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The CL equations governing instability to Langmuir circulation (LC) are solved by three approximate methods, viz:
a small-/ asymptotic expansion where [ is the spanwise wavenumber, a power series method and a Galerkin method.
Interest is focussed on the CL2 instability mechanism to LC and how it is influenced by stratification throughout the
layer in which LC live. Results are provided to illustrate the CL2 instability and how it is affected by nonlinearities.

1 Introduction

Langmuir circulation (LC) are a system of counter-rotating vortices that form below wind driven waves in the upper
ocean when the wind speed exceeds 3 m/s (Leibovich, 1983) and occupy the region of fluid that is sheared by the
wind. Moreover they are made visible by their surface footprints as almost parallel streaks or windrows on the ocean
surface, with spacings of up to hundreds of meters (Plueddemann et al., 1996; Thorpe, 2004) and can extend for
several kilometers in the direction of the wind (Thorpe, 2004). LC help mix and form a region called the mixed
layer (Langmuir, 1938) and in doing so alter the variation with depth of density and temperature (Smith, 1992), on
occasion to such a degree that the bottom of the layer is defined by a sharp change in temperature (density) known as
a a thermocline (pycnocline). Of interest in the present study is the role stratification plays on the evolution of LC in
layers bounded by a thermocline.

The prevailing theory for of LC is due to Craik & Leibovich (1976), who derived a set of evolution equations to
describe them known as the CL equations. Two instability mechanisms to excite LC follow from the CL equations
(Leibovich, 1980) and both rest upon the interaction between shear U’ in the surface layer resulting from the wind
and differential Lagrangian drift D’ that results from the wave field. They are denoted CL1 and CL2. However CL2,
which assumes that the drift does not vary cross stream to the wind, is considered the more likely instability to occur
in Nature and is the mechanism studied in this paper.

Of course, to ensure the problem is well posed, boundary conditions must be specified at the free surface and some
distance below it. Neumann conditions are an obvious choice but, when imposed on finite layers as opposed to infinite
ones (in the sense of deep water waves), the linear least stable wavenumber [, is zero. This oddity was explained by
Cox & Leibovich (1993), who noted that Neumann conditions ignore coupling between the perturbation flow and the
extra stress it produces, implying that mixed boundary conditions that reflect that extra stress of magnitude 7y, should
be imposed. In doing so they found that /. is nonzero when 7y is nonzero and also that /., << 1 when y <« 1. In view
of that they chose to use perturbation methods to study the instability to CL2 of the simplest case U’ = D’ = 1 in the
small / limit, followed by Hayes & Phillips (2016) who allowed D’ and U’ to be arbitrary functions of depth, while
Hayes & Phillips (2017) studied the role of nonlinearities. In fact Cox & Leibovich (1993) also allowed for thermal
stratification of slope H” = 1 and magnitude S. Our object here is to consider the role of nonlinearities when H’ is
an arbitrary function of depth and thus determine whether nonzero S enhances or diminishes growth to LC.

The governing equations are stated in §2. Then in §3 and §4 we outline solution methods for the respective
linearised and nonlinear problems. In §5 we discuss how the parameters and nonlinearities affect the CL2 instability
to LC over a restricted parameter range where the simple expressions from the small-/ asymptotic approximation are
valid. We also revisit an example of Cox & Leibovich (1993) to show how nonlinearities affect the corresponding
neutral instability. This is an example which extends outside the range where the simple expressions from the small-/
asymptotic approximation are valid. In §6 we conclude this paper and discuss some possibilities for further work on
LC.

2 Problem description

2.1 CL2 equations

The CL2 equations follow from perturbations to the CL equations, where the perturbation velocity u = (&, v, w) and
perturbation temperature ¢ are each defined for position X = (x,y,z) and time ¢. We take the x axis to be in the



direction of the imposed shear, the y axis is in the spanwise direction, and the z axis is in the vertical direction. The
flow is assumed to be independent of x. In dimensionless form, the CL2 equations are then (Craik & Leibovich 1976)
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where J is the Jacobian J(a, b) = a,b, — a,by. To satisfy the continuity equation the stream function  is defined by
v =, and w = —,. We further have that U’ and H’ must satisfy
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where T and ¢ are disparate time scales and G, F are due to body forces and heat sources respectively. The differential
drift D’ results from the Stokes drift whose details depend on the wavefield. We can thus take D’, U’, H' to be arbitrary
functions of z. The Rayleigh number is denoted by R, the magnitude of the stratification is denoted by S, and 7 # 0 is
an inverse Prandtl number. Nonlinearities are accounted for through the Jacobian J. When nonlinearities are assumed
to be small we discard J to yield the linearised CL2 equations. When S = 0, equations (2.1.1), (2.1.2) are those used
in Hayes & Phillips (2017).

2.2 Boundary conditions

We will use mixed boundary conditions on the top and bottom of the layer of fluid that are similar to those introduced
by Cox & Leibovich (1993)
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where y;,8; fori = 1,2,3,4, j = 1,2 are constants. We set z = 0 at the top of the layer and z = —1 at the bottom of
the layer.

3 Linear methods

3.1 Linear perturbation solution

We seek a perturbation solution to the linearised version of the CL2 equations (2.1.1), (2.1.2), (2.1.3) with boundary
conditions (2.2.1) and (2.2.2) using / < 1 as a small parameter. This calculation is an extension of the work of Cox
& Leibovich (1993) and Hayes & Phillips (2016). We assume
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We allow D’, U’, H’ to each be arbitrary polynomials of z
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where A,, B, and C, are arbitrary constant coefficients. In §3.1.1 we take the calculation to O(*. In §3.1.2 an
algorithm is derived so we can take the perturbation solution to O(I*) for any integer P > 0 within computational
limits. The algorithm can then be coded into Maple. To equate like powers of / we can use the Cauchy product
formula (Hardy, 1949)
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The solutions we obtain may then be used to validate more general numerical calculations. To proceed we substitute
the above expansions (3.1.1-3.1.4) into the linear CL2 equations and boundary conditions, equate like powers of /, and
solve the resulting equations at successive orders in [. The ¢; and ¢; ; appearing here are given in the Appendix. It turns
out that the linear perturbation solution separates into two separate cases. We have case I: =10 + 520610 + B20 # 0
and case II: =10 + 520810 + B20 = 0. This becomes evident when applying the boundary conditions for 6.

3.1.1 The first few orders

At O(I°) we have
uy =0 (3.1.6)
with boundary conditions
uy=0 on z=0,-1. (3.1.7)
So
uy = Co (3.1.8)

where ¢ is an arbitrary constant. Without affecting oo we may let

up = 1. (3.1.9)
Also at O(I°) we have
76) =0 (3.1.10)
with boundary conditions
96+ﬁ1,090=0 on z=0 (3.1.11)
and
96+ﬁ2,090=0 on z=-1. (3.1.12)
For case I we find
6p=c3=0. (3.1.13)
For case II we find
6y = C3(—ﬂ1’oz + 1) =c36p (3.1.14)
where c3 is an arbitrary constant.
At O(l') we have
l//’lm = —D'Rouy + S 6y (3.1.15)
with boundary conditions
Y =¢1=0o0n z=0,-1. (3.1.16)

Solving (3.1.15), (3.1.16) gives
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where /1, z,@l are devoid of Ry, S, and c¢3. Notice here that since multiple layers of LC occurred with D’ as a linear
function of z in Hayes & Phillips (2016), this then means that here even with D’ = U’ = H’ = 1 we can have multiple
layers of LC due to 6y being linear in z.
At O(1?) we have

I/t’z/ = U’lﬁl + upgo + Uy (3.1.18)

with boundary conditions
u, =0 on z=0,-1. (3.1.19)



Solving (3.1.18), (3.1.19) gives

Z 2
Uy = ff U’y dzdz + ug(o + 1)% + gz + C9. (3.1.20)

The constant of integration cg is chosen so that there is no net flux of fluid due to the perturbation flow

0
f up dz = 0. (3.1.21)
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Also at O(1?) we have
705 = Y1 H' + Op(T + 072) (3.1.22)
with boundary conditions
0, +B1.002 +Bi1200 =0 on z=0 (3.1.23)
and
65 +B2002 +B2260 =0 on z=-1. (3.1.24)
We find
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For case II we have 6, = &, + ¢110, where §; and 6, are independent of o4, R;, and c1;. The boundary conditions
lead to equations for 0. For case I we find

0
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For case II there are two equations involving o> which can be written as the matrix equation for v = (ug, c3)”
Mv=0 (3.1.27)

where the elements of the 2 X 2 matrix M are given in the Appendix. For a nontrivial solution the determinant of M
must be zero, My 1M>2 — M1 2M> 1 = 0. This leads to a quadratic equation

acs +boy +c =0 (3.1.28)

for o» where a, b, c are in the Appendix. The quadratic formula gives

-b+ V> -4
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The matrix equation then yields
c3 = — L1k (3.1.30)
3= ——". .
M
At O(P) we have
Wy =2+ o)y — (Raug + Roun)D' + S 6, (3.1.31)
with boundary conditions
Yy =¢3=0on z=0,-1. (3.1.32)

Solving (3.1.31), (3.1.32) gives

Z Z
Y3 = (2+0‘2)ff l//]dZdZ—ffff D/(R2u0+u2R0)dZdZdZdZ
Z Z3 Z2
+S ffff deZdZdZdZ-FC]zg +C135 + C147 + C15. (3.1.33)

For case I we have y3 = &3 -Rs + S 3 where @3, U3, 1Z3, are each independent of R, and S. For case II we have
Y3 = 1/?3 — Rzafrg +cqg 1,7/3 where z/A/3, &3, »,Z_o,, are each independent of o4, R, and c¢11. The dependence on S appears too
complicated to isolate for case II.
At O(I*) we have

M:( = ugo4 + up(1 + o) + Y3U’ (3.1.34)
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with boundary conditions

uy +yu0=0 on z=0 (3.1.35)
and
uy +y4up =0 on z=—-1. (3.1.36)
Solving (3.1.34), (3.1.35), (3.1.36) gives
Z Z 22
ug = ff uy(1 +o2)dzdz + ff UsU' dzdz + u00'4'3 +c162 + €17 (3.1.37)
where the constant of integration cy7 is chosen so to exclude net mass transfer as before
0
f usdz = 0. (3.1.38)
-1
Also at O(I*) we have
T@Z =y3H + (1t + 072)0, + Oyo4 (3.1.39)
with boundary conditions
HZL +ﬂ1’094 +ﬁ1,292 +ﬁ1’490 =0on z=0 (3.1.40)
and
6’2 +ﬁ2’094 +,32,292 +ﬁ2’490 =0 on z=-1. (3.1.41)
We find

"z H/ Z 74 "z
@:ff ¢37dzdz+%ff dezdz+%ff Hodzdz+ff 0> dzdz + c132 + ci9. (3.1.42)

The boundary conditions lead to equations for 4. For case I we find

0 777
v . - v - —
o4 = —fl w3 = Ralls + S3) dz + 73 =%, (3.1.43)

For case II there are two equations for o4 which can be written as the matrix equation for w = (04, | DF
Nw =q (3.1.44)

where the elements of the 2 X 2 matrix N and the elements of the 2 X 1 vector q are given in the Appendix. Solving
this matrix equation then yields

N - N
c1p = 1,192 2,191 (3.1.45)
NyoNi1 — N2 iNyp

and
_ 41 Nip, Niuig = Noigqu

Nig Nig NooNij— Ny iNip

This calculation recovers Cox & Leibovich (1993) on setting U’ = D’ = H' = 1 and recovers Hayes & Phillips
(2016) on setting S = 0.

o4 (3.1.46)

3.1.2 Linear perturbation solution algorithm
At O(1%) for integer j > 2 we have

j-1

uy; = Z W2j-m+2)02m+2 + U2j2 + U (3.1.47)
m=0
with boundary conditions
Uy +¥auzj-4 =0 on z=0 (3.1.48)
and
y; + Varj4 =0 on z=-1. (3.1.49)



Consistent with our progression above we choose the constant of integration so that

0
f Uzj dz = 50,ju0
-1

where ¢; ; is the Kronecker delta

On solving for uy; we find

z J "z
f f Zuzj em+2)Tom+2 dzdz + f f uzj- dzdz
+ff U'$2j_1dZdZ+C(),J'Z+CLj.

Also at O(/%/) for integer j > 2 we have

’

H
92] 292J (2m+2) +92J 2+ —lﬂzj 1

with boundary conditions

J
Géj + Zﬁl,ZmGZj—Zm =0on z=0

m=0
and |
J
eél + ZﬁZ,QmHZj—Zm =0 on z=-1.
m=0

On solving for 6,; we find

02

z J=1 4
f f 292, (2m+2) 2 dzdz + f f 0rj»dzdz

m=0

+ ﬁ 7(#21'_1 dzdz + €2,jZ + €3,

For case II we have 6,; = 6, i+, jé’z j Where 6, jand > ;j are independent of ¢ ;.
At O(1%*1) we have

J J-1
12444 4 r
Yrivi = — Z D'upj_omRom + S + Z Wi am-192m+2
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’”
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7 bl ’ — _ —
Yoje1 * V1253 = ¥2j51 =0 on z=0
and
74 bl ’
¢2j+1 +7’3¢2j_3 =241 =0 on z=~-1.

On solving for ¢ ;41 we find

z J L -1
Vst = _ffff ZD,MZJ'—Z’"RZ'" dzdzdzdz + ff Z¢2j—2m—102m+2 dzdz
m=0 =0
z J=2 .
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4 Z Z3 Zz
+2ff lﬁzj_1 dzdz+ S ffff szdZdZdZdZ+C4,j€ +C5,j3 + ¢c6,jZ + €7
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(3.1.51)

(3.1.52)

(3.1.53)

(3.1.54)

(3.1.55)

(3.1.56)

(3.1.57)

(3.1.58)

(3.1.59)

(3.1.60)



For case II we have v, = 1/72 1 —Ro ja]/g i1 +c3, j:,Z/Z j+1 Where ;@2 j+ls U j+1, and J/z j+1 are independent of R,; and
c3,j. The boundary conditions lead to equations for o;. For case I we find

- = 0 ’
Y Y

o = __2u2j—4|z:0 + _4”2j—4|z:—1 - —2j1 dz — 0o, j-1. (3.1.61)
uo uo -1 U

For case II there are two equations for o5; which can be written as a matrix equation for w = (0, ¢3 j-1)" as
Nw =q (3.1.62)

where the elements of the 2 X 2 matrix N and the elements of the 2 X 1 vector q which here depend on j are given in
the Appendix. Solving this matrix equation then yields
Ni1,jq2,j — N2, jq1,j

31 = (3.1.63)
! N2 iN11,j — N21,iN1 o,

and
q1j  Nizj Ni1jqej— Naijquj

Ni1,j  Nigj N2pjNiij— NojjNip,j

The above calculation can then be coded in Maple within a loop. This calculation recovers Hayes & Phillips (2016)
on setting S = 0.

02j = (3.1.64)

3.2 Linear power series method

Consistent with the perturbation method above, we assume
¥ =iAe?e’’, u = BePe”, and 6 = CePe”’ (3.2.1)

where A = A(2), B = B(z), and C = C(z). We substitute (3.2.1) into the linearised CL2 equations which leads to

A" QP+ A" +(* + Po)A+RD'BI-SCl =0, (3.2.2)
B” — (> +0)B-IAU’ =0, (3.2.3)

and
7C" = (71> + 0)C - IAH’ = 0. (3.2.4)

Substituting (3.2.1) into the boundary conditions leads to
A" +yiA'=B +y,B=C"+BC=A=0o0n z=0 (3.2.5)

and
A" +y3A" =B +yB=C"+B,C=A=0 on z=-1. (3.2.6)

In the linear power series method we let

44+M 2+M 2+M
A= Z an?", B = Z bn?", and C = Z enZ" (3.2.7)
m=0 m=0 m=0
and likewise we let
N N N
D = ZAnz", U = Z B,7", and H' = Z Cp7". (3.2.8)
n=0 n=0 n=0

We then substitute (3.2.7) and (3.2.8) into the differential equations (3.2.2), (3.2.3), (3.2.4) and boundary conditions
(3.2.5), (3.2.6). Equating like powers of z in accordance with Theorem A in the Appendix then leads to a set of
algebraic equations. These algebraic equations can then be solved numerically. To produce some of the results,
numerical methods were combined. All of our linear power series method codes used adaptive Newton’s method
for systems of algebraic equations. When the minimum turning point on the neutral curve was required the Golden
section algorithm was used. When finding the point where Re o = 0 the bisection method was used. Since the
numerical methods used here are iterative, rapid convergence depended upon initial guesses and the perturbation
solution results shined light on appropriate initial guesses. We here set by = 1.
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3.3 Linear Galerkin method

As in the linear power series method, we seek solutions of the form
¥ =iAee”, u = Bee’’, and 6 = Cel’e’" (3.3.1)

which leads, as above, to (3.2.2) through (3.2.6). However, we here express A, B, and C in terms of orthogonal basis
functions premultiplied by coefficients

M M-2 M-2
A= Z anP,, B= Z b,,P,, and C = Z P, (3.3.2)
m=0 m=0 m=0

Here P,, = P,(z) are shifted Legendre basis functions on z € [—1, 0] defined by

. zmm,{d—mu — 1" Weczer (3.3.3)

and satisfy

0
f PindZOCd',j. (334)
-1

We substitute expansions (3.3.1) into the linearised CL2 equations to obtain equations in z whose residuals ry, r;, 3
can be expanded as

r = Zai*Pl-, = Zbi*Pi, r3 = ZC?P,’ (3.3.5)
i=0 i=0 i=0
where
af o (ri, Py, bY oc{r, Py, c o« {(r3,Pp). (3.3.6)
In the Galerkin method we require
(ri, Pi) =<2, Py = (r3, P;) = 0. (3.3.7)
That is, we require
0 0 0
f rledz=f r2deZ:f r3P;dz =0 (3.3.8)
-1 -1 -1
for j =0,1,2,...,M — 4, which yield algebraic equations for the unknown coefficients. The basis functions do not

inherently satisfy the boundary conditions and extra equations are found by substituting into the boundary conditions.
This technique is known as the tau-method. The resulting algebraic equations are then treated much the same as in
the linear power series method. For consistency with the linear power series solutions we herein choose by so that
Bl;=0 = 1.

4 Nonlinear methods

4.1 Nonlinear perturbation solution

We seek a nonlinear perturbation solution to the CL2 equations and mixed boundary conditions in the small / limit.
This calculation is an extension of the work of Hayes & Phillips (2017). Consistent with the linear perturbation
solution we write

Y=1U, T="t y(,20=19zT), uyz)=ilzT), 00,21 =0zT), (4.1.1)
and N
vi =19 i= ) fiad™. 4.1.2)
Equation (2.1.1) then becomes -
[282‘1’ 52\11]
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' St ava e t o2
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I 4.1.3
azort oyt o2 ! (41.3)



while equation (2.1.2) becomes

l28u ﬂi_a_ﬁ ﬂaq‘ ’ 12@6_1_1_126;?@

aT  aY2 a2 9y Y oz 0z Y
and equation (2.1.3) becomes

O L,P0 PO 0P P00 0% 98
20 00 26 _po¥,, 0%50 050

or aY? 07> oY oY 0z 0z Y’

The boundary conditions become

Py s 0¥ on o,

0 < ~ -
[— +1 +1 =2+ P"@ =¥ =0 =0,
oz M Ta TN T g n;)ﬁ L2m on <

’PY 0P on o, _ m
s y3a—z=a—+ly4u:—+mzz;),822ml O@=M"=0onz=-1
We let - - -
Y= Z Worl k, = Z U2k12k, 0= Z Oyl k,
k=0 k=0 k=0
and .
R= Z Rl
k=0

(4.1.4)

(4.1.5)

(4.1.6)

4.1.7)

(4.1.8)

(4.1.9)

where Wy, 1k, and By, are functions of Y, z, and T. These expansions are consistent with those from the linear
perturbation solution. We substitute (4.1.8) and (4.1.9) into (4.1.3 — 4.1.7) and equate like powers of [ using the

Cauchy product formula.
At O(1?%) we have

0 9. 9? 9? L
57 20 gy 2tk T 55U
k-1 5

0 0
= aY‘PZ(k nu’ +Z aYlPZ(k mhge U, — Z 7 Yo k—m- D7y e

with boundary conditions

0
— 1k + Yolloh—ny = 0 on z =0,
oz 2k T YVoU2(k-2) Z
— g + Yallp—2) =0 on z=—1,
oz 2%k t Y4W2(k-2) Z
and
0 92 9%
—0 —0 —0
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k-1 k-1

0 0

0
= —VY H —Y¥ Q) —Y¥ ®
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with boundary conditions

k
0
8_Z®2k + mz_;)ﬁl,zm@zk—zm =0 on z=0,

0
O,T®2k+z,322m®zk m=0on z=-1.
m=0

(4.1.10)
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(4.1.15)



At O(P1) we have

with boundary conditions

The equations above are to be solved for every integer k >

a 9 a &
aT ay2 2D fr A YD
4 & &
——Y5%0) —2———=Y¥ —VY
8Y4 2(k=2) (')YZE) 5 12(k-1) — 8 4 L2k
k
0 o 52
R D — @ + —VY¥ —VY¥
HZ:‘) 2(k—m) aY 2k Z Y 2(k—m— 2)6 GYZ 2m
k-1 3 k-2 3
0 0 0 0
+ a—Y‘I’Z(k—m—l)@‘sz - Z 3 Wogk-m g)m‘llz,n
m=0 m=0
S 0, o P
o 9z 2(k—m l)aya 5 12m
9? 0
P 52 Pk Y15 Vo) = Yo =0 on z=0,
62

0
97 2\112k+’}’3a—l1’2(k 2)=¥2%=0on z=-1.

(4.1.16)

(4.1.17)

(4.1.18)

0. As in the linear perturbation solution, the nonlinear

perturbation solution separates into two separate cases, that is case I: =819 + B2,081,0 + B20 # 0 and case II: —S;0 +

B20B10 +P20=0

4.1.1 The first few orders

At O(I°) we have

with boundary conditions

The solution to this problem is

where 1p(Y, T) is arbitrary.

Also at O(°) we have

with boundary conditions

o _
072
0
aizozo on z=0,-1.
1y = up(Y, T)
9*0g
T =
072
a—0+,310®0—0 on z=0,
0z
@+ﬁ20®0_0 on z=-1.
0z

For case I the solution to this problem is

Qo=c3(Y, T)=0

For case II the solution to this problem is

where c3(Y, T) is arbitrary.

At O(1") we have

with boundary conditions

Qo = c3(Y, T)(=Br0z + 1) = c3(¥, T)&y

Y, oug 00

= —RyD'— +§ —

a7+ D5y tS
¥,

10

(4.1.19)

(4.1.20)

4.1.21)

(4.1.22)

(4.1.23)

(4.1.24)

(4.1.25)

(4.1.26)

(4.1.27)

(4.1.28)



The solution to this problem can be found to be

4
W, = —Roﬁffffz)dzdzdzdusffff @dzdzdzdz

+cu(Y, T) + ¢5(Y, T)— +c(Y, T)z+c7(Y, T)

8uo 063(Y T) .
Roa—Y‘I’ +S (’)—YTO (4.1.29)

where ¥, ¥ are independent of Ry, 1y, S, and c¢3(Y, T). Note that Py = 1 and ¥, = Jr1 where ¢; and i are from
the linear problem (3.1.17).

At O(1*) we have
Puy Gy 0Mug 0¥, ,  0Woduy 0¥ dug

—_— = - - — - — 4.1.30
o2 9T ov: oy oz oY oY oz (4.1.30)
with boundary conditions
0
P2 _0onz=0,-1. 4.131)
0z
We find
Z Z
1y ff QU dzdz + ff %%d dz
0z dY
éuo 6 Up Z 4 P
Hgg = 2325 s+ oo T) = i + flaco(,T) (4.1.32)
where cg(Y, T) is an arbitrary function of Y and T. Here {i; and {i, are independent of ¢y(¥, T').
Also at O(I?) we have
0’0, 00y 6’0y Y 0%y 00) 0¥y 00,
= - - H’ - 4.1.33
o2 Tor Terr av . "oz oy ov oz (4-133)
with boundary conditions
00,
a—+ﬁ10®2 +$1200 =0 on z=0, (4.1.34)
00
8_2 + 52002+ 2200 =0 on z=-1. (4.1.35)
Z
We find
200 1 2670 2 0%y H' 21 0% 00y
——dd— dzdz - ——dd— —-————dzdz
ff ¢ ffayz Zf T fo aY oz
“10¥
[ -M@ dzdz+ c1o(Y, Tz + (K T), (4.1.36)
T 0z 9Y

For case II we have ©, = @2c11(Y, T) + ®, where @2 and @, are independent of ¢ (Y, T). The boundary conditions
lead to further equations which differ for the separate cases. For case I we find

oy 0% 0 9%,
—_— - —— = —U'dz. 4.1.37
oTr  0Y? 1 oY ( )

If we now use (4.1.29) for ¥ we obtain an equation for ug

511() 52110 fo
1-R U'dz) = 4.1.38
3 a2 ( o | ¥iU'dz ( )

which on making use of equation (3.1.26) becomes

o 82110

a7 T g = 0. (4.1.39)

A periodic in y Fourier cosine solution to equation (4.1.39) is (Hayes & Phillips, 2017)

w1 T) = " hye™" T cos py (4.1.40)
p=0
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where h), are constant coeflicients. For case II, we have two coupled nonlinear partial differential equations for 11y
and c3(Y, T) as (4.1.37) and a further lengthy equation in the Appendix. In special cases such as B2, = 0 form # 1
these partial differential equations are then linear and exact solutions can be found. Moreover when S5, = 0 for
m # 1 there are two equations in terms of 1y and c3(Y, T) as

(9110 62110 f (92110 6263 A
Oup oMo _ (T p Oy g T B g 4.1.41
ar " arr ) TRegr tor S G Totid (414D
1dc;  d%c3 0 % cy . H
it A —R ‘I’ S dz — . 4.1.42
T ﬁl( 0552 Yo+ 6Y2 Po)— —dz Bir2cs + Baocs ( )
We assume - -
up = pr(T) cospY, 3 = ng(T) cos pY. (4.1.43)
p=0 p=0

Substituting into the two coupled partial differential equations for 1y and c3 and equating like harmonics yields
fp(T) + apfp(T) + bpgp(T) =0, (4.1.44)
8p(T) + cpfp(T) + dpgp(T) = 0 (4.1.45)

where the constants ap, b, ¢,, d), are given in the Appendix. If b, # 0 we find

_fp(T) - apfp(T)

4.1.46
b ; ( )

gp(T) =

Fo(T) + (ap + dp) fo(T) + (dpa, — cpbp) f,(T) = 0. (4.1.47)

The latter is a simple second order differential equation. We will omit the expressions for f,(T), g,(T). Note for this
case that (a, + dp)/t = b and (dya, — c,bp)/T = ¢ when p = 1 where b and ¢ appear in (3.1.29).
At O(P®) we have
84\P2 (93lP0 (94‘11() 311() (9112 8@2
= -2 —R,D'— —Ry)D'— +S —
07 aTo2  “av?az oy T gy oy
Mo Yy Yy 0°¥y

- 4.1.48
Y o7 | oz ovar (*-148)
with boundary conditions
*¥,
=%,=0on z=0,-1. (4.1.49)
e
The solution to this problem can be found to be
< oY SN
ff o dedz - ff 2—— > dzdz - ffff DRz—dzdzdzdz
aY?
"z
ffff DRo—dzdzdzdz+S ffff @dzdzdzdz
“ 9% 83‘1’0 9% Yo
o5 dzdzdzdz - dzdzdzd
TG v e [ ][ Gy Gt gt
+c(Y, T)— +c13(Y, T)— +c14(Y, Tz +c15(Y, T). (4.1.50)

For case I we have ¥, = ‘i’z - R,¥, + S, where ‘i’g, ¥,, and ¥, are each independent of R, and S. For case II we
have ¥, = ¥, + 9, ‘%"’a());’T) +p,da (19(YKT) where W5, ¥, and ¥, are each independent of co(Y, T) and ¢ (Y, T).
At O(I*) we have

62114 8112 62112 6\1’2 U’
07> T  9Y? oY
Y2 0up 3% 0wy N 6‘1’2%_‘_ %o dup
oY 0z 0Y oz oz oY 0z dY

(4.1.51)
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with boundary conditions as

P

M 59=0 on z=0, (4.1.52)
0z

P

%ﬂu@uozo on z=-1. (4.1.53)
Z

We find

2 A 2 P 2 o
= f a—;dzdz—f a—yjdzdz—f a—YzU’dzdz

N 8\1’0 0112 f N 3‘112 0110 f N 8‘1’0 (9112
- 2222424 2279 4rd TO072 drd
f@Y{?zZZ+ oz gy “CET oz oy

+eie(Y, Tz + cir(Y, T) (4.1.54)

where c17(Y, T) is arbitrary.
Also at O(I*) we have

82®4 00, o2 0, Y, |,
T—— = -T — H
072 oT 0Y? oY

_0¥200) Y900, Y000 ¥ 00,

4.1.55
9Y 0z OY oz | 9z 9Y oz oY (4.1.55)
with boundary conditions as
00
8_; + 81004 + 120, + 1400 =0 on z =0, (4.1.56)
00
(9_14 +ﬂ2’0®4 +ﬁ2’2®2 +,32,4®0 =0 on z=-1. (4.1.57)
We find
2100 2 5°0 <OV, H'
0, = ff ;a—Tzdzdz—ff aT;dzdz—ff a—Yz?dzdz
21 0¥, 00 21 0¥y 00, f f 21 0¥, 00
- —-———dzdz - -——=dzd -——=—dzd
ffr@Y@zZfoT(’)YazZZ+ T@Z(?YZZ
1 0%y 00
. f f S0P iz + cg(Y, Tz + cro(X, T). (4.158)
T 0z 0Y

The boundary conditions lead to equations for co(Y, T) and c11(¥, T). For case I we have a single partial differential
equation for cy(Y, T') appearing as

0 0 a2 0
Buz 0 up f 6‘?2 ’
- | =da —d —U'd
L oT “L RN I e
0 AW, Oy fo 0¥, Oy
dz —
-1

1 a_Ya_Z a_Za_Y dz — Y 10 + Y419 = 0. (4.1.59)

For case II we have two coupled partial differential equations in terms of co(Y, T) and c¢;1(Y, T) as (4.1.59) and a
further very lengthy equation in the Appendix. At higher orders the complexity of the calculation becomes unwieldy.
This calculation recovers Hayes & Phillips (2017) on setting § = 0. For time varying solutions it may be more
convenient to use numerical methods such as those in §4.2, §4.3.

4.1.2 Nonlinear perturbation solution algorithm

In light of the nonlinear perturbation solution above we let

L L o L
W= Woeusinmn)PE, Gi= > 3w cos(m)PE, @ =" 3" @ cos(my) (4.1.60)
m=0 k=0 m=0 k=0 m=0 k=0
with .
R=>"Rul’, yi=17, Bi=) Bl (4.1.61)
k=0 k=0
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where Woi i, Uorm, and Oy, are functions of z and 7. We substitute (4.1.60), (4.1.61) into equations (4.1.3) to
(4.1.7) and discard harmonics in Y in the residuals that are of higher order than in the expansion of the solution in
accordance with Theorem B in the Appendix. We then equate like harmonics in Y and like powers of / and then solve
the resulting equations for Wy, U2x.m, and Oy, at each order in /. With the nonlinear perturbation solution we are
particularly interested in the nonlinear steady states, for which we set 3/0T = 0. In this case, arbitrary constants of
integration will appear in the nonlinear perturbation solution. We choose them so that 1; j|,.—o = 9;00;;. Note that
while this choice is dissimilar to that in the linear perturbation solutions it is similar to that in the linear numerical
solutions. We found that the nonlinear steady states appear to require restrictions on the boundary conditions at O(I%)
such as y3 = y4 = 0. This may be related to observations where LC tend to curl up near the bottom of the mixed
layer. This calculation recovers Hayes & Phillips (2017) on setting S = 0.

4.2 Nonlinear power series method

Here we look for solutions of the form

L 4+M L 2+M L 2+M
= Z Z Ay sin(kly)Z", u = Z Z by i cos(kly)Z", 6 = Z Z ok cos(kly)Z” 4.2.1)
k=0 m=0 k=0 m=0 k=0 m=0

where the coefficients a,, x, by, and ¢, are unknown functions of ¢. Here i is a Fourier sine series in y while u
and @ are both Fourier cosine series in y; each are Maclaurin series in z. Substituting into the governing equations
and equating the appropriate like coefficients in accordance with Theorem A and Theorem B leads to a system of
nonlinear ordinary differential equations for a, k, bk, and ¢, x which can be numerically solved for by using methods
such as the Runge—Kutta method. In the case for which day, «/dt = db,, 1 /dt = dcp, x/dt = O this leads to a system of
algebraic equations. These algebraic equations are treated much the same as in the linear power series method. We
here set by ; = 1 for consistency with the nonlinear perturbation solutions.

4.3 Nonlinear Galerkin method

In this method we look for solutions of the form

L M L M-2 L M-2
U= aniPusinkly), =" 3" byiPucoskly), 0= 3" cpiPmcos(kly) 4.3.1)
k=0 m=0 k=0 m=0 k=0 m=0

where a,, k, bk, and ¢, are unknown functions of ¢. Here y is a Fourier sine series in y while « and 6 are Fourier
cosine series’ in y. Different are the basis functions. P,(z) are shifted Legendre basis functions on z € [-1,0]. We
substitute these expansions into the CL2 equations, discard the higher order harmonics, and collect like trigonomet-
rical terms in accordance with Theorem B to obtain a set of equations in z and ¢ whose residuals we call r ;(z, 1),
r.i(z, 1), and r3 ;(z, t). In the Galerkin method we require

0 0 0
f I"l,in dZ = f Fz’in dZ = f }’3,in dZ =0 (432)
-1 -1 -1

fori=0,1,...,L,and j =0, 1,..., M—4. We obtain the further equations required to close the system by substitution
of (4.3.1) into the boundary conditions. This results in a system of nonlinear ordinary differential equations which
can be solved numerically by using methods such as the Runge—Kutta method. For the case of nonlinear steady states
they reduce to a set of algebraic equations. Once again, these algebraic equations are treated much the same as in the
linear power series method. Herein we choose by ; so that the coefficient of cos(ly) in u|,~¢ is unity for consistency
with the nonlinear perturbation solutions and nonlinear power series solutions.

5 Results

In this section we are interested in how the parameters and nonlinearities affect the CL2 instability to LC over a
restricted parameter range. We take D', U’, H' to be constants. For case I we let 81 ; = B j = 0 for j > 0 and for case
IT we let By j = Bo,; = 0 for j # 2. Herein € = 0 is for the linear case and € = 1 is for its nonlinear counterpart.
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5.1 Growth rate

We consider first the growth rate o. For case I we find that o is real valued and for case Il o is complex valued where
we see that in accord with (3.1.29) there are two solutions. When Re o= < 0 the motion is stable and when Re o > 0
the motion is unstable. When o = 0 there is neutral instability. The instability is oscillatory when Im o # 0. The
growth rate o from the linear perturbation solution to O(I*) for case I where D’, U’, H' are constants is

691((Br — 35T )B1 + LB — HRD' U'S H'

= - (~530R*D"*U" - 67320RD'U’ - 91 7 7 69172 69l Iz
7" 7533600 (B2 = 1)1 + )
IU/ 2
Ay R T & (5.1.1)

and the growth rate o from the linear perturbation solution to O(/?) for case II where D', U’, H’ are constants is

1 RD'U’ SH'

o= 5( 20 Br2 —Pap+ DT - 20~ 1 (5.1.2)
RD'U’ RD'U’ SH’ SH’'
2 _ _ _ _ 12\ 2
i\/( 120 ) =2 20 ( 20 B2 =P+ 1)+ 1)+ ( 20 +7(B12 — B2+ 1) = D).

There can be uncertainty in deciding when case I or case Il is appropriate. What happens is either the case I result or
the case II result will converge or both case I and case II result will converge each for separate parts of the domain
of discourse, and the appropriate case is that which converges. This is the competition between case I and case II as
mentioned in Cox & Leibovich (1993). A good indication of whether the instability is case I or case II is whenever
o4 > 0 for case I then o for case I is likely to diverge and so the appropriate instability is then case II. Plots of o
which do illustrate this competition are shown in Figures 1, 2. Plots of Re o vs R and Im o vs R for case II are

0.08 1 0.0107

0.06 1
Imo 0.005 -

Re o 0.04

200 apo 600 800 1000
0.02 1 R

—0.005+

o . .
/f)ﬁ 400 600 800 1000
R

-0.02- —0.010-

Figure 1: Plots of linear growth rate (left) Re o vs R and (right) Im o vs R for 8; = 1/100. Here D" = U’ =
H =1,5 =100,7=1/10, y; = 1/20000, y, = 1/10000, y3 = y4 = 0,8, = 0, and 7 = 1/10.

0.08 0.08 7
0.06 - 0.06
s 0.04- s 0.04-
0.02 1 0.02

o T T T ) o : " r r .

—/{0 400 x 600 800 1000 200 400 < 600 800 1000

-0.02- —0.02-

Figure 2: Plots of linear growth rate o vs R for (left) 8; = 1/10 and (right) 8, = 1. Here D' = U’ = H =1,
S =100,1=1/10, vy, = 1/20000, y, = 1/10000, y3 = y4 =0, 8, =0, and 7 = 1/10.

shown in Figure 1 and plots of o vs R for case I and case II are shown in Figure 2. In these plots we see that the

15



instability changes from case II to case I as 81 increases. We also see that the fluid motion switches from stable to
unstable as R increases and so here increasing R is destabilising. It is then quite obvious from (5.1.1) and (5.1.2)
how the parameters would affect o in the small / limit where the expressions are valid. For example, increasing D’
or U’ is destabilising whenever increasing R is destabilising, and increasing H’ is stabilising whenever increasing
S is stabilising. For the boundary conditions of Cox & Leibovich (1993) we see in case I that increasing R or 7 is
destabilising and increasing S is stabilising. We also see in case I that increasing y, — y4 is stabilising. For case II
with the boundary conditions of Cox & Leibovich (1993) and on assuming o remains complex we see that increasing
R, D', or U’ is destabilising and increasing S, H’, or 7 is stabilising.

5.2 Neutral instability

For case II, we see from (3.1.29) that neutral instability for which o = 0 is seldom possible. Linear neutral curves
and nonlinear steady states do exist for case I. From the case I linear and nonlinear perturbation solution for neutral

instability at O(1%) we have

Ry= — 1+ (5.2.1)

f_ol YU’ dz

From the case I linear perturbation solution for neutral instability at O(/*) we have

0 A o —_ —_
W+ SY)U dz+uo(yr —vy) . . y
R, = Ly =Ry + Ry(y, —7,) + RyS. (5.2.2)

.Lol &3U’dZ

From the case I nonlinear perturbation solution for neutral instability at O(*) we have

oY 0¥, du 0 521
R = (S(f U’—Zdz—f 2200 - 2u0+74u0+f 2

oz dY L, or?
g AY, oy f 0%, dug fo A, Oy
—U — 072 - dz— | =224
f L v o) e C ) e ar
N7 0%, du o
/( f U—Zdz— f a_za_;d@ Ry + Ry, — 7,) + RoS. (5.2.3)

In these equations R», R, and R, are each independent of y; and . Also note that nonlinear R; is here projected onto
amode in Y. We here choose L = 1 in the nonlinear expansions. For both the case I linear and nonlinear problems
the expression for R appears as

L R
R=Ry+ Ry + RS + l—j(yz—y4)+.... (5.2.4)
The neutral curve from the perturbation solution to 0(14) for case I where D’, U’, H' are constants is

5455 12 691 ((Br— 3FDIB1 + BB - BHSH'P 1550 2 120 L 12000 -7)

) ) . N 5.2.5
BLDU 5544 tDU((Br— D1 +Bo) 20 s pyr - DUk -
Here it is evident that 5455 1 1550
5 €
_ N 52.6
T 31 DU 21 DU o0
o _ 691 (B = DB + BT - HOH (527)
27 5544 TD'U' (B2 — 1)B1 + 2) ;
120
a o 120 o 52.8
2=py TN oD

We plot linear neutral curves and nonlinear steady states as R vs [ in the small / limit in Figure 3. For this case,
since the fluid motion switches from stable to unstable as o passes through zero with increasing R, any point above
the neutral curve is unstable, while any point below the neutral curve is stable. We see that nonlinearities are small
when / < 1 similarly to as shown in Hayes & Phillips (2017) for the case S = 0. In the small / limit we see that
nonlinearities have a stabilising effect. It is also quite obvious from (5.2.5) how the parameters and nonlinearities
would affect neutral instability in the small / limit where this expression is valid. From (5.2.5) we see for the boundary
conditions of Cox & Leibovich (1993) that increasing S is stabilising. This is consistent with Langmuir (1938) in
that temperature is thought to be secondary to the formation of LC. Increasing H’ or decreasing 7 has a similar effect
as increasing S. Also we see from (5.2.5) that nonlinearities are stabilising. When using the boundary conditions of
Cox & Leibovich (1993) we find for the nonlinear problem that increasing D’ or U’ is destabilising and increasing
U’ is more effective in destabilising the flow than increasing D’. The effect of increasing y, — 4 is stabilising.
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Figure 3: (left) Plots of neutral curve R vs [, linear (top) and nonlinear (bottom). (right) Plot of d = R, —Ry,
vsl. Here D’ = U’ = H' =1,S5 =100, y; = 1/20000, y, = 1/10000, y3 =y, =0,8, = 1,6, = 0, and
7=1/10.

5.3 Onset

Onset occurs at the minimum point on the neutral curve R = R(/), which we denote by (/., R.) where /. and R, are
called the critical wavenumber and critical Rayleigh number respectively. From the perturbation solutions onset is
found by solving % = (0. We find from the O(*) perturbation solutions for case I that

A L
— R-\4
I = (—(“{2 v4) 2) (5.3.1)
Ry + RS
and thus that
Re = Ry + 2((y2 — ya)R)2(Ry + RyS)/? = Ry + 212(Ry + R,S). (5.3.2)

Here nonlinear R, is to be projected onto its most dangerous mode in Y. The critical wavenumber /. from the
perturbation solution to O(*) for case I where D’, U’, H’ are constants is

120 4
(V2 =vd)pp
lc - 2077 2077 5544 ’ (533)
5455 1 1550 € 691 ((B2—To1r )B1+ %51 B2~ o7 VH s

231 D'U’ + 21 pu”n + 5544 D' U ((B2-1)B1+62)

and the corresponding critical Rayleigh number R, from the perturbation solution to O(/*) for case I where D', U’, H’
are constants is

120 120
= DU +2((y2—7v4)

)1/2(5455 1 1550 € 691 (B2 — BBy + g, - [

" + SHY2. (5.3.4
DU 231 DU’ 21 D'UB 5544 D'U' (B, — 1)B1 + B2) 634

R.
It is here quite obvious from (5.3.3) and (5.3.4) how the parameters and nonlinearities would affect /. and R, in the
small / limit where these expression are valid. From (5.3.3) and (5.3.4) we see for the boundary conditions of Cox &
Leibovich (1993) that increasing S reduces /. and increases R.. Here we also see that increasing H’ or decreasing 7
has a similar effect as increasing S. Also we see that nonlinearities reduce the value of /. and increase R.. Increasing
D’ has no effect on .. Increasing U’ only has an effect on /. in the presence of nonlinearities. When using the
boundary conditions of Cox & Leibovich (1993) we find for the nonlinear problem that increasing U’ increases [,
and increasing D’ or U’ decreases R, where increasing U’ is more effective in decreasing R, than increasing D’. The
effect of increasing y, — y4 is to increase the value of /. and increase the value of R., and we see that y, = y4 = 0
leads to unphysical results. Another peculiarity is that depending on the choice of 81, 5>, and different from Cox &
Leibovich (1993), we see that there can be a singularity of /. when S increases. In Figure 4 are plots of /. vs S and R,
vs S for the linear and nonlinear problems. In Figure 4 the effect of increasing S is to lower the value of /. and increase
the value of R.. In Figure 5 are plots of the ratio of linear to nonlinear critical wavenumber « = I Jincar/ ¢ nonlinear VS
S and plots of the ratio of linear to nonlinear critical Rayleigh number p = R, jinear/Rc nonlinear VS S for parameters
consistent with Figure 4. In Figure 5 we see that the nonlinearities appear to diminish as S increases. Figure 6 shows
how [. and R, varies with 8; for both the linear and nonlinear cases with S = 100 and other parameters consistent
with Figure 4. In Figure 6 we see that /. increases with increasing 8; and R, decreases with increasing ;. In Figure
7 are plots of the ratio of linear to nonlinear critical wavenumber x = . jinear/lc.nonlinear VS 81 and plots of the ratio of

17



0.151 132 -
1304
0.10- 128
Z, ] R, 126
005: 124 -
] 122
0. . . . , 120 . . .
o 50 100 150 200 0 50 100 150 200
s s

Figure 4: (left) Plots of /. vs §, linear (top) and nonlinear (bottom). (right) Plots of R, vs §, linear (bottom)
and nonlinear (top). Here D’ = U’ = H' = 1, y; = 1/20000, v, = 1/10000, y3 = y4 = 0,8, = 1,8, =0,
and 7 = 1/10.
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Figure 5: (left) Plots of x vs §. (right) Plots of p vs §. Here D’ = U’
v, =1/10000,y3 =y4 =0, =1,8,=0,and 7 = 1/10.
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Figure 6: (left) Plots of /. vs 81, linear (top) and nonlinear (bottom). (right) Plots of R.. vs 3, linear (bottom)
and nonlinear (top). Here D’ = U’ = H' = 1, v, = 1/20000, y, = 1/10000, y3 = y4 =0, S = 100, 8, = 0,
and 7 = 1/10.
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Figure 7: (left) Plots of x vs ;. (right) Plots of p vs 8. Here D’ = U’ = H" = 1, y; = 1/20000,
v, = 1/10000, y3 = y4 =0, S € {0,100,200}, 8, =0, and 7 = 1/10.

linear to nonlinear critical Rayleigh number p = R_ jinear/R¢.nonlinear VS S1 for S € {0, 100, 200} and other parameters
consistent with Figure 4. In Figure 7 the « curves decrease for increasing S and the p curves increase for increasing
S. We see for S = 0 that x and p are independent of 8 as expected. For § = 100 and S = 200 we see that k increases
with increasing 8] and p decreases with increasing 5;. Also, the nonlinearities appear to be small for small 8;. For
S = 0 we find that k ~ 1.425 at O(I*) which is consistent with the value reported in Hayes & Phillips (2017). As
shown in Figure 7 this is k ~ 1.433 at o(®). In Figures 4 to 7 we see that nonlinearities reduce the value of /. and
increase R..

5.4 Figure 3 of Cox & Leibovich (1993) revisited

We are interested in the nonlinear counterpart to Figure 3 of Cox & Leibovich (1993). Figure 8 (left) is a more
complete version of Figure 3 of Cox & Leibovich (1993). The dashed curves are for Re o = 0 and the solid curves
are for o = 0. The solid curves decrease with increasing 5; and the dashed curves increase with increasing 5;. The
nonlinear version of Figure 3 of Cox & Leibovich (1993) is plotted for the corresponding nonlinear steady states
only. These results were obtained by using the Galerkin method. We see in Figure 8 (left) that each of the neutral
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0.005 0.01 0.05 0.1 0.005 0.01 0.05 0.1

Figure 8: (left) Figure 3 of Cox & Leibovich (1993). (right) nonlinear steady states R vs [. Here D" = U’ =
H =1,5 =100, y; = 1/40000, y, = —y3 = —y4 = 1/20000, 8, = —f, € [1/20000, 1/2], and 7 = 10/67.

curves approach a constant function. In Figure 8 (right) we see that the nonlinearities are stabilising and the steady
states appear to approach a non constant function. Also quite interesting in Figure 8 is that there appears to be both
maximum and minimum turning point values of R for which neutral instability occurs. Our expression (5.2.5) for the
steady states at O(I*) does not capture the whole of the steady state curves in Figure 8 very well even so for the linear
case. The linear and nonlinear results in this example extend out of the range where the simple expressions from the
small-/ asymptotic approximation are valid.
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6 Discussion

The methods used in this paper are very useful for the LC problem. The perturbation method was particularly useful
in that the effect of altering parameters and of nonlinearities was evident in the small / limit by inspecting the simple
expressions found from the perturbation solutions. Note that when y; = O(1) our perturbation solutions would
require a more direct perturbation expansion. For example, in the linear perturbation solution o would then need to
have an O(1) term 0. This then leads to a messy calculation, especially for its nonlinear counterpart. The preferable
strategy may then be to use the numerical methods such as the nonlinear power series and nonlinear Galerkin methods
presented in this paper. I have also constructed animations of LC varying with time. In the nonlinear realm there is
flexibility for animations of LC to show LC spacing changing with time due to the fact that the number of modes in
y can increase as time increases. This is to be explored in further work on LC.

7 Appendix

7.1 Linear perturbation solution details

From y/;
Y4 74
Cq4 = —Rou() ff D’ dZdZ|Z:_1 +S ff 90 dZdZ|Z:_1 + Cs,
Z Z
¢s = Roug ff D’ dzdzl,—o — S ff 0o dz dz|;-o,
< < 11
c6 = —Roup ffff D' dzdzdzdz|,-—1 + S ffff 0o dzdzdzdzl,——1 — 604 + zcs + 7,
Z Y4
c7 = Rouo ffff D’ dZdZdZdZ|Z:o - S ffff 90 dZdZdZlezzo.

From u;

4
cg = —f U’y dz);-o0,
0 4
1
= —f ff U'yy dzdzdz - @(0'2 + 1)+ =cs.
. 6 2
ZH/ ZH/
clo = —ﬁl,o(ff 7%1’1 dzdzl,—0 + c11) —f 7%”1 dz|,=o,
(f —lﬁl dZ+(,310—,310ﬁ20)ff —1 dzdzl—o

—ﬂzoff _wldzddz——l_ﬁZOfv_WIdzlz 0)/(=B10 + B1,0B2,0 + B2,0)-

From 6, for case 1

C11

From 6, for case 11

Opo
clp = _ﬂIO(H Ma’zdzlz 0+H GOdZdZ|z 0+ﬂ _wldzdzlz O+C11)
Gyo
fudzlz o—f bo dz|= o—f 7¢1dzlz 0 = B1260lz=0-

From the matrix M for case II

0
M1,1 =O'2+1—R0f lZ]UIdZ,
-1

0
M1’2 = Sf lZ’1U’dZ,
-1

Z _ H/ 4 B Hl Z » HI
My, = Rof ¢17dzlz=—1 —ﬁl,oRoff ¢17d2d2|z=0—Rof lﬁlele:o
"z » H/ "z _ H/ 4 » H/
+B2,0Ro f f ¢17dzdzlz=—1 + B2,0B1,0Ro0 f f ‘ﬁl?dzdzlzzo + B2,0Ro f ¢17dZ|z:0,
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) ) <
My, = —O'z(f 7OdZ|z:—1+,32,0ff 7Odzd2|z:—1)—f o dzl,=—1
"z " H/ "z R H/ Z R H/
—Sf ¢17dz|z:—1+/31,05 ff lﬁ17dzdzlz:0+5f lﬁljddz:o

"z n Z R H/
—2,0 ff 0o dzdzl,=—1 — B2,0S ff ¢’17dzdz|z:—1
Z R Hl Z R H/
—B2,0B1,08 f f lﬁ17 dzdz|,=0 — B2,0S f lh? dzl.=o
+B1.2(1 = B2.0)00le=0 — B2.2600l:=-1-

From the quadratic equation for o, for case II

<4 >
a=- f %ty - oo f f  dzdrf,
T T

ZA ZA H/ ZA H’ ZA H/
b = —f90dZ|z:—1—Sf¢17d2|z:—1+,31,05ff lﬁ17d2dz|z:0+5f¢17dz|z:0

"z n "z " H/ "z R H/
—2,0 ff 0o dzdzl;=—1 — B2,0S ff lﬁleZlez:—l = B1.0B2,0S ff lPleZlez:o

4 . H/ R N
—2,0S f 41 - dzl;=0 + B12(1 = B2,0)00l;=0 — B2,260l.=—1

0 , 4 90 Z @0
(1 =Ry f U d2) f % et + g f f % dedde ),
-1

0 Z, . H < H
c = (1—R0f lf/lU,dZ)(_f 90d2|z:—1_Sf l//I_T dzlzz-1+,31,05ﬂ t//1—T dz dz).=o
-1

Z R H/ ZA "z R Hl
+Sf lpl?dzlz:O_ﬁZ,Off 0o dzdzl;=—1 — B2,0S ff ¢17dzdzlz:—1

© H * . H ~ n
—B2,0B1,0S ff lﬁl? dzdz);=0 — B2,0S f %7 dzl.— + B12(1 = B2,0)00l=0 — B2,2601:=-1),

0 Z ’ Z ’ Z ’
. _H _H _H
—Sf U dZ(Rof vi— dzl;=—1 —ﬁl,oRoff vi— dZleFO_ROf i dzl;=o
-1

"z ~ H/ Z ~ H/ ¥4 " H/
+B2,0Ro f f ://17 dzdz|;=—1 + B2,0B1,0Ro f f l//lez dzl.=0 + B2,0Ro f t//17 dz);=0).
"z "z
Cl2=-— ff D' (Roug + upRo) dzdzl,——1 + S ff 0> dzdz|,-—1 + c13,
"z "z
C13 = ff D,(Rzuo + MzR()) dZdZ|Z:0 - S ff 92 dZdZ|Z:0,

74 "z
cly = ff Y12+ 02)dzdzl——1 — ffff D' (Ryug + uzRo) dz dz dz dz).-—,
< 1 1
+S ffff 0,dzdzdzdz|,=—1 — gclz + §c13 + 15,

Z
cl5 = ffff D/(RQM() + MZR()) dZ dZ dZ lez:()
"z Y4
_ff Y12 + o) dzdzl—0 — S ffff th dz dz dz dz| 0.

"z "z
Cl6 = —YaUp — f up(1 + 02) dzl;=0 —f U'y3 dzl,

From 3

From uy
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fff upy(1 + 03)dzdzdz
+2C16_—u00'4—f fol//3dZdZdZ

cig = —Pi o(ff —%dzdzlz 0+(— + 1)ff 6> dzdz|,—0 + c19)

—f —Y3dzl—o —(— + 1)f 602 dzl;=0 — B1,.265|:=0,

"z H/ "z
cl9 = (—f —l//3dZ|z=—1—(2+1)f 0> dz|,=—
+(=B1 o(ff —%dzdzlz -0 +(— + l)ff 0> dz dzl,-o)

—f —lﬁ3dZ|z 0—(—+1)f 0 dzl=0 — B12021:=0)(B20 — 1)

From 6y for case 1

—ﬁz,o(ff 7% dzdz,-— + (7 + 1)ff O dzdzl;=—1) — B2202l:=-1)/(—=B1.0 + B1,0B20 + B2,0)-

From 6, for case 11

clg = —ﬂm(ff —%l’sdzdzlz o+(— + 1)ff 6> dz dz,- o+ff Ho—dzdzlz 0+ cC19)

—f —y3dzl— —(— + l)f 6> dz|-0 —f 90—dZ|z 0 = B1,2621:=0 — B1.460:=0-

From the matrix N for case 11
Ni1 = uo,

0
N1,2=f YU’ dz,
-1

"z 90 Z 90 Z 90
Ny = f - dzl,—— —ﬁl,of - dzdz|,=o - f - dz|.=o
"z 0 "z 9 "z 9
+62,0 f f ?Odz dzl.=—1 + B20P10 f 70 dzdzl,—0 + 2,0 f ?OdZ|z=o,

4 N O Z n 4 . H/ ¥4 " O
Ny = f 9272 dz),-- +f 0> dz| =1 +f ¢37 dzl.——1 = B1p ff 9272 dzdz|;-0
"z n ¥4 . H' "z ex "z n "z . H/
o [[ wtcateo-pro [[ it dadn - [0 2t~ [ trdteo- [ a5 iy
¥4 n 0-2 Z n "z o H/
+62,0 927 dzdz|,=—1 + B2 62 dzdzl,-—1 + B2y ll’37 dzdz|,-—
"z R 0_2 74 R "z o Hl
+61,082,0 f f 927 dzdz|,=0 + B1,082,0 f f 62 dzdzl;=0 + B1,0B2,0 f f 11137 dzdzl,=o

2. oy z Oy
+62,0 f 927 dzl.=0 + B2, f 0> dz|.=0 + B2,0 f lﬁa? dz|.=o
—B12(1 = B2.0)62l,=0 + B2.262] =1

From the vector q for case II

0 0
—f @3U'dZ+R2f Y3U’ dz +y4u0 — Y,uo,
- -
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4 = —fz 92% dzl=—1 - fzézdzlz:—l - IZ%HT’ dzl=—1 + Ry fz l%H?, dzl=—1
+,81,0(foZ éz? dzdz|,—o + ffz 6, dz dz),—o + ffz 1213H7/ dz dzl,~o —sz Z&3H7/ dz dz,-0)
- f Z 072 del.o + f G, delcy + f Z stH?' dzl:=o — Ry f Z %H?' dzl:=o
—ﬁz,o(ffZ 92% dzdzl=—1 + ffz 0> dzdz -1 + ffz 9-7/3H7/ dzdz|.=— —sz Zlf/sH?, dzdz|,=—1
—(—,Bl,o(ffz 92% dzdzl,—o + ffz 0, dz dz|,—o + ffz (/73H7, dz dz|,~o —sz ZJ/3H7’ dz dzl,-0)
—fz 92% dzlz=0 — fz 62 dz).—o - fz @3H7’ dzl=0 + Ry fz $3H7, dzl;=0))

+B12(1 = B2.0)02l,=0 + B1.a(1 — B2.0)00lz=0 — B2.202l.=—1 — B2.460].=—1.

7.2 Linear perturbation solution algorithm details

From uy; in the linear perturbation solution algorithm

0 z J=1
= —Yhu2j-4l:=0 —f U'thpj1 dzl - o—f uzj-2 dzl;=o —f Zuzj @m+2)02m+2 dZl;=0,

0 z 4=l Z 4 co i
’ 0,
cLj = —fl[ﬂ E qu—(2m+2)0-2m+2dZdZ+ﬂ Urjodzdz + H U'yaj-1dzdz] dz + 6o, juo + TJ

m=0

From 6, in the linear perturbation solution algorithm for case I

Z 4 H/
) = —ﬁl,o(ff 0rj_odzdz|,—o + ff 7lﬁ2j—1 dzdzl;=o
z i1 T H
+ff Zgzj (2m+2) *2 dzdz.— + c3 J) 92/ 2dzl—o —f —llfzj 1dzl;=0

< Tom+2
m+
f 202] em+2)—— dzl;=0 — Zﬁl 2mB2j-2mlz=0,

Z Ty z i1
e = (f 92j—2dzlz:—l+f 7¢2j—1d2|z:—1+f 292] (2m+2) 2 e

m=0

2 J-1
—Bi o(ff 022 dzdz|;=0 + ff —11/2J 1dzdzl=0 + ff 2921 (2m+2) *2 dz dzl.~0)
“H' < Tom+2
f 6022 dzl=o —f —1/12]—1 dz|.=o —f 202] am+2)———= dz|.—0 — Zﬁl 2m02j-2ml=0

z J=1
+52, o(ff 02j2dzdzl =1 + ff —lﬂzj 1dzdzl=—1 + ff 292, (2m+2) *2 dzdz),—_

m=0

z i1
+B1 o(ff 6hj—» dzdzl,—o + ff —11/2, 1dzdzl=0 + ff Z%, (2m+2) *2 dzdzl—o)

z 5 z J=1 Toms
f 022 dzl.—o +f —9021 1 dz|,=0 + 2921 Qmi2)—— 2 dzleq + Zﬁl 2mb2j-2mlz=0)

m=1

+ Zﬁ2,2m92j—zm|z:—1)/(,31,o — B1.062,0 — B2,0)-
m=1

23



From 6,; in the linear perturbation solution algorithm for case II

"z 74 H/
2 = —Prol f f 6hj-2 dzdz|.—o + f f —l/fzj-l dz dz|,—o

’

2 i1 Z Z
H
+ff 292] (2m+2) 2 dzdzl. + 3 J) = Z,Bl 2mb2j-2mlz=0 — f 6022 dzl-0 —f Tlﬁzj—l dz|;=0

m=0

z J=1
—f 292, (2m+2) 2 dz).=.

From 41 in the linear perturbation solution algorithm

7z Z
—ff ZD/uzj_ngZm dzdzl,=—1 + S ff 92]' dzdzl;=—1
m=0
z J=2 Z
- ff Z Y2j-om-302m+2 dzdzl=—1 — ff Y2j-3dzdzl=—1 + ¢5j + V3 3l=-1,
m=0

ff ZD uzj— ZmRZdedzlz 0 — ff HZJdZdZ|z =0
Z 1_2
+ff Zlﬁzj—zm—so'zmndzdzlz 0+f Y2j-3 dzdzl=0 = ¥1¥5;_3l:=0,

z J .
_ffff ZDIMZj—ZmRZm dzdzdzdz],=—1 + S ffff 0rjdzdzdzdz| -
m=0
"z -/_1 z / 2
+ff Zl,lfzj—zm-lo'zm+2 dzdzl=—1 — ffff lefzj 2m—302m+2 dzdzdz dz|,——1
m=0

m=0

4 4 1 1
— fff lﬁ2j*3 dZdZdZdZ|Z:,1 + 2f lﬁzj;l dZdZ|Z:,1 — 864’j + §C5,j + 7,5,

z S Z
ffff ZD/sz_szzm dZdZdZdZ|z:0 -5 ffff sz dZdZdZdZ|z:O

z J=1 z J=2
ff Z%sz 2m-102m+2 dZ dz| = 0+ffff Z'J’z} 2m-302m+2 dz dz dz dz| .
+fff Yoj3dzdzdzdzl,— — 2f Y2j-1 dzdzl,=o.

From the matrix N in the linear perturbation solution algorithm for case II

Ny,4,j = uo,

0
N1,2,j:f Yoj-1U' dz,
-1

74 00 74 00 74 00
Ny = f — dz|—— —ﬁl,of —dzdzlz_o—f —dzl;=
T T T
Z 60 "z 00 4 00
+52,0 ff — dzdzlz=—1 + 20810 f — dzdzl=0 + B2o f — A=,
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Z "z H/ 74 o
- y - 2
Nypj = f 02 dzlz=—1 + lﬁzj—l—dzlz:—l +f sz—z—dzlz:—l

—p1 o(ff 92J 2dzdzl,= 0+ff W) 1—dzdzlz o+ff 92, Z_dZdZ|z 0)
f brj2 del-- o—f V- 1—dZ|z o—f b 2—dZ|z 0
R . A~ O
+ﬁ2,0(ff 02j-2dzdzl;=—1 + ff Llfzj—l—dzdzlz:—l + ff 92j—2—dzdz|z:—1
+ﬂ10(ff 0rj> dzdzl,= 0+ff Uoj 1—dde|z o+ff 0> 2—dde|z 0)
f 62] 2dZ|Z 0+f '702] l_dzlz 0+f 92] 2_dz|z 0)

—Bro(1 = B2.0)b2j-2le=0 + Br202j-0lr=—1.

From the vector q in the linear perturbation solution algorithm for case II

0 0
. . , _ _
q1,j = —00,j-1U4o — f YU dz + sz—zf U2j1 U dz + yqupjal,=—1 — Youzj—4l—o,
-1 1

2 J=2

Q@ = f92] 2dzl=—1 - f(lﬁzjl Ryjonj-1)— dZ|z——l_f 292J —(2m+2) Tom+2 dzlz=—1

- ~ o ~ H’

—f 92j—2—2d2|z:—1 +ﬂ1,0(ff 6rj2dzdz],-0 + ff W2j-1 —sz—zlﬂzj—l)7 dzdzl;=o
z J=2

+ff 292, (2m+2) 2 dzdl.- 0+ff 0rj- 2—dde|z o)+f 02 dzl.=0

m=1

j-2

z . H Z 7 o
+f (W2j-1 —sz'—zl//z;—l)? dzl.—o +f 292] (2m+2) lez 0 +f 92;’—27 dzl.—o
z z _ H 2 J=2
—ﬁz,o(ff 0rj2dzdzl,-1 + ff W2j1 _R2j—2'702j—])7 dzdz;=—1 + ff Z 0 (2m+2) 2 dzdzl-—

1

z o z z mN H
+ff 92]'—27 dzdzl=—1 - (—ﬁl,o(ff 622 dzdz)—o +f (W2j-1 _R2j—2¢2j—1)7 dzdz|=o

2 =2
+ff Zf)zj (2m+2) dZdZ|z o+ff 0sj- 2_dZdZ|z o)—f 022 dzl.=o

)
z N H z J= Z o

—f W2j-1 —sz—zlﬁz]‘—l)? dz|;=0 —f 292] (2m+2) *2 dzloeg — f 92;‘—27 dzl;-0))

J
+( Bramb2j-amle=0 + B1.282j2l=0)(1 = Boo) - Zﬁz,zmﬁ’z j-amle=—1 = B2aBrjale=1.

m=2 m=2

7.3 Nonlinear perturbation solution details

From Y

(Y, T) = ff D Ro— dzdzl.—_1 + S f — dzdzley + c5(V,T),

cs(Y,T) = ff D’ RO— dzdz|,-o — f By dzl .o,
a®0
(Y, T) = D Ro— dzdzdzdzl,=—1 + S — dz dzdzdz|,-—

——04(Y T)+ 05(K T)+ (Y, T),
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© 00
(Y, T) = ffff DR()—dzdzdzdzlZ -0 — ffff —OdZdZdZdZ|z 0-

L
(Y, T) = f a—Y‘)U dzl=o.

From u,

From ©®, for case I

< O0¥, H' < 0¥y H
clo<Y,T>=f—°7dz|zo Bro- f—°7dzdz|zo+cu<YT>)

0¥y H’ “ 0%y H' “ 0%y H'
cnY,T) = (f _O_dZ|z_—l_f a—}f)?dzlz o—ﬁloff _O_dZdZ|zO

“ 0¥y H’ “ OV H’
ﬂzof —07 dzdz|,=—1 + P20 6YO =

dz|.=o

“ 0¥y H
+62,0P1 of —07 dzdzl;=0)/(—=B1,0 + B2.0B1,0 + B2,0)-

From ®; for case 11

100 2 520 “ 0¥y H’

Yr) = - —d d ——d
cwwn) = - [ 2T0adeos [ TN+ [ T2 diy
N N 1(9‘1’0 5@0 | N 1(9‘1’0 5@0 |

oY oz W0 | g gy 9k

196 20! 2 OWo H'
—ﬁlo(ff __OdZdZ|z -0 — ff 8Y20 dzdz|;—o — f —O—dzdzlz 0

“10%y 00 1 0%y 00
[ R et [[ 1R drdeken 4 en (KT - fraOolo

For case 11, the second coupled nonlinear partial differential equation for 1y and c3(Y, T) at O(P) is

160 S 210) 2 0¥ H’ 1 8%, 60,
f __0 le——l 0 dzlz——l f —0r dzlz——l f _— 0 dzlz— 1

oT pa Yy t oY 0z
< 1 8%y 909 “100g f‘ f 9’0, f ~0Yo H'
- —op dd dzdzl,—o - ———dzd
+f 9z 9Y dzl:=—1 = Bio( f zdz=0 - a2 zl:=0 5y £ dedzl=0

21 0%y 00 “1 3‘1’0 00 f 100 fz 52@)0
“ 2000 4 g “20 90 4 4y %y d
H - 8Y o2 zdzl,—o ﬂ 9z OY zdz|;=0) — T =0 + 912 Zlz=0

¢ %Yo H “1 9% 00 f “1 9% 009 f f 100¢
N R vy | -

2 520 0¥y H’ 21 0%y 00
ﬂ aYZO dZ dZ|Z——1 - f —OT dZ leZ——l - ﬂ —a—YOa—O dZ lez——l
2 190¥ 00 2100 2 0%
ff e O_aYO dzdzl——1 + B o(ff ——0 dzdz|;=o - ﬂ 8Y20 dzdzl:=o
2 0¥y H’ ] 6‘1’0 6@0 “ 1 6‘1’0 6@)0
ff A dzdzl,— — ff oY oz dzdzl.—o + ff 52 9Y dz dz|,=0)

© 100 2 970 2 0¥y H' 19% 009
+ —d ——d —d
f - 8T le 0~ f 6Y2 le 0 — - Z|z =0 — f - 5Y aZ Z|z =0

1 0¥y 00
+ f 220 dzlmo) = Bra(1 = B2.0)O0le=0 + B22O0l:=—1 =0
T 6 oY

The constants appearing in the differential equations (4.1.44), (4.1.45) are
O ~
a, =p* —Ropzf YU’ dz,
-1
O A
b, =S p* fl YU’ dz,
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0
:—Ropzf YoH' dz,
-1

0
d, = szf YoH' dz — 1(Bap — P12 — P).
-1

From ¥,

v 32\1! ,
o) = T 2%~ [[ DR deda

on
ff D RO—2 dzdzl=—1 +§ f - dZdZ|z——l

0¥ 03‘1’0 f : a‘Po P,
v 42dzl=- dzdzle—_y + c13(Y, T
f "oz 9oz o=t = Y 98 © =1 + c13(Y, T),

oV, 52\1/
ci3(Y,T) = —a—Tolz:o 6Y20 ff D’ RZ_dZdZIZ 0

ff DRo—dzdzlz 0— f —dZdZIZ 0

0¥ Y, 3071 S R N
e dz dz].— IX0 TR0 1o gy
f 0z Yoz “* Z'““’ff oy ap eddo,

‘o i
cu,T) = ff —OdZdzlz_—l - ff 8Y20 dzdzl,——1 — ffff DRz—dZdZdde|z__1
o 90
ffff b RoidZdZdZdzlz_—l +8 ffff _dedZdZdZ|z——1
z (9‘1’0 3P¥, z 6‘1’0 PENTN
dzdzdzdz|,-—1 — ——dzdzdzdz|,—-
ffff 0z 6Y6z 2dz dzle=-1 ffff oY 0z a3 zdzdz|;——1

——Clz(Y T)+ 013(Y, T)+ci5(Y,T),

7Y z 62‘1’
sV, T) = ff —Odzdz|Z 0+f aYZO dzdz,- 0+ﬂff DRz—dzdzdzdzlz 0
)
ffff DRo—dzalzdzdzlZ 0— ffff _dedZdZdZIZ 0
“ 9% Y, 2 0¥ P
- — 9 dzdzdzd dzdzdzd
fff 3z ovaR L E Z'“”ﬂff oy g (edededid=o.

* ou
ce(Y, T) = —f 6;dzlz 0 f o 2 dzlmo f—U dz).-o

From 14

8‘1’0 6112 | f 8‘1’2 811() | 8‘1’0 auz an | >
9y a7 W0 | T gy Fe0 | Gy om0
From @4 for case I
“ 1 0@2 2 520, 8‘1’2 H’
YT) = - d —d
cig(X,T) f 57 =0 f a7 de=o+ [ 7 del=o
1 0%¥, 00, <1 8‘1’0 5@2
dz dz
+ch9Yc') =0 = f 2z gy =0
2100 2 9%0 2 0¥, H'
—B1.,0( f ——Zdzdzlz -0 — ff (‘)YZZ dzdz|,=0 — f —z—dzdzlZ 0
1 0¥y 00, ffz 1 0%y 00,
————=dzd -———dzd Y, T
ff Tor 0 & Z=0 + 5. oY Zz=0 + c19(Y, T)) — B1202]:=0,
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100 0¥, H “10%Y 00
co,T) = (- f 2 i + f 52 2 dgl— 1 + f — — =1 + f e

oY 0z
? 1(9\1’0(9@2 < 15@2 fz 90, fz oV, H’
- - - d ——d
f T a aY dzlz=—1 — ( aT dzl;=0 + 972 Zz=0 + Y Zlz=0
“10%) 00, “10%) 00,
dz -————dz
+fraya =0 - f 5z oy =

100 290 2 0¥, H'
—ﬁlo(ff __dedZ|z -0 — ff 3y22 dzdz| -0 — f _27dZdZ|z 0

1 0¥y 00 1 0%y 00
—ff 072 drdr,- 0+ff —2Z22 dzdzl0) — B1.2O2le=0)(1 = B2)

T 6Y 0z C'? oY
2100 2 9%°0 2 0¥, H'
%af—émmlﬂ‘zmmqf-i—mm4
oY? T

< 1 6% 00, < 1 6% 00,
22 gy, ~ TR dzdd
ffraya Zz'“”ff 9z oy dedd=-1)
—B2202].=—1)/(=B1,0 + B2,0B1,0 + B2,0)-

From @4 for case 11

106 ¢ %0, <9 H' 1 9¥; 90
clS(Y’ T) = _f T aTz lez 0+ 6Y2 dZIz 0 f HYZ T dZIZ 0 f 8Y2 6 0 dZIZ 0
*10% 60, f ©10¥2 999 fz 19% 00, ffz 160,
f T oy ar F=0- 2 gy =0 5z gy 40 =Bl dz dzl.—o

2 620, 2 0¥, H' 21 0%, 00
dzd - ——d d -2 dzd
ff 372 zdzl:-o f - dzdzl= - ff oY oz zdzl:=o

1 6‘1’0 8@)2 1 (’)‘I’z 8@)0 H 1 0¥, 00,
_ _ZvZ77e Y. T
jf 6 oz — dzdz|=0 + ﬁ 8 6 dzdzl,=o + 9z OY dzdz),-0 + c19( )

—B1202]:=0 — B1,4O0|:=0.

For case 11, the second coupled partial differential equation in terms of co(¥, T) and ¢11(Y, T) at o) is

2100, 2 520, “O¥2 H' 192 809
— le——l dz|z——l dzlz——l le——l

70T P Y 1 e
_leé‘PoaG)zdl fﬂ@%@@odl f@%@dl
oy o7 =1t 5z oy ‘=17 0z gy M=

_le@ | fzaz dz] IZ%EM f”a%a@o |
or =0T | gyr W0t | Gy T dtk=0 F oY o0z A0

1 0%, 00, 10%, 99y f 13%) 90,
+fray gz =0~ f 22 oy “e=0- 2z oy Y=o

2100 2 0%0 2OV, H' 2 1 0¥, 0O
| e | | ey
2 1 9%, IO 2 1 9%, 00 2 1 9%, 00
ff oY g ke ff T oy ff o gy L)
100, 2 920, 2 0¥, H' 2 1 0¥, 00,
+,320(ff ——dzdz|z_—1 f YA dzdzl,-_1 - ff T dzdz|,-—1 - ff T oz dzdz|,-—
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ff oY 0z dzdz),=—1 +ff % oY dzdz)——1 + 52 oY dzdz,=—1

2100 2 9%0 20V, H' 2 1 0¥, 0O
+f 2 dzl= - f —2dz.—o - _27dZ|20 f 270 1o

or aY? oY 7Y 0z
: 10 00, ¢ 10, 00y ¢ 10 00,
=) 7oy ez W0t | Tar oy Weot | 1750 By =
2100 S 20) 20V, H' 2 1 0¥, 0O
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ff ;a—Y—Z dZ leZ 0+ ff _(‘)_Z(’)_Y dZ dZ|Z =0 ff a aY dZdZ|Z O))

+(=12021:=0 = B1,4O0l=0)(1 = B2,0) + B2202|,=—1 + 24O¢|=—1 =
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7.4 A theorem for a class of nonlinear differential equations

The following Theorem A formalises a procedure outlined in Hildebrand (1956):
Theorem A

Provided that the L + 1 term Maclaurin series of the exact general solution,

d'A xl
A= Z =0y (7.4.1)
to an MM order ordinary differential equation
d"A
7 = & (7.4.2)

exists and all the derivatives and integrals of A are defined at x = 0, it only solves the coefficients of x/, [ €
{0,1,...,L — M} in the residual of (7.4.2) provided ¢ is expandable in a Maclaurin series as

[

dl
£= Z §|x0x (74.3)

where all the derivatives and integrals of & are defined at x = 0 and the right hand side of (7.4.2) does not contain
aA
axM

Proof of Theorem A

Since the Maclaurin series of A and £ exist and all their derivatives and integrals are defined at x = 0, we can integrate
(7.4.2) M times and substitute the result into (7.4.1) to find

(I-M) )
A= Zd £ x. (7.4.4)

Substituting (7.4.4) into the residual r of (7.4.2) then gives

d(l M)é: l M dlé: )Cl
r—Z N M)|xo(l i Zd Hls=077 (7.4.5)

provided ¢ is expandable in a Maclaurin series as in (7.4.3). Equating like powers of x in (7.4.5) then yields

dlf xl
r=-— Z =07y (7.4.6)

[=L-M+1

[Se]

which shows that Theorem A is true. O

7.5 Another theorem for a class of nonlinear differential equations
The following Theorem B is of the essence of that given in various texts (see for example Muscalu & Schlag, 2013):
Theorem B

Provided that the 2L + 1 term complex Fourier series of the exact general solution

L
A= Z P(A, e )el"x 0 < ] < oo, (7.5.1)
n=—L
to an M order ordinary differential equation
dMA
T ¢, (7.5.2)

exists, it only solves the coefficients of e”* for n € [-L, L] in the residual of (7.5.2) if ¢ is expandable as a complex
Fourier series as

£ = Z P(&, ") 0 < [ < co. (7.5.3)
n=—oo
Here A and ¢ are periodic with period 27” and all of their derivatives and integrals are continuous for all x. Moreover

the right hand side of (7.5.2) must not contain ‘5:—,3 and P(a, e"*) denotes the projection of a onto elnlx,
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Proof of Theorem B

Since the complex Fourier series of A and & exist and because A and ¢ are periodic with period 27” and all their
derivatives and integrals are continuous for all x, we can integrate (7.5.2) M times and substitute the result into
(7.5.1) to find

A= Z P(d( M) f 1nlx)einlx (7 5 4)
dx-M)’ ’ e

. (=M) . . S . .
where the notation % denotes the M™ integral of & with respect to x. Substituting (7.5.4) into the residual r of

(7.5.2) then gives

a &

M

dMe e
P(d (_M)’elﬂ)C)elﬂx_ Z P(é_"emx)emx’ (7.5.5)
X

n=—L n=—oo

r

provided ¢ is expandable in complex Fourier series as in (7.5.3). Then equation (7.5.5) can be written as

r=-— Z P(&, eMeyeintx (7.5.6)
n¢[-L,L]

which shows that Theorem B is true. O
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