 = v4 = 0,8, = 1, 8, = 0, and
T =1/10.

since the fluid motion switches from stable to unstable as o~ passes through zero with increasing R, any point above the
neutral curve is unstable, while any point below the neutral curve is stable. In Figure 3 (right) we see that nonlinearities
are small when / < 1 similarly to as shown in Hayes & Phillips (2017) for the case S = 0. In the small / limit we see
that nonlinearities have a stabilising effect. It is also quite obvious from (5.2.5) how the parameters and nonlinearities
would affect neutral instability in the small / limit where this expression is valid. From (5.2.5) we see for the boundary
conditions of Cox & Leibovich (1993) that increasing S is stabilising. This is consistent with Langmuir (1938) in that
temperature is thought to be secondary to the formation of LC. Increasing H’ or decreasing 7 has a similar effect as
increasing S. Also we see from (5.2.5) that nonlinearities are stabilising. When using the boundary conditions of Cox
& Leibovich (1993) we find for the nonlinear problem that increasing D’ or U’ is destabilising and increasing U’ is
more effective in destabilising the flow than increasing D’. The effect of increasing y, — y4 is stabilising.
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5.3 Figure 3 of Cox & Leibovich (1993) revisited

We are interested in the nonlinear counterpart to Figure 3 of Cox & Leibovich (1993). Figure 4 (left) is Figure 3 of
Cox & Leibovich (1993). The flat parts of Figure 4 (left) represent the stability margin for oscillatory convection and
the parabolic parts of Figure 4 (left) represent the stability margin to steady convection (Cox & Leibovich, 1993).
The nonlinear version of Figure 3 of Cox & Leibovich (1993) is plotted within Figure 4 (right) for the corresponding
nonlinear steady states only. In Figure 4, [, increases with increasing 8. To obtain the flat parts of Figure 4 (left)

100017 10007
800+ 800
600 600+
R R
400+ 4004
2004 2004
o o
0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1

7 7

Figure 4: (left) Figure 3 of Cox & LelbOVICh (1993). (right) nonlinear steady states R vs [. Here
D =U = H =1,8§5 = 100, = 1/40000, v, = —y; = —yq4 = 1/20000, B; = -3,
{1/20000,1/2000,1/1000 1/500, 1/200 1/20,1/2}, andT— 10/67.

where Re o = 0 with the case II linear perturbation solution, we solve b = 0 for Ry and then Re o, = 0 providing
¢ > 0 where band ¢ appear in (3.1.28). Then Re 0; = 0 can be solved for Ry;_» for j > 1 on assuming ¢ > 0. Figure 4
(right) was obtained by using the Galerkin method as outlined in §4. The Galerkin method used for finding the steady
states assumes d/0t = 0 and so Figure 4 (right) represents the nonlinear counterpart of the stability margin to steady
convection in Figure 4 (left) only up to a certain / value for each curve. Moreover, if we plot Re o vs R and Im o vs R
for values consistent with Figure 4, then for / before the bifurcation point in Figure 4 (left) the growth rate is case I like
that of Figure 2 (right) and for [ after the bifurcation point in Figure 4 (left) the growth rate is case II like that of Figure
1. If we solve for o = 0 in case II our Galerkin method will find where only one of the branches of o is zero, but
both branches must be included for the solution to be real valued. A similar idea must also apply to the nonlinear case
because in the nonlinear perturbation solution it is found that the solution is linear up until O(/?). Finding a nonlinear
counterpart to o at higher orders appears to be quite difficult and is omitted. In Figure 4 (right) nonlinearities are small
and stabilising in the small / limit. When Figure 4 (left) and (right) are overlayed the neutral curves for the linear case
appear indistinguishable to the corresponding nonlinear steady states about their minimum turning points.

5.4 Onset

Onset occurs at the minimum point on the neutral curve R = R(I), which we denote by (I, R.) where /. and R, are
called the critical wavenumber and critical Rayleigh number respectively. From the perturbation solutions onset is

found by solving % = 0. We find from the O(I*) perturbation solutions for case I that

N
— R \?
I, = (M) (5.4.1)
Rr + RS
and thus that R . L
Re = Ry + 2((y2 — ya)R)2(Ry + RyS)'/? = Ry + 2I2(Ry + R»S). (5.4.2)
The critical wavenumber /. from the perturbation solution to O(/*) for case I where D', U’, H’ are constants is
4l
(2 = v)pr
I = 72~ Woy (5.4.3)

5455 41550 _e o 601 (- 2609717)'814'2609717/32_%)[{,5
31 D/U’ 20 DU7 T 554 T D U((Ba-1)BiB)

and the corresponding critical Rayleigh number R, from the perturbation solution to O(1*) for case I where D', U’, H’
are constants is

120 120
<= D +2((y2—74)

3455 1 1550 e 691 (B2 — BB + BB, - %)H’SW2 (5.4.4)
DU’ 231 D’U/ 21 D'U3 5544 TD’'U' (B, — 1)B1 + B2) T

It is here quite obvious from (5.4.3) and (5.4.4) how the parameters and nonlinearities would affect /. and R, in the
small / limit where these expression are valid. From (5.4.3) and (5.4.4) we see for the boundary conditions of Cox &
Leibovich (1993) that increasing S reduces /. and increases R.. Here we also see that increasing H’ or decreasing 7
has a similar effect as increasing S. Also we see that nonlinearities reduce the value of /. and increase R.. Increasing
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D’ has no effect on /.. Increasing U’ only has an effect on /. in the presence of nonlinearities. When using the
boundary conditions of Cox & Leibovich (1993) we find for the nonlinear problem that increasing U’ increases /., and
increasing D’ or U’ decreases R, where increasing U’ is more effective in decreasing R, than increasing D’. The effect
of increasing 7y, — 4 is to increase the value of /. and increase the value of R., and we see that y, = y4 = 0 leads to
unphysical results. Another peculiarity is that depending on the choice of 81, 8, and different from Cox & Leibovich
(1993), we see that there can be a singularity of /. when § increases. In Figure 5 are plots of /. vs § and R, vs S for
the linear and nonlinear problems. In Figure 5 the effect of increasing S is to lower the value of /. and increase the
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Figure 5: (left) Plots of /. vs S, linear (top) and nonlinear (bottom). (right) Plots of R, vs S, linear (bottom)
and nonlinear (top). Here D’ = U’ = H' = 1, y; = 1/20000, v, = 1/10000, y3 = y4 =0,8; = 1, 8, = 0, and
T=1/10.

value of R,. In Figure 6 are plots of the ratio of linear to nonlinear critical wavenumber « = /. jinear/ ¢ nonlinear VS S and
plots of the ratio of linear to nonlinear critical Rayleigh number p = R_ linear/Re nonlinear VS S for parameters consistent
with Figure 5. In Figure 6 we see that the nonlinearities appear to diminish as S increases. Figure 7 shows how /. and

1.59 19

1.4 0.9984

1.34 0.9964
© P

1.24 0.9944

1.14 0.9924

1.0 0.990
50 100 150 200 50 100 150 200
s s

Figure 6: (left) Plots of k vs . (right) Plotsof pvs S. Here D’ = U’ = H' = 1, y; = 1/20000, y, = 1/10000,
Y3 = V4 :Oaﬁl = l,ﬁz :O,aHdT: 1/10

R, varies with 8 for both the linear and nonlinear cases with S = 100 and other parameters consistent with Figure
5. In Figure 7 we see that /. increases with increasing 51 and R, decreases with increasing 5;. In Figure 8 are plots

0.10+ 1507
0.08 1454
0.06+

1404

7. R,
0.04 -

135
0.024
1304

]
o 0.2 0.4 0.6 0.8 1 o] 0.2 0.4 0.6 0.8
B, B,

Figure 7: (left) Plots of /. vs 81, linear (top) and nonlinear (bottom). (right) Plots of R, vs 81, linear (bottom)
and nonlinear (top). Here D’ = U’ = H' = 1, y; = 1/20000, v, = 1/10000, y3 = y4 = 0, S = 100, 8, = 0,
and 7 = 1/10.

of the ratio of linear to nonlinear critical wavenumber « = [ Jinear/l¢,nonlinear VS S1 and plots of the ratio of linear to
nonlinear critical Rayleigh number p = R jincar/ R nonlinear V8 81 for S € {0, 100, 200} and other parameters consistent
with Figure 5. In Figure 8 the « curves decrease for increasing S and the p curves increase for increasing S. We see for
S = 0 that x and p are independent of 5; as expected. For § = 100 and S = 200 we see that « increases with increasing
B1 and p decreases with increasing 1. Also, the nonlinearities appear to be small for small 8. For § = 0 we find that

17



1.59 1.01019

1.005+

0.9954

1.0 0.990
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
B, B

Figure 8: (left) Plots of « vs 8. (right) Plots of p vs §;. Here D’ = U’ = H' = 1, y; = 1/20000,
v, = 1/10000, y3 = y4 =0, S € {0, 100,200}, 8, = 0, and 7 = 1/10.

k ~ 1.425 at O(I*) which is consistent with the value reported in Hayes & Phillips (2017). As shown in Figure 8 this
is k ~ 1.433 at O(%). In Figures 5 to 8 we see that nonlinearities reduce the value of /. and increase R,.

6 Discussion

The methods used in this paper are very useful for the LC problem. The perturbation method is particularly useful
in that the effect of altering parameters and of nonlinearities is evident in the small / limit by inspecting the simple
expressions found from the perturbation solutions. Note that when y; = O(1) our perturbation solutions would require
a more direct perturbation expansion. For example, in the linear perturbation solution o would then need to have an
O(1) term 0. This then leads to a messy calculation, especially for its nonlinear counterpart, with many separate
subcases. The preferable strategy may then be to use the numerical methods such as the nonlinear power series and
nonlinear Galerkin methods presented in this paper. I have also constructed animations of LC varying with time. In
the nonlinear realm there is flexibility for animations of LC to show LC spacing changing with time due to the fact
that the number of modes in y can increase as time increases. This is to be explored in further work on LC.

7 Appendix

7.1 Linear perturbation solution details

From y;
Z Z
= —Royug ff D' dzdz|,-——1 + S ff 6o dzdz|,=—1 + cs,
4 4
C5 = Rouo ff D’ dZdZ|Z=0 - S ff 90 dZdZ|Z=0,
74 74 1 1
c6 = —Roug ffff D' dzdzdzdz),——1 + S ffff Opdzdzdzdz|,=—1 — 8C4 + ECS + 7,
74 "z
¢7 = Rouo ffff D' dzdzdzdz),-0 — S ffff 6 dz dz dz dz,=o.

From u,

4
cg = —f U’y dzl=o,
0 4 1
—f ff U'y dzdzdz — @(0'2 +1) + =cs.
y 6 2
4 H/ 74 H/
clo = —ﬂl,o(ff 71111 dzdzl;—o + c11) —f ?l/ﬁ dzl o,

cno= (f —t//1d2+(ﬂ10 ﬂloﬁzo)ff —lﬂlddeLzo

From 6, for case I

—ﬁzoff —lﬁldzddr—l—ﬁ'zof —1 dzl=0) /(=10 + 10820 + B2,0)-
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From 6, for case 11

cio = —ﬁlo(ff —dde|z 0+ff 6o dz dz|.= 0+ff — ¥ dzdzle=o +c11)
Gyo
fudzk o—f 6o dz| - o—f —l//1dZ|z 0 = B1,2600l:=0-

From the matrix M for case II

0
Ml’] =O’2+1—R()f l/?]U/dZ,
-1

0
M,=58 f U’ dz,
-1

Z - H’ 4 - H/ 74 » H’
My, = Rof ¢17d1|z:71—ﬁ1,0R0ff ¢17d2d1|z:0—R0f lﬁ17dz|z:0
4 - Hl "z - H/ 4 - H/
+B2,0Ro ff ¢17d2d2|z=—1 + B2.081,0Ro0 ff ¢17d2d2|z=0 +ﬁ2,oRof lﬁl?dZIz:o,

Z @ Z é T
My, = —Uz(f ?OdZ|z=—1 +ﬂz,of ?Odzddz:—l) —f 0o dzl =1
x4 n H/ 4 R H/ "z R H/
= f I deles + oS f f L deddg + 5 f 0L ety
74 n "z R Hl
—B20 f f 0o dz dzl;=-1 — B2,0S f l//l7dzd2|z:—1
4 R H/ 4 R H/

—B2,061,05 f f 1!117dZdZ|z=o—,32,05 f 11117d2|z=0

+B12(1 = B2,0)bol:=0 — B2.260l:=—1

From the quadratic equation for o for case II

Z 0 2 0
a:—f —Odzlz_—l—ﬁzof 70d2d1|z:—1’

ZA 4 R H/ 4 R H/ 4 R H/
b = —f«-‘?odzlz:—l—sf¢17d1|z=—1+ﬁ’1,05 ff l!/17dzdzlz:0+5flﬁ17dz|z=o
ZA "z " H/ "z . H/
—B2o f f 0o dzdzl;=—1 — 2,0S f f lﬁ17dzdzlz:—1 - B1,082,08 f llfl7dzdzlz:o

< H ~ o
—B20S f v 1 dzl.=0 + B12(1 = B2,0)60l.=0 — B2,260]:=-1

Ry <4
~(1-Ry fQ U d2)( f % ey + g f “ deddee )
-1

0~ 7 z H T H
c = (I—Rof ll’lU/dZ)(—f90dZ|z=—1—Sfl//17dZ|z=—1+,31,OSff l//17dZdZ|z=0
-1
ZA Hl ZA ZA Hl
+Sf¢17dz|z:0—ﬁ2,off 0o dz dzl;=—1 — B2,0S ff lm?dzddz:—l

Z R H/ 4 R Hl R R
—B2,081,08 ff U - dzdzl;=0 — B2,0S f U - dzl.=o + B12(1 = B2,0)00l:=0 — B2,260l:=-1),

0 Z ’ Z ’ Z ’
. _H _H _H
—Sf U dZ(Rof !//17d2|z=—1—51,0R0H ‘/’I?dZdZ|Z=O_R0f l/’l7dz|z:0
-1
Z » Hl "z - Hl 74 » Hl
+B2,0Ro ﬂ Yn— dzdzle=—1 + B20B10Ro0 ff Y~ dzdzl=0 + B2oRo f Y1— dalz=0).

Z Z
Clp = —ff D,(Rzu() + quo)dZdZ|Z:_] +S ff 6, dZdZ|Z:_1 + C13,
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From uy

Z Z
C13 = ff D,(Rzuo + quo) dZdZ|z:0 -S ff 6> dZdZ|Z:0,

4 4
ff Y12 + 02)dzdz) -1 — ffff D’ (Ryugp + uaRo) dzdz dz dz|,=—1
< 1 1
+S ffff 6, dzdzdzdz|,=—1 — Eclz + 5013 + s,

"z
ffff D’ (Ryup + uaRp) dzdzdzdz|,~
4 "z
—ff U1(2+02)dzdzl,=0 — S ffff 6 dzdz dz dz|,=o.

z z
C16 = —YoUo — f ur (1 + 03)dz|;=0 — f U’l#3 dz|,=o,

f ff u2(1 +O'2)dZdZdZ
+2CI6_—MOO'4—f ff U'ys dzdzdz.

From 04 for case I

Cl9 =

clg = —ﬁlo(ff —3dzdzl—o +(— + 1)ff 0> dz dzl,=o + c19)

—f —'ﬁ3dZ|z 0—(— + l)f 0> dz|,=0 — B1,262]:=0,

74 H’ "z
(- f —¢3dz|z:_1—(2+1) f 6> dzl.-_,
+( ﬁlo(ff —lﬁ3dza’zlz o+(— + l)ff 0, dz dz|,—0)

—f —Y3dzl,—o —(— + 1)f 0> dzl.—0 — B126021:=0)(B20 — 1)

—ﬁz,o(ff 71113 dzdzl,-—1 + (7 +1) ff 0> dzdz|.=—1) — B2262:=—1) /(=10 + B1,0B2,0 + B2,0)-

From 6, for case 11

C18

= = o(ff —lﬂ3dzd2|z o+(— + 1)[[ 0, dzdz|,- o+ff o—dde|z 0+ C19)

—f —¢’3dZ|z =0 —(— + 1)f 6> dz|.—o —f 0— dzl;=0 — B12621:=0 — B1.4601z=0.

From the matrix N for case II

Ni,1 = ug,

0
N1,2=f YU’ dz,
.

<0 <0 <0
Ny = f 2 et~ Bro f % dedeleg - f % o
< 6 <0 < 0
+B2,0 f f ?0 dzdzl;=—1 + B2,0B1,0 f 70 dzdzl=o + B2, f ?O dz|;=o,
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74 n O 4 n "z o H/ "z n O
Nyp = f 9272 dzl;=—1 +f 02 dz|.=—1 +f 1037 dzl;=—1 = B1o ff 9272 dz dz);-o
Z N Z o H’ 4 N O Z R Z o H’
=B10 ff 0> dz dzl.=0 — B1,0 ff 11/37dzd2|z=0—f 9272d1|z=0—f 02dZ|z=0_f ¢37d1|z=0
< o z i
+520 6’2— dzdzl,——1 + Bao 0> dzdzl,-—1 + B2 !//3— dzdz),-
+,310520ff 2—d2dZ|z 0+p1 0,320[[ 0 dzdz,- 0+,310,320ff %—dzdzlz 0

+,320f 92—dZ|z 0+ﬁ20f 6> dzl.- 0+,320f lﬁa—lez -0
—B12(1 = B2,0)62l.=0 + B2.262 =1

From the vector q for case II

0 0
——f $3Ule+R2f 1,7/3U'dz+74u0—72u0,
-1 -1

Z~ o Z~ 74 " H’ 74 - H’
g = —f Hz—zdzlz:—l—f 92dZ|z:—1—f W3—d2|z:—l+R2f Y3 del=i
+B1 o(ff 92—dde|z o+ff 0 dz dzl.- o+ff l//3—dzd2|z 0—R> ff 1/13—dzd2|z 0)
fﬁ’z—dzlz 0+f 6 dz|.- 0+f l/’s—dzlz o—sz 1113—dZ|z 0
~ - . <. H
—ﬁz,o(ff 927 dzdz|,——1 + ff Ordzdz) -1 + ff %7 dzdzl,-1 — Ry ff 11137 dzdzl;-
Z~ o Z~ "z " H’ 4 . H/
—(—ﬁl,o(ff 9272dzd1|z:0+ff szzdzlz:0+ff ¢37dzdzlz:o—R2 ff wsjdzdzlz:o)
Z~ o Z~ Z R Hl "z - H/
—f szdzlz:o—f 92dZ|Z:0—f 1/137d2|z:0+R2f 1/137dz|z:0))

+B12(1 = B2.0)6al:=0 + B1.4(1 = B2,0)00l:=0 — B2.262l:=—1 — B2.460|:=—1.

7.2 Linear perturbation solution algorithm details

From u,; in the linear perturbation solution algorithm

z J=1
€0o,j = —YolU2j—4l:= 0—f U’ Y- 1 dz;= o—f Uz dzlz=o —f Zuzl @m+2)02m+2 dzlz=0,
-1

0 2z J1 Z Z co,j
= —f [ff Zu2j7(2m+2)0-2m+2d2d2+ ff uzjodzdz + ff U'yaj-1dzdz] dz + 6o, juo + 7
-1 m=0

From 6, in the linear perturbation solution algorithm for case I

"z "z H/
o = _,BI,O(ff 022 dzdz|.=o + ff 7‘/’2;—1 dzdzl;=0
< L T2m+2 < “H
+ff ZHZj—(2m+2) - dZdZIz:O+C3,j)_f 92]'—2dz|z:0_f ?‘/’Zj—ldzlzzo
m=0
YA
f 292, (2m+2) dZ|z 0— Z,Bl 2m82j-2mlz=0,

m=1
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1
z B 2 I
Tom+2
aj = ( 92, 2dZ|r—1+f —lﬁzj 1dZ|z=1+f 2921 Qma2)———= dzlp=_1

z i1
—,Blo(ff 62 dzdz|,=0 + ff —1/12, 1dzdz),=0 + ff 292/ (2m+2) 2 4z dz),—0)
H <
f 622 dz|;=0 —f 71#2]—1 dzl=0 — f 292, (2m+2) dZ|z 0— Zﬂl 2m82j-2mlz=0

4 30 -1
+,32,0(ff 02j2dzdzl=—1 + ff Tlﬁzj'—l dzdzl=—1 + ff 292] (2m+2) 2 dzdz—

m=0

z 41
+,310(ff 622 dzdz|,=0 + ff —lﬂzj 1 dzdz]=0 + ff 2921 (2m+2) *2 dzdzl.o)
z H] z 4=l
f 622 dzl—o +f 7w2j—1dz|z=0 +f 292/ (2m+2) *2 Ao + Zﬂl 2m02j-2mlz=0)

J
+ Z B22m82j-2ml=—1)/(B1,0 — B1,082,0 — B2,0)-

m=1

From 6,; in the linear perturbation solution algorithm for case II

"z 74 H’
cj = —ﬁl,o(ff 92j—2dzdz|z:0+ff —lﬂzj—ldzddz:o
z =1 Z B
+ff 292, (2m+2) 2 dzdz).—o + 3 - Z,Bl 2m02j-2mlz=0 — f 622 dzl-0 —f 7!/’2,‘—1 dzl;=0

m=1
z 4=l
f 292/ (2m+2) lez 0-

From 541 in the linear perturbation solution algorithm

z J Z
—ff Z D'uyj omRomdzdzl——1 + S ff 0> dzdz|,-—
m=0
4 j_2 Z
- ff Z U2j-2m-302me2 dzdzl=—1 — ff Yoj-3dzdzl=—1 + ¢5j + V35 3le=-1,
m=0

"z j 4
f f Z D'uyj_omRom dzdzl =0 — S f f 602 dz dz|;=o
m=0

4 j_2 4
+ ff Z V2 om-302m+2 dzdzl=o + f Y2j-3dzdzl=0 = ¥1¥;_3l:=0.
m=0

ffff ZD uzjomRopm dzdzdzdzl -1 + S ffff 02 dzdzdz dz];=

m=0

z -1 2 =2
+ f f ZW2]—2m—10'2m+2 dzdzl—— - f f f f Z Y2 j-2m-302ms2 dzdzdz dzl.——y
m=0 m=0
? ¢ 1 1
—fff Ynj-3dzdzdzdzl——1 + 2f Yoj1dzdzl =1 — GO T 5655 * €1
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z J 4
ffff Z Dluzj_szzm dzdzdzdz|,=0 — S ffff 02jdzdzdzdz|,—
m=0
z J-1 2 =2
- f f Zlﬁzj—zm—lﬁ 2m+2 dzdz|=0 + f f f f Z W2j-2m-302m+2 dzdz dz dz|—o
m=0

m=0

Z 74
+fff wzj,gdzdzdzdzlzzo—Zf Y21 dzdzl,—p.

From the matrix N in the linear perturbation solution algorithm for case II

Ni,j = uo,

0
N1,2,j=f (ZZj—lU,dZ,
-1

"z 9 "z 0 4 0
Noyj = f % gy~ Brg f % e deeeo - f 2 deleo
< 6, < 6,
Bao f f D dedeles + Brobro f D dedelg + 2o f 2 el

"z 4 H/ "z o
5 y 5 2
Nypj = f brj2dzl——1 + l//zj—l—dZ|z:—1 +f 92;—2—dZ|z:—1

—,Blo(ff 02 dz dzl.— 0+ff Yoj 1—dde|z o+ff br) 2—d2dZ|z 0)
f 02> dz,= o—f Yoj- 1—dZ|z o—f 0sj- 2—dZ|z 0
. y R
+,32,0(ff Orjodzdzl -1 + ff llfzj—l—dzddz:—l + ff 92;—2—dde|z:—1
+Bi o(ff 02 dzdz,= 0+ff o) 1—d2dZ|z 0+ff br)- 2—dde|z 0)
f 02j-2 dz.- 0+f Yoj- 1—dZ|z 0+f b 2—dZ|z 0)

—B12(1 = B0 j-2l:=0 + B2.202j-2|=-1.

From the vector q in the linear perturbation solution algorithm for case 11

0
q1,j = _60,j—1u0_f Yoj U’ dZ+R2j—2f‘lfzj—1U'dZ+74uzj—4lz=—1 = Yau2j-4l:=0
-1 -1
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, 2
? <. 7 H < L T2m+2
@ = — | Gjodi=1- | W2j-1 - sz—zllfzj'—l)7 dzl=—1 — Z 02j_m+2)—— dzl;=—1

Y4 . o Z - 4 " -
—f 92j72_2d2|z:71 +ﬁ1,o(ff 602j-2 dzdz|.=o +f W2j-1 _R2j72w2j71)7 dzdz|;=¢

Z
+ff 292J (2m+2) *2 dzdz.- o+ff 02 Z_dZdZ|z o)+f 0j-2 dzl.=0

Jj2

"z R » H/ 7 0_2 ¥4 5 0_2
+f(¢2j71_R2j72lﬂ2j71)7 lez:O"’f 292] Qmr2)— 2 del.- o+f 92]‘727 dzl;-0

x4 - 74 " - H/ Z
—32,0(ff Orj2dzdzl;=—1 + ff W2j-1 —sz_szj_1)7 dzdzl,——1 + ff 292, (2m+2)

m=1

ff 0rj- 2_dZdZ|z—fl —( ﬁlo(ff 022 dz dz),= o+f Wr2j-1 — Rajoatlj- 1)—dza'zlz 0
+ff 292] (2m+2) dZdZ|z o+ff 6sj- 2_dZdZ|z 0)—f 62 dzl.=o
1

m=

"z n " H/ 4 Y4 » 0_2
—f W2j-1 _R2j72¢2j71)7 dzl;=0 —f 292] (2m+2) dZ|z 0 —f 92]‘727 dz|;=0))

J
+() Brantrjamle=o + B1.202j2le=0)(1 = B0) Zﬁz,zmé’z j-2mle=1 = B22B2j 2l
m=2 m=2

dZ dz|z_—l

7.3 Nonlinear perturbation solution details

From ¥
cs(Y, T) = ff D’ Ro—dzdzlz__l +S ff dzdzlz__l +c5(Y, T),
0 * 00
cs(Y,T) = ff DR()ﬁa'zdzlZ 0— ff —Odza'zlz 0
ou 200
(Y, T) = ffff D'R 0ﬂ dzdzdzdzl,——1 + S ffff —Odzdzdzdzlz__l
——6‘4(Y T)+ CS(Y, T)+c(Y,T),
’ * 00 0
(Y, T) = ffff DRO— dzdzdzdzl,—o — ffff —dzdzdzdzlz =0-
From 1, .
Yo,
(Y, T) = a7 — U’ dz|=.
From ©®; for case I
“ 0¥y H' 0¥y H'
o, T) = 6YO . dz).=0 — Bro(- 6Y0 = dzdzl;=0 + c11(Y, T)),
0¥y H' Zc’)‘P H’ 0¥y H
cu(,T) = ( 0YO - delee1 - | =2 dzlmo - B1of — 2 dzdd

Y, H’ < 0¥y H’
+,320ff _O—dZdZ|z——l +,320f 2 — dz,=o
T Y

+,320510ff = dZdZ|z 0)/(=B1,0 + B2,0B1.0 + B2,0)-
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From ©®, for case II

21900 2 970 “ 0% H’
YT) = - 4 ——4 —d
cio(Y, T) f 2o k=0t f Sz Bh=ot+ | Z5— dd=o
1 6%, 00, 1 8% 90y
+frayad'”‘ f Tz ay ko

2100 29’0 0¥y H'
1o f ~ 2 dzdemg - ff T2z ddmg - ff S0 dzdzlng
oY T

< 10¥ (9@) 1 0%y 00
—ff ;a—Yoa—OddeIz 0 ff —a—oa—YoddeE o+ (Y, 1)) — B1200:=0.

For case II, the second coupled nonlinear partial differential equation for 1y and c3(Y, T) at O(1?) is

f@@dzl fzaz(%dd f%zdd fzw%(?@o dz|
or =TT ) Tay2 LT ) gy 7 LT Y a7 !

19% 909 190, 920y “ 0%y H'
+f ~5 a7 dzlz=—1 - Blo(ff ~ 7 dedd=o - ff —y2 Gddl=0 - f Sy o dzdd=o

1 3‘1’0 00y f f 21 0%y 00y f 100, f 2@
- —dzd -———dzd -——d d
ff - [9Y (9 zdz|=0 + 9z OY zdz)=0) — T Z=0 + Y2 Zz=0

< (9‘1‘0 <1 (9‘1’0 00 f 1 3‘1—’0 8@0 f f 00
e dzlz 0+ f Ay —— dz|;=0 - T dzl;=0 + B2,0( dzdzl,-—1

2 920 2 0¥y H' 2 1 0% a0
- ——dzdz),- —y = dedd=1 - -2 dzdy),-
f a2 ¢ =1 — f - dzdzl— ﬂ 37 [9 =1
21 8%, 00y ° 1009
; ff SR dz il + o f 2 dzdileng - ff 5 dzddco
2 OWy H' 1 0¥, 80, ff 1 0%, 60,
—y — dadzl= - ——"dzd - dzd
ﬂ - zdzl,=0 ff Y - zdzl=0 + 7z aYzzlzo)

180, 2 520 2 0% H' 2 1 0¥, 00
+fT3T dZ|zO f 6Y2 lezO —7dZ|z0 fT@Y oz dle

1 0%, 00
" f 0T delomp) — Bra(l - B20)@0leco + B22O0l—1 =
7 8z 0Y

The constants appearing in the differential equations (4.1.44), (4.1.45) are
0 ~
a,=p* —Ropzf YU’ dz,
-1
0 ~
bp = szf ‘P()U,dZ,
-1
0 ~
cp = —Ropzf YoH’ dz,
-1

dy, = Sp* f@‘i’oH' dz —1(Bap — 12 — PO
-1

From ¥,

oY ¥
. T) = — 0|z——1 aYzolz——l ff DRz—dzdzlz-—l

ou
ff D Ro—2 dzdz;=—1 + S f 24 dzl,=—1

4 3 54 3
+ f Mo 0¥ ), - f %‘9 Y0 grddy + (),

0z 0YO7? oY 073
o (9 ¥
eV, T) = —8—T°|z ayz" ff DRz—dZdzlz 0

ou
ff DR0—2 dzdz,— — ff dZdZ|z =0

2 OW, Y, z 6‘1'0 F¥
[ £ dzddco + [ 22220 4o ol
ff 9z ayaz k=0 f oy g deddl=o
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‘o Yias
ca(Y,T) f oto —dzdz|,-—1 - ff 8Y20 dzdz|,—— — ffff D’ Rz—dzdzdzdzlz__l
200
ffff > RO_dZdZdZde:l +S ffff _2dZdZdZdZ|z——l
Z 8‘{10 (93\1"0 Z a“PO 63\110
dzdzdzdzl,——1 — ——dzdzdzdz|,——
ffff 0z GYBZ Lazaz le_ 1 fff 6Y 9z a3 zdazazg Z|2_ 1

__Clz(Y T)+ —Cls(Y, T)+c15(Y,T),

< 0¥ Z 02\11
ci5(, T) = ff —OdZdZ|z 0+ff Odzdz|Z 0+ffff D,R2_dZdZdZdZ|Z »
)
ffff DRo—dzdzdzdzlz - ffff %% dzdzdilcg
“ ¥y Yo 2 Wy PP,
- — dzdz dzdz.- =2 dzdz dzdz),—.
ffff 0z ovoz2 2=0 + f f f oy o deded 20

cie(Y,T) = —f lezO f6Y2 dzl,=0 + f—U’dzIZo

From 14

6‘1’0 (9112 | _ 6\1’2 (9110 | _ (9‘1’() 6u2 | o1
Y o7 X0 oz gy 0 oz gy =0~ 72t
From ©®, for case I
Z 16@2 Z 32® 54 6\1’2 H
YyT) = - —d —d
cig(Y, T) f a7 W0+ f Sy2 Bk=0 f 5y 7 k=0
+ Zlaq’08®2d| Zla‘POa®2d|
aY 97 0T 6z gy ‘=0

2100 29’0 29V, H
-1 o(ff ——zdzdzlz 0— ff ay22 dzdz|—o - f _27dZdZ|z 0

1 0¥y 00, 21 0%y 00,
—ff ;a—Ya—dZdzlz o+ff —6—6—Yd2dz|z =0 +c19(Y, 7)) — B1202] =0,

2160 2 520, 2 0¥, H' 21 0¥ 60O
cotT) = (- f ~ S e+ f 2 defoery + f P g+ f 10% 0% 4y,

B Y t Y 0z
“ 190 0, ©100, 2 920, 20V, H’
i R e R I e
1 9% 60, < 10% 90,
2y 2y
+fT(9Y gz 40~ f 5z gy k=0

©100 A OV, H'
—B1,0( f ——zdzdzlZ -0 — ff 22 dzdzl,— — ff —z—dzdzlZ -0
oY T
21 0¥, 00, 21 0%, 00,
ff oy 7. dedd=o+ ff 52 gy 12420 = B12@:21=0)(1 = B20)

2100 G aC) 29V, H'
—B2,0( f ——2 dzdzl-—1 - ff 8Y22 dzdzl,=—1 - f —27 dzdzl=—

<1 0%, a®2 < | 0%, 00,
f f 002 ded i+ ff 0T el )

—522021,=—1)/(=B1,0 + B2,0B1,0 + B2,0)-
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From ®4 for case II

100, 2970, Za‘}'z fz 13‘1’2 00
YT) = — | ——7=d7- —— dzl,= d —d
ci3(Y,T) fTa leO"‘f 72 Zl:=0 + T Zlz=0 + Tar Zlz=0
N 1(9‘1’0 00, N 16‘1’2 (9@0 *10% (9@2 ﬂ
— dz|,—0 — dzl,—0 — ——d d
+f 7oy a7 H=o f oz gy =0 fr 7z gy =0~ Prol 2dzl=0

2 920, 20V, H’ 2 1 0¥, 00,
ff 6Y2 dZdZ|z 0‘[[ _szddz 0~ ff _Wa_d dZ|z =0

21 0% 00, * 1 0%, 00 21 0% 00,
- [ =522 4za 220 g 022 Y,T
ﬂf@Y 9z zdzl=o + ff o 9y zdzle=0 + ﬂ 5z oY Zl:=0 + c19(Y, 7))
—B12921=0 — B1,400l;=0.

For case II, the second coupled partial differential equation in terms of co(¥, T) and ¢ (Y, T) at O(I*) is

160 210 20, H' 21 0%, 00
f = dzl—_1 — f _de|Z:—1 - —z—dzlz_—1 f —== dzl,=—1

aT aY? Y 1 Fars
$ 10 00, ¢ 19, 00 ¢ 10 00,
~) oy o Tt | ey Feit ) T Gy e
2100, 2 520, “ oY) H' 192 80y
- | —==4 ——d —d —dz
f 7 ol le 0+ E% 2 le =0+ 6Y - Z|z =0 + f - 6Y (9 |z =0
21 9% 00, ¢ 10¥, 00 fz 16% 00,
+frayad|” f Bz oy W= | 275 gy Feo

100 90 “ 0¥, H' “10¥, 90
—B1 o(ff ——2 dzdzl,—o - ff 6Y22 dzdzl,-o - ff —27dzdzlz 0— ff ——aYZ—aOdzdzlz =0
* 1 0¥ (9@ “ 1 0¥, 00 1 0%y 00
_ff Tar 5 o ff gy deddot ff v oy k)
100 aC) ¢ 0¥, H' “16¥, 00
ool [[ 2GR dedtens - [[ SRttt - [[ T2 e - [[ T2 TR e
* 1 0% 00, “ 1 0%, 00 1 9% 00,
] TR e+ || g e+ [ [ LG deen

190 S 200) 0¥, H 21 6%, 00
+f —ddo—- | === dzlmo - f—i7am f 270 g2

70T aY? oY Y oz
_ffl@%é@zd' fna\yza@()dl fflalyoa(azdl
T oY oz ‘=07 5z gy “d=0t 0z gy 490

100 S alC) oY, H “10%Y, 00
+h1 o(ff ——zdzdzlz 0~ ff 6Y22 dzdzl=o - ff _27dZdZ|z 0~ ff _6_)’26_0d zdzl:=0

21 0%, 00, *10%, 60 21 0%, 00,
—ff T 9Y o dzdz)=o + ff 5 oY dzdz)=o + ff 6 77 dzdz|;=0))

+(=B12021z=0 = B1,4O0l=0)(1 — B2,0) + B2202]:=—1 + $2,4O¢.=-1 =

7.4 A theorem for a class of nonlinear differential equations
The following Theorem A formalises a procedure outlined in Hildebrand (1956):

Theorem A
Provided that the L + 1 term Maclaurin series of the exact general solution,
L
da ¥
A= Z — k=0 (7.4.1)
=0
to an M™ order ordinary differential equation
d"A
" £ (7.4.2)
exists and all the derivatives and integrals of A are defined at x = 0, it only solves the coefficients of X, le {0,1,...,L-
M} in the residual of (7.4.2) provided ¢ is expandable in a Maclaurin series as
dlf xl
¢ = Z (7.4.3)
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where all the derivatives and integrals of & are defined at x = 0 and the right hand side of (7.4.2) does not contain <-4 T

Proof of Theorem A

Since the Maclaurin series of A and £ exist and all their derivatives and integrals are defined at x = 0, we can integrate
(7.4.2) M times and substitute the result into (7.4.1) to find

L 40" & X

A = 4 W x=0ﬁ. (744)
Substituting (7.4.4) into the residual r of (7.4.2) then gives
L
d(l M)é: l M dlé‘: )C[
r= ; T iy Z = (74.5)
provided ¢ is expandable in a Maclaurin series as in (7.4.3). Equating like powers of x in (7.4.5) then yields
o d x
= ) dgll" oo (7.4.6)
I=L-M+1

which shows that Theorem A is true. O

7.5 Another theorem for a class of nonlinear differential equations
The following Theorem B is of the essence of that given in various texts (see for example Muscalu & Schlag, 2013):

Theorem B

Provided that the 2L + 1 term complex Fourier series of the exact general solution

L
A= Z P(A, e"™)e"* 0 < | < oo, (7.5.1)
n=-L
to an M'" order ordinary differential equation
d"A
T = ¢, (7.5.2)

exists, it only solves the coefficients of e for n € [~L, L] in the residual of (7.5.2) if & is expandable as a complex
Fourier series as

&= Z P&, e 0 < [ < oo (7.5.3)
n=—o0o
Here A and & are periodic with period < 2 and all of their derivatives and integrals are continuous for all x. Moreover

the right hand side of (7.5.2) must not contam 4 and P(a, ") denotes the projection of @ onto e”~,

Proof of Theorem B

Since the complex Fourier series of A and ¢ exist and because A and ¢ are periodic with period 27” and all their
derivatives and integrals are continuous for all x, we can integrate (7.5.2) M times and substitute the result into (7.5.1)
to find

Ly g-mg

_ inlxy  inlx
A= Z Py €™, (7.5.4)
n=—L
where the notation Z = denotes the M™ integral of ¢ with respect to x. Substituting (7.5.4) into the residual r of
(7.5.2) then gives
d( M) f 1nlx inlx N inlx\ ,inlx
dxM Z Py D P e, (1.5.5)
n=—oo
provided ¢ is expandable in complex Fourier series as in (7.5.3). Then equation (7.5.5) can be written as
r=— ) PEe"Me, (7.5.6)
ng[-L,L]

which shows that Theorem B is true. O
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