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The CL equations governing instability to Langmuir circulation (LC) are solved by three approximate methods, viz:
a small-l asymptotic expansion where l is the spanwise wavenumber, a power series method and a Galerkin method.
Interest is focussed on the CL2 instability mechanism to LC and how it is influenced by stratification throughout the
layer in which LC live. Results are provided to illustrate the CL2 instability and how it is affected by nonlinearities.

1 Introduction
Langmuir circulation (LC) are a system of counter-rotating vortices that form below wind driven waves in the upper
ocean when the wind speed exceeds 3 m/s (Leibovich, 1983) and occupy the region of fluid that is sheared by the
wind. Moreover they are made visible by their surface footprints as almost parallel streaks or windrows on the ocean
surface, with spacings of up to hundreds of meters (Plueddemann et al., 1996; Thorpe, 2004) and can extend for
several kilometers in the direction of the wind (Thorpe, 2004). LC help mix and form a region called the mixed
layer (Langmuir, 1938) and in doing so alter the variation with depth of density and temperature (Smith, 1992), on
occasion to such a degree that the bottom of the layer is defined by a sharp change in temperature (density) known as
a a thermocline (pycnocline). Of interest in the present study is the role stratification plays on the evolution of LC in
layers bounded by a thermocline.

The prevailing theory for of LC is due to Craik & Leibovich (1976), who derived a set of evolution equations to
describe them known as the CL equations. Two instability mechanisms to excite LC follow from the CL equations
(Leibovich, 1980) and both rest upon the interaction between shear U′ in the surface layer resulting from the wind
and differential Lagrangian drift D′ that results from the wave field. They are denoted CL1 and CL2. However CL2,
which assumes that the drift does not vary cross stream to the wind, is considered the more likely instability to occur
in Nature and is the mechanism studied in this paper.

Of course, to ensure the problem is well posed, boundary conditions must be specified at the free surface and some
distance below it. Neumann conditions are an obvious choice but, when imposed on finite layers as opposed to infinite
ones (in the sense of deep water waves), the linear least stable wavenumber lc is zero. This oddity was explained by
Cox & Leibovich (1993), who noted that Neumann conditions ignore coupling between the perturbation flow and the
extra stress it produces, implying that mixed boundary conditions that reflect that extra stress of magnitude γ, should
be imposed. In doing so they found that lc is nonzero when γ is nonzero and also that lc � 1 when γ � 1. In view
of that they chose to use perturbation methods to study the instability to CL2 of the simplest case U′ = D′ = 1 in the
small l limit, followed by Hayes & Phillips (2016) who allowed D′ and U′ to be arbitrary functions of depth, while
Hayes & Phillips (2017) studied the role of nonlinearities. In fact Cox & Leibovich (1993) also allowed for thermal
stratification of slope H′ = 1 and magnitude S . Our object here is to consider the role of nonlinearities when H′ is
an arbitrary function of depth and thus determine whether nonzero S enhances or diminishes growth to LC.

The governing equations are stated in §2. Then in §3 and §4 we outline solution methods for the respective
linearised and nonlinear problems. In §5 we discuss how the parameters and nonlinearities affect the CL2 instability
to LC over a restricted parameter range where the simple expressions from the small-l asymptotic approximation are
valid. We also revisit an example of Cox & Leibovich (1993) to show how nonlinearities affect the corresponding
neutral instability. This is an example which extends outside the range where the simple expressions from the small-l
asymptotic approximation are valid. In §6 we conclude this paper and discuss some possibilities for further work on
LC.

2 Problem description

2.1 CL2 equations
The CL2 equations follow from perturbations to the CL equations, where the perturbation velocity u = (u, v,w) and
perturbation temperature θ are each defined for position x = (x, y, z) and time t. We take the x axis to be in the
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direction of the imposed shear, the y axis is in the spanwise direction, and the z axis is in the vertical direction. The
flow is assumed to be independent of x. In dimensionless form, the CL2 equations are then (Craik & Leibovich 1976)

(
∂

∂t
− ∇2)∇2ψ = RD′

∂u
∂y
− S

∂θ

∂y
+ J(ψ,∇2ψ), (2.1.1)

(
∂

∂t
− ∇2)u =

∂ψ

∂y
U′ + J(ψ, u), (2.1.2)

(
∂

∂t
− τ∇2)θ =

∂ψ

∂y
H′ + J(ψ, θ) (2.1.3)

where J is the Jacobian J(a, b) = aybz − azby. To satisfy the continuity equation the stream function ψ is defined by
v = ψz and w = −ψy. We further have that U′ and H′ must satisfy

(
∂

∂T
− ∇2)U = G, (

∂

∂T
− ∇2)H = F (2.1.4)

where T and t are disparate time scales and G, F are due to body forces and heat sources respectively. The differential
drift D′ results from the Stokes drift whose details depend on the wavefield. We can thus take D′,U′,H′ to be arbitrary
functions of z. The Rayleigh number is denoted by R, the magnitude of the stratification is denoted by S , and τ , 0 is
an inverse Prandtl number. Nonlinearities are accounted for through the Jacobian J. When nonlinearities are assumed
to be small we discard J to yield the linearised CL2 equations. When S = 0, equations (2.1.1), (2.1.2) are those used
in Hayes & Phillips (2017).

2.2 Boundary conditions
We will use mixed boundary conditions on the top and bottom of the layer of fluid that are similar to those introduced
by Cox & Leibovich (1993)

∂2ψ

∂z2 + γ1
∂ψ

∂z
=
∂u
∂z

+ γ2u =
∂θ

∂z
+ β1θ = ψ = 0 on z = 0, (2.2.1)

∂2ψ

∂z2 + γ3
∂ψ

∂z
=
∂u
∂z

+ γ4u =
∂θ

∂z
+ β2θ = ψ = 0 on z = −1 (2.2.2)

where γi, β j for i = 1, 2, 3, 4, j = 1, 2 are constants. We set z = 0 at the top of the layer and z = −1 at the bottom of
the layer.

3 Linear methods

3.1 Linear perturbation solution
We seek a perturbation solution to the linearised version of the CL2 equations (2.1.1), (2.1.2), (2.1.3) with boundary
conditions (2.2.1) and (2.2.2) using l � 1 as a small parameter. This calculation is an extension of the work of Cox
& Leibovich (1993) and Hayes & Phillips (2016). We assume

ψ = i
∞∑

k=0

l2k+1ψ2k+1eilyeσt, u =

∞∑
k=0

l2ku2keilyeσt, θ =

∞∑
k=0

l2kθ2keilyeσt, (3.1.1)

σ =

∞∑
k=0

l2k+2σ2k+2, R =

∞∑
k=0

l2kR2k, (3.1.2)

γi = l4γi, βi =

∞∑
k=0

βi,2kl2k. (3.1.3)

We allow D′,U′,H′ to each be arbitrary polynomials of z

D′ =

N∑
n=0

Anzn, U′ =

N∑
n=0

Bnzn, and H′ =

N∑
n=0

Cnzn (3.1.4)
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where An, Bn and Cn are arbitrary constant coefficients. In §3.1.1 we take the calculation to O(l4). In §3.1.2 an
algorithm is derived so we can take the perturbation solution to O(lP) for any integer P > 0 within computational
limits. The algorithm can then be coded into Maple. To equate like powers of l we can use the Cauchy product
formula (Hardy, 1949)

∞∑
m=0

amxm
∞∑

n=0

bnxn =

∞∑
m=0

m∑
n=0

am−nbnxm. (3.1.5)

The solutions we obtain may then be used to validate more general numerical calculations. To proceed we substitute
the above expansions (3.1.1–3.1.4) into the linear CL2 equations and boundary conditions, equate like powers of l, and
solve the resulting equations at successive orders in l. The ci and ci, j appearing here are given in the Appendix. It turns
out that the linear perturbation solution separates into two separate cases. We have case I: −β1,0 + β2,0β1,0 + β2,0 , 0
and case II: −β1,0 + β2,0β1,0 + β2,0 = 0. This becomes evident when applying the boundary conditions for θ0.

3.1.1 The first few orders

At O(l0) we have
u′′0 = 0 (3.1.6)

with boundary conditions
u′0 = 0 on z = 0,−1. (3.1.7)

So
u0 = c0 (3.1.8)

where c0 is an arbitrary constant. Without affecting σ we may let

u0 = 1. (3.1.9)

Also at O(l0) we have
τθ′′0 = 0 (3.1.10)

with boundary conditions
θ′0 + β1,0θ0 = 0 on z = 0 (3.1.11)

and
θ′0 + β2,0θ0 = 0 on z = −1. (3.1.12)

For case I we find
θ0 = c3 = 0. (3.1.13)

For case II we find
θ0 = c3(−β1,0z + 1) = c3θ̂0 (3.1.14)

where c3 is an arbitrary constant.
At O(l1) we have

ψ′′′′1 = −D′R0u0 + S θ0 (3.1.15)

with boundary conditions
ψ′′1 = ψ1 = 0 on z = 0,−1. (3.1.16)

Solving (3.1.15), (3.1.16) gives

ψ1 = −R0u0

& z
D′ dz dz dz dz + S

& z
θ0 dz dz dz dz + c4

z3

6
+ c5

z2

2
+ c6z + c7

= −R0u0ψ̃1 + S ψ̂1c3 (3.1.17)

where ψ̃1, ψ̂1 are devoid of R0, S , and c3. Notice here that since multiple layers of LC occurred with D′ as a linear
function of z in Hayes & Phillips (2016), this then means that here even with D′ = U′ = H′ = 1 we can have multiple
layers of LC due to θ0 being linear in z.
At O(l2) we have

u′′2 = U′ψ1 + u0σ2 + u0 (3.1.18)

with boundary conditions
u′2 = 0 on z = 0,−1. (3.1.19)

3



Solving (3.1.18), (3.1.19) gives

u2 =

" z
U′ψ1 dz dz + u0(σ2 + 1)

z2

2
+ c8z + c9. (3.1.20)

The constant of integration c9 is chosen so that there is no net flux of fluid due to the perturbation flow∫ 0

−1
u2 dz = 0. (3.1.21)

Also at O(l2) we have
τθ′′2 = ψ1H′ + θ0(τ + σ2) (3.1.22)

with boundary conditions
θ′2 + β1,0θ2 + β1,2θ0 = 0 on z = 0 (3.1.23)

and
θ′2 + β2,0θ2 + β2,2θ0 = 0 on z = −1. (3.1.24)

We find
θ2 =

" z
ψ1

H′

τ
dz dz +

" z
θ0(

σ2

τ
+ 1) dz dz + c10z + c11. (3.1.25)

For case II we have θ2 = θ̃2 + c11θ̂2 where θ̃2 and θ̂2 are independent of σ4, R2, and c11. The boundary conditions
lead to equations for σ2. For case I we find

σ2 = R0

∫ 0

−1
U′ψ̃1 dz − 1. (3.1.26)

For case II there are two equations involving σ2 which can be written as the matrix equation for v = (u0, c3)T

Mv = 0 (3.1.27)

where the elements of the 2 × 2 matrix M are given in the Appendix. For a nontrivial solution the determinant of M
must be zero, M1,1M2,2 − M1,2M2,1 = 0. This leads to a quadratic equation

aσ2
2 + bσ2 + c = 0 (3.1.28)

for σ2 where a, b, c are in the Appendix. The quadratic formula gives

σ2 =
−b ±

√
b2 − 4ac

2a
. (3.1.29)

The matrix equation then yields

c3 = −
M1,1u0

M1,2
. (3.1.30)

At O(l3) we have
ψ′′′′3 = (2 + σ2)ψ′′1 − (R2u0 + R0u2)D′ + S θ2 (3.1.31)

with boundary conditions
ψ′′3 = ψ3 = 0 on z = 0,−1. (3.1.32)

Solving (3.1.31), (3.1.32) gives

ψ3 = (2 + σ2)
" z

ψ1 dz dz −
& z

D′(R2u0 + u2R0) dz dz dz dz

+S
& z

θ2 dz dz dz dz + c12
z3

6
+ c13

z2

2
+ c14z + c15. (3.1.33)

For case I we have ψ3 = ψ̂3 − R2ψ̃3 + S ψ̆3 where ψ̂3, ψ̃3, ψ̆3, are each independent of R2 and S . For case II we have
ψ3 = ψ̂3 − R2ψ̃3 + c11ψ̆3 where ψ̂3, ψ̃3, ψ̆3, are each independent of σ4, R2 and c11. The dependence on S appears too
complicated to isolate for case II.
At O(l4) we have

u′′4 = u0σ4 + u2(1 + σ2) + ψ3U′ (3.1.34)
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with boundary conditions
u′4 + γ2u0 = 0 on z = 0 (3.1.35)

and
u′4 + γ4u0 = 0 on z = −1. (3.1.36)

Solving (3.1.34), (3.1.35), (3.1.36) gives

u4 =

" z
u2(1 + σ2) dz dz +

" z
ψ3U′ dz dz + u0σ4

z2

2
+ c16z + c17 (3.1.37)

where the constant of integration c17 is chosen so to exclude net mass transfer as before∫ 0

−1
u4 dz = 0. (3.1.38)

Also at O(l4) we have
τθ′′4 = ψ3H′ + (τ + σ2)θ2 + θ0σ4 (3.1.39)

with boundary conditions
θ′4 + β1,0θ4 + β1,2θ2 + β1,4θ0 = 0 on z = 0 (3.1.40)

and
θ′4 + β2,0θ4 + β2,2θ2 + β2,4θ0 = 0 on z = −1. (3.1.41)

We find

θ4 =

" z
ψ3

H′

τ
dz dz +

σ2

τ

" z
θ2 dz dz +

σ4

τ

" z
θ0 dz dz +

" z
θ2 dz dz + c18z + c19. (3.1.42)

The boundary conditions lead to equations for σ4. For case I we find

σ4 = −

∫ 0

−1

U′

u0
(ψ̂3 − R2ψ̃3 + S ψ̆3) dz + γ4 − γ2. (3.1.43)

For case II there are two equations for σ4 which can be written as the matrix equation for w = (σ4, c11)T

Nw = q (3.1.44)

where the elements of the 2 × 2 matrix N and the elements of the 2 × 1 vector q are given in the Appendix. Solving
this matrix equation then yields

c11 =
N1,1q2 − N2,1q1

N2,2N1,1 − N2,1N1,2
(3.1.45)

and
σ4 =

q1

N1,1
−

N1,2

N1,1
(

N1,1q2 − N2,1q1

N2,2N1,1 − N2,1N1,2
). (3.1.46)

This calculation recovers Cox & Leibovich (1993) on setting U′ = D′ = H′ = 1 and recovers Hayes & Phillips
(2016) on setting S = 0.

3.1.2 Linear perturbation solution algorithm

At O(l2 j) for integer j ≥ 2 we have

u′′2 j =

j−1∑
m=0

u2 j−(2m+2)σ2m+2 + u2 j−2 + U′ψ2 j−1 (3.1.47)

with boundary conditions
u′2 j + γ2u2 j−4 = 0 on z = 0 (3.1.48)

and
u′2 j + γ4u2 j−4 = 0 on z = −1. (3.1.49)
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Consistent with our progression above we choose the constant of integration so that∫ 0

−1
u2 j dz = δ0, ju0 (3.1.50)

where δi, j is the Kronecker delta

δi, j =

{
1, i = j
0, i , j.

(3.1.51)

On solving for u2 j we find

u2 j =

" z j−1∑
m=0

u2 j−(2m+2)σ2m+2 dz dz +

" z
u2 j−2 dz dz

+

" z
U′ψ2 j−1 dz dz + c0, jz + c1, j. (3.1.52)

Also at O(l2 j) for integer j ≥ 2 we have

θ′′2 j =

j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
+ θ2 j−2 +

H′

τ
ψ2 j−1 (3.1.53)

with boundary conditions

θ′2 j +

j∑
m=0

β1,2mθ2 j−2m = 0 on z = 0 (3.1.54)

and

θ′2 j +

j∑
m=0

β2,2mθ2 j−2m = 0 on z = −1. (3.1.55)

On solving for θ2 j we find

θ2 j =

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz +

" z
θ2 j−2 dz dz

+

" z H′

τ
ψ2 j−1 dz dz + c2, jz + c3, j. (3.1.56)

For case II we have θ2 j = θ̃2 j + c3, jθ̂2 j where θ̃2 j and θ̂2 j are independent of c3, j.
At O(l2 j+1) we have

ψ′′′′2 j+1 = −

j∑
m=0

D′u2 j−2mR2m + S θ2 j +

j−1∑
m=0

ψ′′2 j−2m−1σ2m+2

−

j−2∑
m=0

ψ2 j−2m−3σ2m+2 + 2ψ′′2 j−1 − ψ2 j−3 (3.1.57)

with boundary conditions
ψ′′2 j+1 + γ1ψ

′
2 j−3 = ψ2 j+1 = 0 on z = 0 (3.1.58)

and
ψ′′2 j+1 + γ3ψ

′
2 j−3 = ψ2 j+1 = 0 on z = −1. (3.1.59)

On solving for ψ2 j+1 we find

ψ2 j+1 = −

& z j∑
m=0

D′u2 j−2mR2m dz dz dz dz +

" z j−1∑
m=0

ψ2 j−2m−1σ2m+2 dz dz

−

& z j−2∑
m=0

ψ2 j−2m−3σ2m+2 dz dz dz dz −
& z

ψ2 j−3 dz dz dz dz

+2
" z

ψ2 j−1 dz dz + S
& z

θ2 j dz dz dz dz + c4, j
z3

6
+ c5, j

z2

2
+ c6, jz + c7, j. (3.1.60)
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For case II we have ψ2 j+1 = ψ̂2 j+1 − R2 jψ̃2 j+1 + c3, jψ̆2 j+1 where ψ̂2 j+1, ψ̃2 j+1, and ψ̆2 j+1 are independent of R2 j and
c3, j. The boundary conditions lead to equations for σ2 j. For case I we find

σ2 j = −
γ2

u0
u2 j−4|z=0 +

γ4

u0
u2 j−4|z=−1 −

∫ 0

−1

U′

u0
ψ2 j−1 dz − δ0, j−1. (3.1.61)

For case II there are two equations for σ2 j which can be written as a matrix equation for w = (σ2 j, c3, j−1)T as

Nw = q (3.1.62)

where the elements of the 2 × 2 matrix N and the elements of the 2 × 1 vector q which here depend on j are given in
the Appendix. Solving this matrix equation then yields

c3, j−1 =
N1,1, jq2, j − N2,1, jq1, j

N2,2, jN1,1, j − N2,1, jN1,2, j
(3.1.63)

and

σ2 j =
q1, j

N1,1, j
−

N1,2, j

N1,1, j
(

N1,1, jq2, j − N2,1, jq1, j

N2,2, jN1,1, j − N2,1, jN1,2, j
). (3.1.64)

The above calculation can then be coded in Maple within a loop. This calculation recovers Hayes & Phillips (2016)
on setting S = 0.

3.2 Linear power series method
Consistent with the perturbation method above, we assume

ψ = iAeilyeσt, u = Beilyeσt, and θ = Ceilyeσt (3.2.1)

where A = A(z), B = B(z), and C = C(z). We substitute (3.2.1) into the linearised CL2 equations which leads to

A′′′′ − (2l2 + σ)A′′ + (l4 + l2σ)A + RD′Bl − S Cl = 0, (3.2.2)

B′′ − (l2 + σ)B − lAU′ = 0, (3.2.3)

and
τC′′ − (τl2 + σ)C − lAH′ = 0. (3.2.4)

Substituting (3.2.1) into the boundary conditions leads to

A′′ + γ1A′ = B′ + γ2B = C′ + β1C = A = 0 on z = 0 (3.2.5)

and
A′′ + γ3A′ = B′ + γ4B = C′ + β2C = A = 0 on z = −1. (3.2.6)

In the linear power series method we let

A =

4+M∑
m=0

amzm, B =

2+M∑
m=0

bmzm, and C =

2+M∑
m=0

cmzm (3.2.7)

and likewise we let

D′ =

N∑
n=0

Anzn, U′ =

N∑
n=0

Bnzn, and H′ =

N∑
n=0

Cnzn. (3.2.8)

We then substitute (3.2.7) and (3.2.8) into the differential equations (3.2.2), (3.2.3), (3.2.4) and boundary conditions
(3.2.5), (3.2.6). Equating like powers of z in accordance with Theorem A in the Appendix then leads to a set of
algebraic equations. These algebraic equations can then be solved numerically. To produce some of the results,
numerical methods were combined. All of our linear power series method codes used adaptive Newton’s method
for systems of algebraic equations. When the minimum turning point on the neutral curve was required the Golden
section algorithm was used. When finding the point where Re σ = 0 the bisection method was used. Since the
numerical methods used here are iterative, rapid convergence depended upon initial guesses and the perturbation
solution results shined light on appropriate initial guesses. We here set b0 = 1.
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3.3 Linear Galerkin method
As in the linear power series method, we seek solutions of the form

ψ = iAeilyeσt, u = Beilyeσt, and θ = Ceilyeσt (3.3.1)

which leads, as above, to (3.2.2) through (3.2.6). However, we here express A, B, and C in terms of orthogonal basis
functions premultiplied by coefficients

A =

M∑
m=0

amPm, B =

M−2∑
m=0

bmPm, and C =

M−2∑
m=0

cmPm. (3.3.2)

Here Pm = Pm(z) are shifted Legendre basis functions on z ∈ [−1, 0] defined by

Pm =
1

2mm!
{

dm

dxm [(x2 − 1)m]}|x=2z+1 (3.3.3)

and satisfy ∫ 0

−1
PiP j dz ∝ δi, j. (3.3.4)

We substitute expansions (3.3.1) into the linearised CL2 equations to obtain equations in z whose residuals r1, r2, r3
can be expanded as

r1 =

∞∑
i=0

a?i Pi, r2 =

∞∑
i=0

b?i Pi, r3 =

∞∑
i=0

c?i Pi (3.3.5)

where
a?i ∝ 〈r1, Pi〉, b?i ∝ 〈r2, Pi〉, c?i ∝ 〈r3, Pi〉. (3.3.6)

In the Galerkin method we require
〈r1, Pi〉 = 〈r2, Pi〉 = 〈r3, Pi〉 = 0. (3.3.7)

That is, we require ∫ 0

−1
r1P j dz =

∫ 0

−1
r2P j dz =

∫ 0

−1
r3P j dz = 0 (3.3.8)

for j = 0, 1, 2, . . . ,M − 4, which yield algebraic equations for the unknown coefficients. The basis functions do not
inherently satisfy the boundary conditions and extra equations are found by substituting into the boundary conditions.
This technique is known as the tau-method. The resulting algebraic equations are then treated much the same as in
the linear power series method. For consistency with the linear power series solutions we herein choose b0 so that
B|z=0 = 1.

4 Nonlinear methods

4.1 Nonlinear perturbation solution
We seek a nonlinear perturbation solution to the CL2 equations and mixed boundary conditions in the small l limit.
This calculation is an extension of the work of Hayes & Phillips (2017). Consistent with the linear perturbation
solution we write

Y = ly, T = l2t, ψ(y, z, t) = lΨ̄(Y, z,T ), u(y, z, t) = ū(Y, z,T ), θ(y, z, t) = Θ̄(Y, z,T ), (4.1.1)

and

γi = l4γi, βi =

∞∑
k=0

βi,2kl2k. (4.1.2)

Equation (2.1.1) then becomes

l3
∂

∂T
[l2
∂2Ψ̄

∂Y2 +
∂2Ψ̄

∂z2 ]

−l[l4
∂4Ψ̄

∂Y4 + 2l2
∂4Ψ̄

∂Y2∂z2 +
∂4Ψ̄

∂z4 ]

= RD′
∂ū

∂Y
l − S

∂Θ̄

∂Y
l + l3

∂Ψ̄

∂Y
∂

∂z
[l2
∂2Ψ̄

∂Y2 +
∂2Ψ̄

∂z2 ]

−l3
∂Ψ̄

∂z
∂

∂Y
[l2
∂2Ψ̄

∂Y2 +
∂2Ψ̄

∂z2 ] (4.1.3)
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while equation (2.1.2) becomes

l2
∂ū

∂T
− l2

∂2ū

∂Y2 −
∂2ū

∂z2 = l2
∂Ψ̄

∂Y
U′ + l2

∂Ψ̄

∂Y
∂ū

∂z
− l2

∂Ψ̄

∂z
∂ū

∂Y
(4.1.4)

and equation (2.1.3) becomes

l2
∂Θ̄

∂T
− τl2

∂2Θ̄

∂Y2 − τ
∂2Θ̄

∂z2 = l2
∂Ψ̄

∂Y
H′ + l2

∂Ψ̄

∂Y
∂Θ̄

∂z
− l2

∂Ψ̄

∂z
∂Θ̄

∂Y
. (4.1.5)

The boundary conditions become

l
∂2Ψ̄

∂z2 + l5γ1
∂Ψ̄

∂z
=
∂ū

∂z
+ l4γ2ū =

∂Θ̄

∂z
+

∞∑
m=0

β1,2ml2mΘ̄ = lΨ̄ = 0 on z = 0, (4.1.6)

l
∂2Ψ̄

∂z2 + l5γ3
∂Ψ̄

∂z
=
∂ū

∂z
+ l4γ4ū =

∂Θ̄

∂z
+

∞∑
m=0

β2,2ml2mΘ̄ = lΨ̄ = 0 on z = −1. (4.1.7)

We let

Ψ̄ =

∞∑
k=0

Ψ2kl2k, ū =

∞∑
k=0

u2kl2k, Θ̄ =

∞∑
k=0

Θ2kl2k, (4.1.8)

and

R =

∞∑
k=0

R2kl2k (4.1.9)

where Ψ2k, u2k, and Θ2k, are functions of Y , z, and T . These expansions are consistent with those from the linear
perturbation solution. We substitute (4.1.8) and (4.1.9) into (4.1.3 – 4.1.7) and equate like powers of l using the
Cauchy product formula.
At O(l2k) we have

∂

∂T
u2(k−1) −

∂2

∂Y2 u2(k−1) −
∂2

∂z2 u2k (4.1.10)

=
∂

∂Y
Ψ2(k−1)U′ +

k−1∑
m=0

∂

∂Y
Ψ2(k−m−1)

∂

∂z
u2m −

k−1∑
m=0

∂

∂z
Ψ2(k−m−1)

∂

∂Y
u2m

with boundary conditions
∂

∂z
u2k + γ2u2(k−2) = 0 on z = 0, (4.1.11)

∂

∂z
u2k + γ4u2(k−2) = 0 on z = −1, (4.1.12)

and

∂

∂T
Θ2(k−1) − τ

∂2

∂Y2 Θ2(k−1) − τ
∂2

∂z2 Θ2k (4.1.13)

=
∂

∂Y
Ψ2(k−1)H′ +

k−1∑
m=0

∂

∂Y
Ψ2(k−m−1)

∂

∂z
Θ2m −

k−1∑
m=0

∂

∂z
Ψ2(k−m−1)

∂

∂Y
Θ2m

with boundary conditions
∂

∂z
Θ2k +

k∑
m=0

β1,2mΘ2k−2m = 0 on z = 0, (4.1.14)

∂

∂z
Θ2k +

k∑
m=0

β2,2mΘ2k−2m = 0 on z = −1. (4.1.15)
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At O(l2k+1) we have

∂

∂T
∂2

∂Y2 Ψ2(k−2) +
∂

∂T
∂2

∂z2 Ψ2(k−1)

−
∂4

∂Y4 Ψ2(k−2) − 2
∂4

∂Y2∂z2 Ψ2(k−1) −
∂4

∂z4 Ψ2k

=

k∑
m=0

R2(k−m)D′
∂

∂Y
u2m − S

∂

∂Y
Θ2k +

k−2∑
m=0

∂

∂Y
Ψ2(k−m−2)

∂

∂z
∂2

∂Y2 Ψ2m

+

k−1∑
m=0

∂

∂Y
Ψ2(k−m−1)

∂3

∂z3 Ψ2m −

k−2∑
m=0

∂

∂z
Ψ2(k−m−2)

∂3

∂Y3 Ψ2m

−

k−1∑
m=0

∂

∂z
Ψ2(k−m−1)

∂

∂Y
∂2

∂z2 Ψ2m (4.1.16)

with boundary conditions
∂2

∂z2 Ψ2k + γ1
∂

∂z
Ψ2(k−2) = Ψ2k = 0 on z = 0, (4.1.17)

∂2

∂z2 Ψ2k + γ3
∂

∂z
Ψ2(k−2) = Ψ2k = 0 on z = −1. (4.1.18)

The equations above are to be solved for every integer k > 0. As in the linear perturbation solution, the nonlinear
perturbation solution separates into two separate cases, that is case I: −β1,0 + β2,0β1,0 + β2,0 , 0 and case II: −β1,0 +

β2,0β1,0 + β2,0 = 0.

4.1.1 The first few orders

At O(l0) we have
∂2u0

∂z2 = 0 (4.1.19)

with boundary conditions
∂u0

∂z
= 0 on z = 0,−1. (4.1.20)

The solution to this problem is
u0 = u0(Y,T ) (4.1.21)

where u0(Y,T ) is arbitrary.
Also at O(l0) we have

τ
∂2Θ0

∂z2 = 0 (4.1.22)

with boundary conditions
∂Θ0

∂z
+ β1,0Θ0 = 0 on z = 0, (4.1.23)

∂Θ0

∂z
+ β2,0Θ0 = 0 on z = −1. (4.1.24)

For case I the solution to this problem is
Θ0 = c3(Y,T ) = 0. (4.1.25)

For case II the solution to this problem is

Θ0 = c3(Y,T )(−β1,0z + 1) = c3(Y,T )Θ̂0 (4.1.26)

where c3(Y,T ) is arbitrary.
At O(l1) we have

∂4Ψ0

∂z4 = −R0D′
∂u0

∂Y
+ S

∂Θ0

∂Y
(4.1.27)

with boundary conditions
∂2Ψ0

∂z2 = Ψ0 = 0 on z = 0,−1. (4.1.28)
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The solution to this problem can be found to be

Ψ0 = −R0
∂u0

∂Y

& z
D′ dz dz dz dz + S

& z ∂Θ0

∂Y
dz dz dz dz

+c4(Y,T )
z3

6
+ c5(Y,T )

z2

2
+ c6(Y,T )z + c7(Y,T )

= −R0
∂u0

∂Y
Ψ̃0 + S

∂c3(Y,T )
∂Y

Ψ̂0 (4.1.29)

where Ψ̃0, Ψ̂0 are independent of R0, u0, S , and c3(Y,T ). Note that Ψ̃0 = ψ̃1 and Ψ̂0 = ψ̂1 where ψ̃1 and ψ̂1 are from
the linear problem (3.1.17).
At O(l2) we have

∂2u2

∂z2 =
∂u0

∂T
−
∂2u0

∂Y2 −
∂Ψ0

∂Y
U′ +

∂Ψ0

∂z
∂u0

∂Y
−
∂Ψ0

∂Y
∂u0

∂z
(4.1.30)

with boundary conditions
∂u2

∂z
= 0 on z = 0,−1. (4.1.31)

We find

u2 = −

" z ∂Ψ0

∂Y
U′ dz dz +

" z ∂Ψ0

∂z
∂u0

∂Y
dz dz

+(
∂u0

∂T
−
∂2u0

∂Y2 )
z2

2
+ c8(Y,T )z + c9(Y,T ) = ũ2 + û2c9(Y,T ) (4.1.32)

where c9(Y,T ) is an arbitrary function of Y and T . Here ũ2 and û2 are independent of c9(Y,T ).
Also at O(l2) we have

τ
∂2Θ2

∂z2 =
∂Θ0

∂T
− τ

∂2Θ0

∂Y2 −
∂Ψ0

∂Y
H′ +

∂Ψ0

∂z
∂Θ0

∂Y
−
∂Ψ0

∂Y
∂Θ0

∂z
(4.1.33)

with boundary conditions
∂Θ2

∂z
+ β1,0Θ2 + β1,2Θ0 = 0 on z = 0, (4.1.34)

∂Θ2

∂z
+ β2,0Θ2 + β2,2Θ0 = 0 on z = −1. (4.1.35)

We find

Θ2 =

" z ∂Θ0

∂T
1
τ

dz dz −
" z ∂2Θ0

∂Y2 dz dz −
" z ∂Ψ0

∂Y
H′

τ
dz dz −

" z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz dz

+

" z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz dz + c10(Y,T )z + c11(Y,T ). (4.1.36)

For case II we have Θ2 = Θ̂2c11(Y,T ) + Θ̃2 where Θ̂2 and Θ̃2 are independent of c11(Y,T ). The boundary conditions
lead to further equations which differ for the separate cases. For case I we find

∂u0

∂T
−
∂2u0

∂Y2 =

∫ 0

−1

∂Ψ0

∂Y
U′ dz. (4.1.37)

If we now use (4.1.29) for Ψ0 we obtain an equation for u0

∂u0

∂T
−
∂2u0

∂Y2

(
1 − R0

∫ 0

−1
ψ̃1U′ dz

)
= 0 (4.1.38)

which on making use of equation (3.1.26) becomes

∂u0

∂T
+ σ2

∂2u0

∂Y2 = 0. (4.1.39)

A periodic in y Fourier cosine solution to equation (4.1.39) is (Hayes & Phillips, 2017)

u0(Y,T ) =

∞∑
p=0

hpeσ2 p2T cos pY (4.1.40)
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where hp are constant coefficients. For case II, we have two coupled nonlinear partial differential equations for u0
and c3(Y,T ) as (4.1.37) and a further lengthy equation in the Appendix. In special cases such as βi,2m = 0 for m , 1
these partial differential equations are then linear and exact solutions can be found. Moreover when βi,2m = 0 for
m , 1 there are two equations in terms of u0 and c3(Y,T ) as

∂u0

∂T
−
∂2u0

∂Y2 =

∫ 0

−1
(−R0

∂2u0

∂Y2 Ψ̃0 + S
∂2c3

∂Y2 Ψ̂0)U′ dz, (4.1.41)

1
τ

∂c3

∂T
−
∂2c3

∂Y2 =

∫ 0

−1
(−R0

∂2u0

∂Y2 Ψ̃0 + S
∂2c3

∂Y2 Ψ̂0)
H′

τ
dz − β1,2c3 + β2,2c3. (4.1.42)

We assume

u0 =

∞∑
p=0

fp(T ) cos pY, c3 =

∞∑
p=0

gp(T ) cos pY. (4.1.43)

Substituting into the two coupled partial differential equations for u0 and c3 and equating like harmonics yields

ḟp(T ) + ap fp(T ) + bpgp(T ) = 0, (4.1.44)

ġp(T ) + cp fp(T ) + dpgp(T ) = 0 (4.1.45)

where the constants ap, bp, cp, dp are given in the Appendix. If bp , 0 we find

gp(T ) =
− ḟp(T ) − ap fp(T )

bp
, (4.1.46)

f̈p(T ) + (ap + dp) ḟp(T ) + (dpap − cpbp) fp(T ) = 0. (4.1.47)

The latter is a simple second order differential equation. We will omit the expressions for fp(T ), gp(T ). Note for this
case that (ap + dp)/τ = b and (dpap − cpbp)/τ = c when p = 1 where b and c appear in (3.1.29).
At O(l3) we have

∂4Ψ2

∂z4 =
∂3Ψ0

∂T∂z2 − 2
∂4Ψ0

∂Y2∂z2 − R2D′
∂u0

∂Y
− R0D′

∂u2

∂Y
+ S

∂Θ2

∂Y

−
∂Ψ0

∂Y
∂3Ψ0

∂z3 +
∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 (4.1.48)

with boundary conditions
∂2Ψ2

∂z2 = Ψ2 = 0 on z = 0,−1. (4.1.49)

The solution to this problem can be found to be

Ψ2 =

" z ∂Ψ0

∂T
dz dz −

" z
2
∂2Ψ0

∂Y2 dz dz −
& z

D′R2
∂u0

∂Y
dz dz dz dz

−

& z
D′R0

∂u2

∂Y
dz dz dz dz + S

& z ∂Θ2

∂Y
dz dz dz dz

+

& z ∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 dz dz dz dz −
& z ∂Ψ0

∂Y
∂3Ψ0

∂z3 dz dz dz dz

+c12(Y,T )
z3

6
+ c13(Y,T )

z2

2
+ c14(Y,T )z + c15(Y,T ). (4.1.50)

For case I we have Ψ2 = Ψ̂2 − R2Ψ̃2 + S Ψ̆2 where Ψ̂2, Ψ̃2, and Ψ̆2 are each independent of R2 and S . For case II we
have Ψ2 = Ψ̆2 + Ψ̃2

∂c9(Y,T )
∂Y + Ψ̂2

∂c11(Y,T )
∂Y where Ψ̂2, Ψ̃2, and Ψ̆2 are each independent of c9(Y,T ) and c11(Y,T ).

At O(l4) we have

∂2u4

∂z2 =
∂u2

∂T
−
∂2u2

∂Y2 −
∂Ψ2

∂Y
U′

−
∂Ψ2

∂Y
∂u0

∂z
−
∂Ψ0

∂Y
∂u2

∂z
+
∂Ψ2

∂z
∂u0

∂Y
+
∂Ψ0

∂z
∂u2

∂Y
(4.1.51)
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with boundary conditions as
∂u4

∂z
+ γ2u0 = 0 on z = 0, (4.1.52)

∂u4

∂z
+ γ4u0 = 0 on z = −1. (4.1.53)

We find

u4 =

" z ∂u2

∂T
dz dz −

" z ∂2u2

∂Y2 dz dz −
" z ∂Ψ2

∂Y
U′ dz dz

−

" z ∂Ψ0

∂Y
∂u2

∂z
dz dz +

" z ∂Ψ2

∂z
∂u0

∂Y
dz dz +

" z ∂Ψ0

∂z
∂u2

∂Y
dz dz

+c16(Y,T )z + c17(Y,T ) (4.1.54)

where c17(Y,T ) is arbitrary.
Also at O(l4) we have

τ
∂2Θ4

∂z2 =
∂Θ2

∂T
− τ

∂2Θ2

∂Y2 −
∂Ψ2

∂Y
H′

−
∂Ψ2

∂Y
∂Θ0

∂z
−
∂Ψ0

∂Y
∂Θ2

∂z
+
∂Ψ2

∂z
∂Θ0

∂Y
+
∂Ψ0

∂z
∂Θ2

∂Y
(4.1.55)

with boundary conditions as
∂Θ4

∂z
+ β1,0Θ4 + β1,2Θ2 + β1,4Θ0 = 0 on z = 0, (4.1.56)

∂Θ4

∂z
+ β2,0Θ4 + β2,2Θ2 + β2,4Θ0 = 0 on z = −1. (4.1.57)

We find

Θ4 =

" z 1
τ

∂Θ2

∂T
dz dz −

" z ∂2Θ2

∂Y2 dz dz −
" z ∂Ψ2

∂Y
H′

τ
dz dz

−

" z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz dz −

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz +

" z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz dz

+

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz + c18(Y,T )z + c19(Y,T ). (4.1.58)

The boundary conditions lead to equations for c9(Y,T ) and c11(Y,T ). For case I we have a single partial differential
equation for c9(Y,T ) appearing as

−

∫ 0

−1

∂u2

∂T
dz +

∫ 0

−1

∂2u2

∂Y2 dz +

∫ 0

−1

∂Ψ2

∂Y
U′ dz

+

∫ 0

−1

∂Ψ0

∂Y
∂u2

∂z
dz −

∫ 0

−1

∂Ψ0

∂z
∂u2

∂Y
dz − γ2u0 + γ4u0 = 0. (4.1.59)

For case II we have two coupled partial differential equations in terms of c9(Y,T ) and c11(Y,T ) as (4.1.59) and a
further very lengthy equation in the Appendix. At higher orders the complexity of the calculation becomes unwieldy.
This calculation recovers Hayes & Phillips (2017) on setting S = 0. For time varying solutions it may be more
convenient to use numerical methods such as those in §4.2, §4.3.

4.1.2 Nonlinear perturbation solution algorithm

In light of the nonlinear perturbation solution above we let

Ψ̄ =

L∑
m=0

∞∑
k=0

Ψ2k,m sin(mY)l2k, ū =

L∑
m=0

∞∑
k=0

u2k,m cos(mY)l2k, Θ̄ =

L∑
m=0

∞∑
k=0

Θ2k,m cos(mY)l2k (4.1.60)

with

R =

∞∑
k=0

R2kl2k, γi = l4γi, βi =

∞∑
k=0

βi,2kl2k (4.1.61)
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where Ψ2k,m, u2k,m, and Θ2k,m are functions of z and T . We substitute (4.1.60), (4.1.61) into equations (4.1.3) to
(4.1.7) and discard harmonics in Y in the residuals that are of higher order than in the expansion of the solution in
accordance with Theorem B in the Appendix. We then equate like harmonics in Y and like powers of l and then solve
the resulting equations for Ψ2k,m, u2k,m, and Θ2k,m at each order in l. With the nonlinear perturbation solution we are
particularly interested in the nonlinear steady states, for which we set ∂/∂T = 0. In this case, arbitrary constants of
integration will appear in the nonlinear perturbation solution. We choose them so that ui, j|z=0 = δi,0δ j,1. Note that
while this choice is dissimilar to that in the linear perturbation solutions it is similar to that in the linear numerical
solutions. We found that the nonlinear steady states appear to require restrictions on the boundary conditions at O(l6)
such as γ3 = γ4 = 0. This may be related to observations where LC tend to curl up near the bottom of the mixed
layer. This calculation recovers Hayes & Phillips (2017) on setting S = 0.

4.2 Nonlinear power series method
Here we look for solutions of the form

ψ =

L∑
k=0

4+M∑
m=0

am,k sin(kly)zm, u =

L∑
k=0

2+M∑
m=0

bm,k cos(kly)zm, θ =

L∑
k=0

2+M∑
m=0

cm,k cos(kly)zm (4.2.1)

where the coefficients am,k, bm,k, and cm,k are unknown functions of t. Here ψ is a Fourier sine series in y while u
and θ are both Fourier cosine series in y; each are Maclaurin series in z. Substituting into the governing equations
and equating the appropriate like coefficients in accordance with Theorem A and Theorem B leads to a system of
nonlinear ordinary differential equations for am,k, bm,k, and cm,k which can be numerically solved for by using methods
such as the Runge–Kutta method. In the case for which dam,k/dt = dbm,k/dt = dcm,k/dt = 0 this leads to a system of
algebraic equations. These algebraic equations are treated much the same as in the linear power series method. We
here set b0,1 = 1 for consistency with the nonlinear perturbation solutions.

4.3 Nonlinear Galerkin method
In this method we look for solutions of the form

ψ =

L∑
k=0

M∑
m=0

am,kPm sin(kly), u =

L∑
k=0

M−2∑
m=0

bm,kPm cos(kly), θ =

L∑
k=0

M−2∑
m=0

cm,kPm cos(kly) (4.3.1)

where am,k, bm,k, and cm,k are unknown functions of t. Here ψ is a Fourier sine series in y while u and θ are Fourier
cosine series’ in y. Different are the basis functions. Pm(z) are shifted Legendre basis functions on z ∈ [−1, 0]. We
substitute these expansions into the CL2 equations, discard the higher order harmonics, and collect like trigonomet-
rical terms in accordance with Theorem B to obtain a set of equations in z and t whose residuals we call r1,i(z, t),
r2,i(z, t), and r3,i(z, t). In the Galerkin method we require∫ 0

−1
r1,iP j dz =

∫ 0

−1
r2,iP j dz =

∫ 0

−1
r3,iP j dz = 0 (4.3.2)

for i = 0, 1, . . . , L, and j = 0, 1, . . . ,M−4. We obtain the further equations required to close the system by substitution
of (4.3.1) into the boundary conditions. This results in a system of nonlinear ordinary differential equations which
can be solved numerically by using methods such as the Runge–Kutta method. For the case of nonlinear steady states
they reduce to a set of algebraic equations. Once again, these algebraic equations are treated much the same as in the
linear power series method. Herein we choose b0,1 so that the coefficient of cos(ly) in u|z=0 is unity for consistency
with the nonlinear perturbation solutions and nonlinear power series solutions.

5 Results
In this section we are interested in how the parameters and nonlinearities affect the CL2 instability to LC over a
restricted parameter range. We take D′,U′,H′ to be constants. For case I we let β1, j = β2, j = 0 for j > 0 and for case
II we let β1, j = β2, j = 0 for j , 2. Herein ε = 0 is for the linear case and ε = 1 is for its nonlinear counterpart.
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5.1 Growth rate
We consider first the growth rate σ. For case I we find that σ is real valued and for case II σ is complex valued where
we see that in accord with (3.1.29) there are two solutions. When Re σ < 0 the motion is stable and when Re σ > 0
the motion is unstable. When σ = 0 there is neutral instability. The instability is oscillatory when Im σ , 0. The
growth rate σ from the linear perturbation solution to O(l4) for case I where D′,U′,H′ are constants is

σ =
1

79833600
(−530R2D′2U′2 − 67320RD′U′ −

691((β2 −
2077
691 )β1 + 2077

691 β2 −
5544
691 )RD′U′S H′

((β2 − 1)β1 + β2)τ
)l4

+(−1 +
RD′U′

120
)l2 + γ4 − γ2 (5.1.1)

and the growth rate σ from the linear perturbation solution to O(l2) for case II where D′,U′,H′ are constants is

σ =
1
2

(
RD′U′

120
− (β1,2 − β2,2 + 1)τ −

S H′

120
− 1 (5.1.2)

±

√
(
RD′U′

120
)2 − 2

RD′U′

120
(
S H′

120
− τ(β1,2 − β2,2 + 1) + 1) + (

S H′

120
+ τ(β1,2 − β2,2 + 1) − 1)2)l2.

There can be uncertainty in deciding when case I or case II is appropriate. What happens is either the case I result or
the case II result will converge or both case I and case II result will converge each for separate parts of the domain
of discourse, and the appropriate case is that which converges. This is the competition between case I and case II as
mentioned in Cox & Leibovich (1993). A good indication of whether the instability is case I or case II is whenever
σ4 > σ2 for case I then σ for case I is likely to diverge and so the appropriate instability is then case II. Plots of σ
which do illustrate this competition are shown in Figures 1, 2. Plots of Re σ vs R and Im σ vs R for case II are

Figure 1: Plots of linear growth rate (left) Re σ vs R and (right) Im σ vs R for β1 = 1/100. Here D′ = U′ =

H′ = 1, S = 100, l = 1/10, γ1 = 1/20000, γ2 = 1/10000, γ3 = γ4 = 0, β2 = 0, and τ = 1/10.

Figure 2: Plots of linear growth rate σ vs R for (left) β1 = 1/10 and (right) β1 = 1. Here D′ = U′ = H′ = 1,
S = 100, l = 1/10, γ1 = 1/20000, γ2 = 1/10000, γ3 = γ4 = 0, β2 = 0, and τ = 1/10.

shown in Figure 1 and plots of σ vs R for case I and case II are shown in Figure 2. In these plots we see that the
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instability changes from case II to case I as β1 increases. We also see that the fluid motion switches from stable to
unstable as R increases and so here increasing R is destabilising. It is then quite obvious from (5.1.1) and (5.1.2)
how the parameters would affect σ in the small l limit where the expressions are valid. For example, increasing D′

or U′ is destabilising whenever increasing R is destabilising, and increasing H′ is stabilising whenever increasing
S is stabilising. For the boundary conditions of Cox & Leibovich (1993) we see in case I that increasing R or τ is
destabilising and increasing S is stabilising. We also see in case I that increasing γ2 − γ4 is stabilising. For case II
with the boundary conditions of Cox & Leibovich (1993) and on assuming σ remains complex we see that increasing
R, D′, or U′ is destabilising and increasing S , H′, or τ is stabilising.

5.2 Neutral instability
For case II, we see from (3.1.29) that neutral instability for which σ = 0 is seldom possible. Linear neutral curves
and nonlinear steady states do exist for case I. From the case I linear and nonlinear perturbation solution for neutral
instability at O(l2) we have

R0 =
1∫ 0

−1 ψ̃1U′ dz
. (5.2.1)

From the case I linear perturbation solution for neutral instability at O(l4) we have

R2 =

∫ 0
−1(ψ̂3 + S ψ̆3)U′ dz + u0(γ2 − γ4)∫ 0

−1 ψ̃3U′ dz
= R̃2 + R̂2(γ2 − γ4) + R̆2S . (5.2.2)

From the case I nonlinear perturbation solution for neutral instability at O(l4) we have

R2 = (S (
∫ 0

−1
U′
∂Ψ̆2

∂Y
dz −

∫ 0

−1

∂Ψ̆2

∂z
∂u0

∂Y
dz) − γ2u0 + γ4u0 +

∫ 0

−1

∂2u2

∂Y2 dz

+

∫ 0

−1

∂Ψ̂2

∂Y
U′ dz +

∫ 0

−1

∂Ψ0

∂Y
∂u2

∂z
dz −

∫ 0

−1

∂Ψ̂2

∂z
∂u0

∂Y
dz −

∫ 0

−1

∂Ψ0

∂z
∂u2

∂Y
dz)

/(
∫ 0

−1
U′
∂Ψ̃2

∂Y
dz −

∫ 0

−1

∂Ψ̃2

∂z
∂u0

∂Y
dz) = R̃2 + R̂2(γ2 − γ4) + R̆2S . (5.2.3)

In these equations R̃2, R̂2, and R̆2 are each independent of γi and S . Also note that nonlinear R2 is here projected onto
a mode in Y . We here choose L = 1 in the nonlinear expansions. For both the case I linear and nonlinear problems
the expression for R appears as

R = R0 + (R̃2 + R̆2S )l2 +
R̂2

l2
(γ2 − γ4) + . . . . (5.2.4)

The neutral curve from the perturbation solution to O(l4) for case I where D′,U′,H′ are constants is

R =
5455
231

l2

D′U′
+

691
5544

((β2 −
2077
691 )β1 + 2077

691 β2 −
5544
691 )S H′l2

τD′U′((β2 − 1)β1 + β2)
+

1550
21

εl2

D′U′3
+

120
D′U′

+
120(γ2 − γ4)

D′U′l2
. (5.2.5)

Here it is evident that
R̃2 =

5455
231

1
D′U′

+
1550
21

ε

D′U′3
, (5.2.6)

R̆2 =
691
5544

((β2 −
2077
691 )β1 + 2077

691 β2 −
5544
691 )H′

τD′U′((β2 − 1)β1 + β2)
, (5.2.7)

R̂2 =
120

D′U′
= R0. (5.2.8)

We plot linear neutral curves and nonlinear steady states as R vs l in the small l limit in Figure 3. For this case,
since the fluid motion switches from stable to unstable as σ passes through zero with increasing R, any point above
the neutral curve is unstable, while any point below the neutral curve is stable. We see that nonlinearities are small
when l � 1 similarly to as shown in Hayes & Phillips (2017) for the case S = 0. In the small l limit we see that
nonlinearities have a stabilising effect. It is also quite obvious from (5.2.5) how the parameters and nonlinearities
would affect neutral instability in the small l limit where this expression is valid. From (5.2.5) we see for the boundary
conditions of Cox & Leibovich (1993) that increasing S is stabilising. This is consistent with Langmuir (1938) in
that temperature is thought to be secondary to the formation of LC. Increasing H′ or decreasing τ has a similar effect
as increasing S . Also we see from (5.2.5) that nonlinearities are stabilising. When using the boundary conditions of
Cox & Leibovich (1993) we find for the nonlinear problem that increasing D′ or U′ is destabilising and increasing
U′ is more effective in destabilising the flow than increasing D′. The effect of increasing γ2 − γ4 is stabilising.
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Figure 3: (left) Plots of neutral curve R vs l, linear (top) and nonlinear (bottom). (right) Plot of d = RL−RNL

vs l. Here D′ = U′ = H′ = 1, S = 100, γ1 = 1/20000, γ2 = 1/10000, γ3 = γ4 = 0, β1 = 1, β2 = 0, and
τ = 1/10.

5.3 Onset
Onset occurs at the minimum point on the neutral curve R = R(l), which we denote by (lc,Rc) where lc and Rc are
called the critical wavenumber and critical Rayleigh number respectively. From the perturbation solutions onset is
found by solving dR

dl = 0. We find from the O(l4) perturbation solutions for case I that

lc =

(
(γ2 − γ4)R̂2

R̃2 + R̆2S

) 1
4

(5.3.1)

and thus that
Rc = R0 + 2((γ2 − γ4)R̂2)1/2(R̃2 + R̆2S )1/2 = R0 + 2l2c(R̃2 + R̆2S ). (5.3.2)

Here nonlinear R2 is to be projected onto its most dangerous mode in Y . The critical wavenumber lc from the
perturbation solution to O(l4) for case I where D′,U′,H′ are constants is

lc =

 (γ2 − γ4) 120
D′U′

5455
231

1
D′U′ + 1550

21
ε

D′U′3 + 691
5544

((β2−
2077
691 )β1+ 2077

691 β2−
5544
691 )H′

τD′U′((β2−1)β1+β2) S


1
4

(5.3.3)

and the corresponding critical Rayleigh number Rc from the perturbation solution to O(l4) for case I where D′,U′,H′

are constants is

Rc =
120

D′U′
+2((γ2−γ4)

120
D′U′

)1/2(
5455
231

1
D′U′

+
1550
21

ε

D′U′3
+

691
5544

((β2 −
2077
691 )β1 + 2077

691 β2 −
5544
691 )H′

τD′U′((β2 − 1)β1 + β2)
S )1/2. (5.3.4)

It is here quite obvious from (5.3.3) and (5.3.4) how the parameters and nonlinearities would affect lc and Rc in the
small l limit where these expression are valid. From (5.3.3) and (5.3.4) we see for the boundary conditions of Cox &
Leibovich (1993) that increasing S reduces lc and increases Rc. Here we also see that increasing H′ or decreasing τ
has a similar effect as increasing S . Also we see that nonlinearities reduce the value of lc and increase Rc. Increasing
D′ has no effect on lc. Increasing U′ only has an effect on lc in the presence of nonlinearities. When using the
boundary conditions of Cox & Leibovich (1993) we find for the nonlinear problem that increasing U′ increases lc,
and increasing D′ or U′ decreases Rc where increasing U′ is more effective in decreasing Rc than increasing D′. The
effect of increasing γ2 − γ4 is to increase the value of lc and increase the value of Rc, and we see that γ2 = γ4 = 0
leads to unphysical results. Another peculiarity is that depending on the choice of β1, β2, and different from Cox &
Leibovich (1993), we see that there can be a singularity of lc when S increases. In Figure 4 are plots of lc vs S and Rc

vs S for the linear and nonlinear problems. In Figure 4 the effect of increasing S is to lower the value of lc and increase
the value of Rc. In Figure 5 are plots of the ratio of linear to nonlinear critical wavenumber κ = lc,linear/lc,nonlinear vs
S and plots of the ratio of linear to nonlinear critical Rayleigh number ρ = Rc,linear/Rc,nonlinear vs S for parameters
consistent with Figure 4. In Figure 5 we see that the nonlinearities appear to diminish as S increases. Figure 6 shows
how lc and Rc varies with β1 for both the linear and nonlinear cases with S = 100 and other parameters consistent
with Figure 4. In Figure 6 we see that lc increases with increasing β1 and Rc decreases with increasing β1. In Figure
7 are plots of the ratio of linear to nonlinear critical wavenumber κ = lc,linear/lc,nonlinear vs β1 and plots of the ratio of
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Figure 4: (left) Plots of lc vs S , linear (top) and nonlinear (bottom). (right) Plots of Rc vs S , linear (bottom)
and nonlinear (top). Here D′ = U′ = H′ = 1, γ1 = 1/20000, γ2 = 1/10000, γ3 = γ4 = 0, β1 = 1, β2 = 0,
and τ = 1/10.

Figure 5: (left) Plots of κ vs S . (right) Plots of ρ vs S . Here D′ = U′ = H′ = 1, γ1 = 1/20000,
γ2 = 1/10000, γ3 = γ4 = 0, β1 = 1, β2 = 0, and τ = 1/10.

Figure 6: (left) Plots of lc vs β1, linear (top) and nonlinear (bottom). (right) Plots of Rc vs β1, linear (bottom)
and nonlinear (top). Here D′ = U′ = H′ = 1, γ1 = 1/20000, γ2 = 1/10000, γ3 = γ4 = 0, S = 100, β2 = 0,
and τ = 1/10.
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Figure 7: (left) Plots of κ vs β1. (right) Plots of ρ vs β1. Here D′ = U′ = H′ = 1, γ1 = 1/20000,
γ2 = 1/10000, γ3 = γ4 = 0, S ∈ {0, 100, 200}, β2 = 0, and τ = 1/10.

linear to nonlinear critical Rayleigh number ρ = Rc,linear/Rc,nonlinear vs β1 for S ∈ {0, 100, 200} and other parameters
consistent with Figure 4. In Figure 7 the κ curves decrease for increasing S and the ρ curves increase for increasing
S . We see for S = 0 that κ and ρ are independent of β1 as expected. For S = 100 and S = 200 we see that κ increases
with increasing β1 and ρ decreases with increasing β1. Also, the nonlinearities appear to be small for small β1. For
S = 0 we find that κ ≈ 1.425 at O(l4) which is consistent with the value reported in Hayes & Phillips (2017). As
shown in Figure 7 this is κ ≈ 1.433 at O(l6). In Figures 4 to 7 we see that nonlinearities reduce the value of lc and
increase Rc.

5.4 Figure 3 of Cox & Leibovich (1993) revisited
We are interested in the nonlinear counterpart to Figure 3 of Cox & Leibovich (1993). Figure 8 (left) is a more
complete version of Figure 3 of Cox & Leibovich (1993). The dashed curves are for Re σ = 0 and the solid curves
are for σ = 0. The solid curves decrease with increasing βi and the dashed curves increase with increasing βi. The
nonlinear version of Figure 3 of Cox & Leibovich (1993) is plotted for the corresponding nonlinear steady states
only. These results were obtained by using the Galerkin method. We see in Figure 8 (left) that each of the neutral

Figure 8: (left) Figure 3 of Cox & Leibovich (1993). (right) nonlinear steady states R vs l. Here D′ = U′ =

H′ = 1, S = 100, γ1 = 1/40000, γ2 = −γ3 = −γ4 = 1/20000, β1 = −β2 ∈ [1/20000, 1/2], and τ = 10/67.

curves approach a constant function. In Figure 8 (right) we see that the nonlinearities are stabilising and the steady
states appear to approach a non constant function. Also quite interesting in Figure 8 is that there appears to be both
maximum and minimum turning point values of R for which neutral instability occurs. Our expression (5.2.5) for the
steady states at O(l4) does not capture the whole of the steady state curves in Figure 8 very well even so for the linear
case. The linear and nonlinear results in this example extend out of the range where the simple expressions from the
small-l asymptotic approximation are valid.
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6 Discussion
The methods used in this paper are very useful for the LC problem. The perturbation method was particularly useful
in that the effect of altering parameters and of nonlinearities was evident in the small l limit by inspecting the simple
expressions found from the perturbation solutions. Note that when γi = O(1) our perturbation solutions would
require a more direct perturbation expansion. For example, in the linear perturbation solution σ would then need to
have an O(1) term σ0. This then leads to a messy calculation, especially for its nonlinear counterpart. The preferable
strategy may then be to use the numerical methods such as the nonlinear power series and nonlinear Galerkin methods
presented in this paper. I have also constructed animations of LC varying with time. In the nonlinear realm there is
flexibility for animations of LC to show LC spacing changing with time due to the fact that the number of modes in
y can increase as time increases. This is to be explored in further work on LC.

7 Appendix

7.1 Linear perturbation solution details
From ψ1

c4 = −R0u0

" z
D′ dz dz|z=−1 + S

" z
θ0 dz dz|z=−1 + c5,

c5 = R0u0

" z
D′ dz dz|z=0 − S

" z
θ0 dz dz|z=0,

c6 = −R0u0

& z
D′ dz dz dz dz|z=−1 + S

& z
θ0 dz dz dz dz|z=−1 −

1
6

c4 +
1
2

c5 + c7,

c7 = R0u0

& z
D′ dz dz dz dz|z=0 − S

& z
θ0 dz dz dz dz|z=0.

From u2

c8 = −

∫ z
U′ψ1 dz|z=0,

c9 = −

∫ 0

−1

" z
U′ψ1 dz dz dz −

u0

6
(σ2 + 1) +

1
2

c8.

From θ2 for case I

c10 = −β1,0(
" z H′

τ
ψ1 dz dz|z=0 + c11) −

∫ z H′

τ
ψ1 dz|z=0,

c11 = (
∫ 0

−1

H′

τ
ψ1 dz + (β1,0 − β1,0β2,0)

" z H′

τ
ψ1 dz dz|z=0

−β2,0

" z H′

τ
ψ1 dz dz|z=−1 − β2,0

∫ z H′

τ
ψ1 dz|z=0)/(−β1,0 + β1,0β2,0 + β2,0).

From θ2 for case II

c10 = −β1,0(
" z θ0σ2

τ
dz dz|z=0 +

" z
θ0 dz dz|z=0 +

" z H′

τ
ψ1 dz dz|z=0 + c11)

−

∫ z θ0σ2

τ
dz|z=0 −

∫ z
θ0 dz|z=0 −

∫ z H′

τ
ψ1 dz|z=0 − β1,2θ0|z=0.

From the matrix M for case II

M1,1 = σ2 + 1 − R0

∫ 0

−1
ψ̃1U′ dz,

M1,2 = S
∫ 0

−1
ψ̂1U′ dz,

M2,1 = R0

∫ z
ψ̃1

H′

τ
dz|z=−1 − β1,0R0

" z
ψ̃1

H′

τ
dz dz|z=0 − R0

∫ z
ψ̃1

H′

τ
dz|z=0

+β2,0R0

" z
ψ̃1

H′

τ
dz dz|z=−1 + β2,0β1,0R0

" z
ψ̃1

H′

τ
dz dz|z=0 + β2,0R0

∫ z
ψ̃1

H′

τ
dz|z=0,
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M2,2 = −σ2(
∫ z θ̂0

τ
dz|z=−1 + β2,0

" z θ̂0

τ
dz dz|z=−1) −

∫ z
θ̂0 dz|z=−1

−S
∫ z

ψ̂1
H′

τ
dz|z=−1 + β1,0S

" z
ψ̂1

H′

τ
dz dz|z=0 + S

∫ z
ψ̂1

H′

τ
dz|z=0

−β2,0

" z
θ̂0 dz dz|z=−1 − β2,0S

" z
ψ̂1

H′

τ
dz dz|z=−1

−β2,0β1,0S
" z

ψ̂1
H′

τ
dz dz|z=0 − β2,0S

∫ z
ψ̂1

H′

τ
dz|z=0

+β1,2(1 − β2,0)θ̂0|z=0 − β2,2θ̂0|z=−1.

From the quadratic equation for σ2 for case II

a = −

∫ z θ̂0

τ
dz|z=−1 − β2,0

" z θ̂0

τ
dz dz|z=−1,

b = −

∫ z
θ̂0 dz|z=−1 − S

∫ z
ψ̂1

H′

τ
dz|z=−1 + β1,0S

" z
ψ̂1

H′

τ
dz dz|z=0 + S

∫ z
ψ̂1

H′

τ
dz|z=0

−β2,0

" z
θ̂0 dz dz|z=−1 − β2,0S

" z
ψ̂1

H′

τ
dz dz|z=−1 − β1,0β2,0S

" z
ψ̂1

H′

τ
dz dz|z=0

−β2,0S
∫ z

ψ̂1
H′

τ
dz|z=0 + β1,2(1 − β2,0)θ̂0|z=0 − β2,2θ̂0|z=−1

−(1 − R0

∫ 0

−1
ψ̃1U′ dz)(

∫ z θ̂0

τ
dz|z=−1 + β2,0

" z θ̂0

τ
dz dz|z=−1),

c = (1 − R0

∫ 0

−1
ψ̃1U′ dz)(−

∫ z
θ̂0 dz|z=−1 − S

∫ z
ψ̂1

H′

τ
dz|z=−1 + β1,0S

" z
ψ̂1

H′

τ
dz dz|z=0

+S
∫ z

ψ̂1
H′

τ
dz|z=0 − β2,0

" z
θ̂0 dz dz|z=−1 − β2,0S

" z
ψ̂1

H′

τ
dz dz|z=−1

−β2,0β1,0S
" z

ψ̂1
H′

τ
dz dz|z=0 − β2,0S

∫ z
ψ̂1

H′

τ
dz|z=0 + β1,2(1 − β2,0)θ̂0|z=0 − β2,2θ̂0|z=−1),

−S
∫ 0

−1
ψ̂1U′ dz(R0

∫ z
ψ̃1

H′

τ
dz|z=−1 − β1,0R0

" z
ψ̃1

H′

τ
dz dz|z=0 − R0

∫ z
ψ̃1

H′

τ
dz|z=0

+β2,0R0

" z
ψ̃1

H′

τ
dz dz|z=−1 + β2,0β1,0R0

" z
ψ̃1

H′

τ
dz dz|z=0 + β2,0R0

∫ z
ψ̃1

H′

τ
dz|z=0).

From ψ3

c12 = −

" z
D′(R2u0 + u2R0) dz dz|z=−1 + S

" z
θ2 dz dz|z=−1 + c13,

c13 =

" z
D′(R2u0 + u2R0) dz dz|z=0 − S

" z
θ2 dz dz|z=0,

c14 =

" z
ψ1(2 + σ2) dz dz|z=−1 −

& z
D′(R2u0 + u2R0) dz dz dz dz|z=−1

+S
& z

θ2 dz dz dz dz|z=−1 −
1
6

c12 +
1
2

c13 + c15,

c15 =

& z
D′(R2u0 + u2R0) dz dz dz dz|z=0

−

" z
ψ1(2 + σ2) dz dz|z=0 − S

& z
θ2 dz dz dz dz|z=0.

From u4

c16 = −γ2u0 −

∫ z
u2(1 + σ2) dz|z=0 −

∫ z
U′ψ3 dz|z=0,
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c17 = −

∫ 0

−1

" z
u2(1 + σ2) dz dz dz

+
1
2

c16 −
1
6

u0σ4 −

∫ 0

−1

" z
U′ψ3 dz dz dz.

From θ4 for case I

c18 = −β1,0(
" z H′

τ
ψ3 dz dz|z=0 + (

σ2

τ
+ 1)
" z

θ2 dz dz|z=0 + c19)

−

∫ z H′

τ
ψ3 dz|z=0 − (

σ2

τ
+ 1)

∫ z
θ2 dz|z=0 − β1,2θ2|z=0,

c19 = (−
∫ z H′

τ
ψ3 dz|z=−1 − (

σ2

τ
+ 1)

∫ z
θ2 dz|z=−1

+(−β1,0(
" z H′

τ
ψ3 dz dz|z=0 + (

σ2

τ
+ 1)
" z

θ2 dz dz|z=0)

−

∫ z H′

τ
ψ3 dz|z=0 − (

σ2

τ
+ 1)

∫ z
θ2 dz|z=0 − β1,2θ2|z=0)(β2,0 − 1)

−β2,0(
" z H′

τ
ψ3 dz dz|z=−1 + (

σ2

τ
+ 1)
" z

θ2 dz dz|z=−1) − β2,2θ2|z=−1)/(−β1,0 + β1,0β2,0 + β2,0).

From θ4 for case II

c18 = −β1,0(
" z H′

τ
ψ3 dz dz|z=0 + (

σ2

τ
+ 1)
" z

θ2 dz dz|z=0 +

" z
θ0
σ4

τ
dz dz|z=0 + c19)

−

∫ z H′

τ
ψ3 dz|z=0 − (

σ2

τ
+ 1)

∫ z
θ2 dz|z=0 −

∫ z
θ0
σ4

τ
dz|z=0 − β1,2θ2|z=0 − β1,4θ0|z=0.

From the matrix N for case II
N1,1 = u0,

N1,2 =

∫ 0

−1
ψ̆3U′ dz,

N2,1 =

∫ z θ0

τ
dz|z=−1 − β1,0

" z θ0

τ
dz dz|z=0 −

∫ z θ0

τ
dz|z=0

+β2,0

" z θ0

τ
dz dz|z=−1 + β2,0β1,0

" z θ0

τ
dz dz|z=0 + β2,0

∫ z θ0

τ
dz|z=0,

N2,2 =

∫ z
θ̂2
σ2

τ
dz|z=−1 +

∫ z
θ̂2 dz|z=−1 +

∫ z
ψ̆3

H′

τ
dz|z=−1 − β1,0

" z
θ̂2
σ2

τ
dz dz|z=0

−β1,0

" z
θ̂2 dz dz|z=0 − β1,0

" z
ψ̆3

H′

τ
dz dz|z=0 −

∫ z
θ̂2
σ2

τ
dz|z=0 −

∫ z
θ̂2 dz|z=0 −

∫ z
ψ̆3

H′

τ
dz|z=0

+β2,0

" z
θ̂2
σ2

τ
dz dz|z=−1 + β2,0

" z
θ̂2 dz dz|z=−1 + β2,0

" z
ψ̆3

H′

τ
dz dz|z=−1

+β1,0β2,0

" z
θ̂2
σ2

τ
dz dz|z=0 + β1,0β2,0

" z
θ̂2 dz dz|z=0 + β1,0β2,0

" z
ψ̆3

H′

τ
dz dz|z=0

+β2,0

∫ z
θ̂2
σ2

τ
dz|z=0 + β2,0

∫ z
θ̂2 dz|z=0 + β2,0

∫ z
ψ̆3

H′

τ
dz|z=0

−β1,2(1 − β2,0)θ̂2|z=0 + β2,2θ̂2|z=−1.

From the vector q for case II

q1 = −

∫ 0

−1
ψ̂3U′ dz + R2

∫ 0

−1
ψ̃3U′ dz + γ4u0 − γ2u0,
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q2 = −

∫ z
θ̃2
σ2

τ
dz|z=−1 −

∫ z
θ̃2 dz|z=−1 −

∫ z
ψ̂3

H′

τ
dz|z=−1 + R2

∫ z
ψ̃3

H′

τ
dz|z=−1

+β1,0(
" z

θ̃2
σ2

τ
dz dz|z=0 +

" z
θ̃2 dz dz|z=0 +

" z
ψ̂3

H′

τ
dz dz|z=0 − R2

" z
ψ̃3

H′

τ
dz dz|z=0)

+

∫ z
θ̃2
σ2

τ
dz|z=0 +

∫ z
θ̃2 dz|z=0 +

∫ z
ψ̂3

H′

τ
dz|z=0 − R2

∫ z
ψ̃3

H′

τ
dz|z=0

−β2,0(
" z

θ̃2
σ2

τ
dz dz|z=−1 +

" z
θ̃2 dz dz|z=−1 +

" z
ψ̂3

H′

τ
dz dz|z=−1 − R2

" z
ψ̃3

H′

τ
dz dz|z=−1

−(−β1,0(
" z

θ̃2
σ2

τ
dz dz|z=0 +

" z
θ̃2 dz dz|z=0 +

" z
ψ̂3

H′

τ
dz dz|z=0 − R2

" z
ψ̃3

H′

τ
dz dz|z=0)

−

∫ z
θ̃2
σ2

τ
dz|z=0 −

∫ z
θ̃2 dz|z=0 −

∫ z
ψ̂3

H′

τ
dz|z=0 + R2

∫ z
ψ̃3

H′

τ
dz|z=0))

+β1,2(1 − β2,0)θ̃2|z=0 + β1,4(1 − β2,0)θ0|z=0 − β2,2θ̃2|z=−1 − β2,4θ0|z=−1.

7.2 Linear perturbation solution algorithm details
From u2 j in the linear perturbation solution algorithm

c0, j = −γ2u2 j−4|z=0 −

∫ 0

−1
U′ψ2 j−1 dz|z=0 −

∫ z
u2 j−2 dz|z=0 −

∫ z j−1∑
m=0

u2 j−(2m+2)σ2m+2 dz|z=0,

c1, j = −

∫ 0

−1
[
" z j−1∑

m=0

u2 j−(2m+2)σ2m+2 dz dz +

" z
u2 j−2 dz dz +

" z
U′ψ2 j−1 dz dz] dz + δ0, ju0 +

c0, j

2
.

From θ2 j in the linear perturbation solution algorithm for case I

c2, j = −β1,0(
" z

θ2 j−2 dz dz|z=0 +

" z H′

τ
ψ2 j−1 dz dz|z=0

+

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0 + c3, j) −

∫ z
θ2 j−2 dz|z=0 −

∫ z H′

τ
ψ2 j−1 dz|z=0

−

∫ z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0 −

j∑
m=1

β1,2mθ2 j−2m|z=0,

c3, j = (
∫ z

θ2 j−2 dz|z=−1 +

∫ z H′

τ
ψ2 j−1 dz|z=−1 +

∫ z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz|z=−1

−β1,0(
" z

θ2 j−2 dz dz|z=0 +

" z H′

τ
ψ2 j−1 dz dz|z=0 +

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0)

−

∫ z
θ2 j−2 dz|z=0 −

∫ z H′

τ
ψ2 j−1 dz|z=0 −

∫ z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0 −

j∑
m=1

β1,2mθ2 j−2m|z=0

+β2,0(
" z

θ2 j−2 dz dz|z=−1 +

" z H′

τ
ψ2 j−1 dz dz|z=−1 +

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=−1

+β1,0(
" z

θ2 j−2 dz dz|z=0 +

" z H′

τ
ψ2 j−1 dz dz|z=0 +

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0)

+

∫ z
θ2 j−2 dz|z=0 +

∫ z H′

τ
ψ2 j−1 dz|z=0 +

∫ z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0 +

j∑
m=1

β1,2mθ2 j−2m|z=0)

+

j∑
m=1

β2,2mθ2 j−2m|z=−1)/(β1,0 − β1,0β2,0 − β2,0).
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From θ2 j in the linear perturbation solution algorithm for case II

c2, j = −β1,0(
" z

θ2 j−2 dz dz|z=0 +

" z H′

τ
ψ2 j−1 dz dz|z=0

+

" z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0 + c3, j) −

j∑
m=1

β1,2mθ2 j−2m|z=0 −

∫ z
θ2 j−2 dz|z=0 −

∫ z H′

τ
ψ2 j−1 dz|z=0

−

∫ z j−1∑
m=0

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0.

From ψ2 j+1 in the linear perturbation solution algorithm

c4, j = −

" z j∑
m=0

D′u2 j−2mR2m dz dz|z=−1 + S
" z

θ2 j dz dz|z=−1

−

" z j−2∑
m=0

ψ2 j−2m−3σ2m+2 dz dz|z=−1 −

" z
ψ2 j−3 dz dz|z=−1 + c5, j + γ3ψ

′
2 j−3|z=−1,

c5, j =

" z j∑
m=0

D′u2 j−2mR2m dz dz|z=0 − S
" z

θ2 j dz dz|z=0

+

" z j−2∑
m=0

ψ2 j−2m−3σ2m+2 dz dz|z=0 +

" z
ψ2 j−3 dz dz|z=0 − γ1ψ

′
2 j−3|z=0,

c6, j = −

& z j∑
m=0

D′u2 j−2mR2m dz dz dz dz|z=−1 + S
& z

θ2 j dz dz dz dz|z=−1

+

" z j−1∑
m=0

ψ2 j−2m−1σ2m+2 dz dz|z=−1 −

& z j−2∑
m=0

ψ2 j−2m−3σ2m+2 dz dz dz dz|z=−1

−

& z
ψ2 j−3 dz dz dz dz|z=−1 + 2

" z
ψ2 j−1 dz dz|z=−1 −

1
6

c4, j +
1
2

c5, j + c7, j,

c7, j =

& z j∑
m=0

D′u2 j−2mR2m dz dz dz dz|z=0 − S
& z

θ2 j dz dz dz dz|z=0

−

" z j−1∑
m=0

ψ2 j−2m−1σ2m+2 dz dz|z=0 +

& z j−2∑
m=0

ψ2 j−2m−3σ2m+2 dz dz dz dz|z=0

+

& z
ψ2 j−3 dz dz dz dz|z=0 − 2

" z
ψ2 j−1 dz dz|z=0.

From the matrix N in the linear perturbation solution algorithm for case II

N1,1, j = u0,

N1,2, j =

∫ 0

−1
ψ̆2 j−1U′ dz,

N2,1, j =

∫ z θ0

τ
dz|z=−1 − β1,0

" z θ0

τ
dz dz|z=0 −

∫ z θ0

τ
dz|z=0

+β2,0

" z θ0

τ
dz dz|z=−1 + β2,0β1,0

" z θ0

τ
dz dz|z=0 + β2,0

∫ z θ0

τ
dz|z=0,
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N2,2, j =

∫ z
θ̂2 j−2 dz|z=−1 +

∫ z
ψ̆2 j−1

H′

τ
dz|z=−1 +

∫ z
θ̂2 j−2

σ2

τ
dz|z=−1

−β1,0(
" z

θ̂2 j−2 dz dz|z=0 +

" z
ψ̆2 j−1

H′

τ
dz dz|z=0 +

" z
θ̂2 j−2

σ2

τ
dz dz|z=0)

−

∫ z
θ̂2 j−2 dz|z=0 −

∫ z
ψ̆2 j−1

H′

τ
dz|z=0 −

∫ z
θ̂2 j−2

σ2

τ
dz|z=0

+β2,0(
" z

θ̂2 j−2 dz dz|z=−1 +

" z
ψ̆2 j−1

H′

τ
dz dz|z=−1 +

" z
θ̂2 j−2

σ2

τ
dz dz|z=−1

+β1,0(
" z

θ̂2 j−2 dz dz|z=0 +

" z
ψ̆2 j−1

H′

τ
dz dz|z=0 +

" z
θ̂2 j−2

σ2

τ
dz dz|z=0)

+

∫ z
θ̂2 j−2 dz|z=0 +

∫ z
ψ̆2 j−1

H′

τ
dz|z=0 +

∫ z
θ̂2 j−2

σ2

τ
dz|z=0)

−β1,2(1 − β2,0)θ̂2 j−2|z=0 + β2,2θ̂2 j−2|z=−1.

From the vector q in the linear perturbation solution algorithm for case II

q1, j = −δ0, j−1u0 −

∫ 0

−1
ψ̂2 j−1U′ dz + R2 j−2

∫ 0

−1
ψ̃2 j−1U′ dz + γ4u2 j−4|z=−1 − γ2u2 j−4|z=0,

q2, j = −

∫ z
θ̃2 j−2 dz|z=−1 −

∫ z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz|z=−1 −

∫ z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz|z=−1

−

∫ z
θ̃2 j−2

σ2

τ
dz|z=−1 + β1,0(

" z
θ̃2 j−2 dz dz|z=0 +

" z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz dz|z=0

+

" z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0 +

" z
θ̃2 j−2

σ2

τ
dz dz|z=0) +

∫ z
θ̃2 j−2 dz|z=0

+

∫ z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz|z=0 +

∫ z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0 +

∫ z
θ̃2 j−2

σ2

τ
dz|z=0

−β2,0(
" z

θ̃2 j−2 dz dz|z=−1 +

" z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz dz|z=−1 +

" z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=−1

+

" z
θ̃2 j−2

σ2

τ
dz dz|z=−1 − (−β1,0(

" z
θ̃2 j−2 dz dz|z=0 +

" z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz dz|z=0

+

" z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz dz|z=0 +

" z
θ̃2 j−2

σ2

τ
dz dz|z=0) −

∫ z
θ̃2 j−2 dz|z=0

−

∫ z
(ψ̂2 j−1 − R2 j−2ψ̃2 j−1)

H′

τ
dz|z=0 −

∫ z j−2∑
m=1

θ2 j−(2m+2)
σ2m+2

τ
dz|z=0 −

∫ z
θ̃2 j−2

σ2

τ
dz|z=0))

+(
j∑

m=2

β1,2mθ2 j−2m|z=0 + β1,2θ̃2 j−2|z=0)(1 − β2,0) −
j∑

m=2

β2,2mθ2 j−2m|z=−1 − β2,2θ̃2 j−2|z=−1.

7.3 Nonlinear perturbation solution details
From Ψ0

c4(Y,T ) = −

" z
D′R0

∂u0

∂Y
dz dz|z=−1 + S

" z ∂Θ0

∂Y
dz dz|z=−1 + c5(Y,T ),

c5(Y,T ) =

" z
D′R0

∂u0

∂Y
dz dz|z=0 − S

" z ∂Θ0

∂Y
dz dz|z=0,

c6(Y,T ) = −

& z
D′R0

∂u0

∂Y
dz dz dz dz|z=−1 + S

& z ∂Θ0

∂Y
dz dz dz dz|z=−1

−
1
6

c4(Y,T ) +
1
2

c5(Y,T ) + c7(Y,T ),
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c7(Y,T ) =

& z
D′R0

∂u0

∂Y
dz dz dz dz|z=0 − S

& z ∂Θ0

∂Y
dz dz dz dz|z=0.

From u2

c8(Y,T ) =

∫ z ∂Ψ0

∂Y
U′ dz|z=0.

From Θ2 for case I

c10(Y,T ) =

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0 − β1,0(−

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0 + c11(Y,T )),

c11(Y,T ) = (
∫ z ∂Ψ0

∂Y
H′

τ
dz|z=−1 −

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0 − β1,0

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0

+β2,0

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=−1 + β2,0

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0

+β2,0β1,0

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0)/(−β1,0 + β2,0β1,0 + β2,0).

From Θ2 for case II

c10(Y,T ) = −

∫ z 1
τ

∂Θ0

∂T
dz|z=0 +

∫ z ∂2Θ0

∂Y2 dz|z=0 +

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz|z=0

−β1,0(
" z 1

τ

∂Θ0

∂T
dz dz|z=0 −

" z ∂2Θ0

∂Y2 dz dz|z=0 −

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz dz|z=0 + c11(Y,T )) − β1,2Θ0|z=0.

For case II, the second coupled nonlinear partial differential equation for u0 and c3(Y,T ) at O(l2) is∫ z 1
τ

∂Θ0

∂T
dz|z=−1 −

∫ z ∂2Θ0

∂Y2 dz|z=−1 −

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=−1 −

∫ z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz|z=−1

+

∫ z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz|z=−1 − β1,0(

" z 1
τ

∂Θ0

∂T
dz dz|z=0 −

" z ∂2Θ0

∂Y2 dz dz|z=0 −

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz dz|z=0) −

∫ z 1
τ

∂Θ0

∂T
dz|z=0 +

∫ z ∂2Θ0

∂Y2 dz|z=0

+

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0 +

∫ z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz|z=0 + β2,0(

" z 1
τ

∂Θ0

∂T
dz dz|z=−1

−

" z ∂2Θ0

∂Y2 dz dz|z=−1 −

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=−1 −

" z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz dz|z=−1

+

" z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz dz|z=−1 + β1,0(

" z 1
τ

∂Θ0

∂T
dz dz|z=0 −

" z ∂2Θ0

∂Y2 dz dz|z=0

−

" z ∂Ψ0

∂Y
H′

τ
dz dz|z=0 −

" z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz dz|z=0)

+

∫ z 1
τ

∂Θ0

∂T
dz|z=0 −

∫ z ∂2Θ0

∂Y2 dz|z=0 −

∫ z ∂Ψ0

∂Y
H′

τ
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂Y
∂Θ0

∂z
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂z
∂Θ0

∂Y
dz|z=0) − β1,2(1 − β2,0)Θ0|z=0 + β2,2Θ0|z=−1 = 0.

The constants appearing in the differential equations (4.1.44), (4.1.45) are

ap = p2 − R0 p2
∫ 0

−1
Ψ̃0U′ dz,

bp = S p2
∫ 0

−1
Ψ̂0U′ dz,
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cp = −R0 p2
∫ 0

−1
Ψ̃0H′ dz,

dp = S p2
∫ 0

−1
Ψ̂0H′ dz − τ(β2,2 − β1,2 − p2).

From Ψ2

c12(Y,T ) =
∂Ψ0

∂T
|z=−1 − 2

∂2Ψ0

∂Y2 |z=−1 −

" z
D′R2

∂u0

∂Y
dz dz|z=−1

−

" z
D′R0

∂u2

∂Y
dz dz|z=−1 + S

" z ∂Θ2

∂Y
dz dz|z=−1

+

" z ∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 dz dz|z=−1 −

" z ∂Ψ0

∂Y
∂3Ψ0

∂z3 dz dz|z=−1 + c13(Y,T ),

c13(Y,T ) = −
∂Ψ0

∂T
|z=0 + 2

∂2Ψ0

∂Y2 |z=0 +

" z
D′R2

∂u0

∂Y
dz dz|z=0

+

" z
D′R0

∂u2

∂Y
dz dz|z=0 − S

" z ∂Θ2

∂Y
dz dz|z=0

−

" z ∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 dz dz|z=0 +

" z ∂Ψ0

∂Y
∂3Ψ0

∂z3 dz dz|z=0,

c14(Y,T ) =

" z ∂Ψ0

∂T
dz dz|z=−1 −

" z
2
∂2Ψ0

∂Y2 dz dz|z=−1 −

& z
D′R2

∂u0

∂Y
dz dz dz dz|z=−1

−

& z
D′R0

∂u2

∂Y
dz dz dz dz|z=−1 + S

& z ∂Θ2

∂Y
dz dz dz dz|z=−1

+

& z ∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 dz dz dz dz|z=−1 −

& z ∂Ψ0

∂Y
∂3Ψ0

∂z3 dz dz dz dz|z=−1

−
1
6

c12(Y,T ) +
1
2

c13(Y,T ) + c15(Y,T ),

c15(Y,T ) = −

" z ∂Ψ0

∂T
dz dz|z=0 +

" z
2
∂2Ψ0

∂Y2 dz dz|z=0 +

& z
D′R2

∂u0

∂Y
dz dz dz dz|z=0

+

& z
D′R0

∂u2

∂Y
dz dz dz dz|z=0 − S

& z ∂Θ2

∂Y
dz dz dz dz|z=0

−

& z ∂Ψ0

∂z
∂3Ψ0

∂Y∂z2 dz dz dz dz|z=0 +

& z ∂Ψ0

∂Y
∂3Ψ0

∂z3 dz dz dz dz|z=0.

From u4

c16(Y,T ) = −

∫ z ∂u2

∂T
dz|z=0 +

∫ z ∂2u2

∂Y2 dz|z=0 +

∫ z ∂Ψ2

∂Y
U′ dz|z=0

+

∫ z ∂Ψ0

∂Y
∂u2

∂z
dz|z=0 −

∫ z ∂Ψ2

∂z
∂u0

∂Y
dz|z=0 −

∫ z ∂Ψ0

∂z
∂u2

∂Y
dz|z=0 − γ2u0.

From Θ4 for case I

c18(Y,T ) = −

∫ z 1
τ

∂Θ2

∂T
dz|z=0 +

∫ z ∂2Θ2

∂Y2 dz|z=0 +

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=0

−β1,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=0 −

" z ∂2Θ2

∂Y2 dz dz|z=0 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=0 + c19(Y,T )) − β1,2Θ2|z=0,
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c19(Y,T ) = (−
∫ z 1

τ

∂Θ2

∂T
dz|z=−1 +

∫ z ∂2Θ2

∂Y2 dz|z=−1 +

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=−1 +

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=−1

−

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=−1 − (−

∫ z 1
τ

∂Θ2

∂T
dz|z=0 +

∫ z ∂2Θ2

∂Y2 dz|z=0 +

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=0

−β1,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=0 −

" z ∂2Θ2

∂Y2 dz dz|z=0 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=0) − β1,2Θ2|z=0)(1 − β2,0)

−β2,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=−1 −

" z ∂2Θ2

∂Y2 dz dz|z=−1 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=−1

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=−1 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=−1)

−β2,2Θ2|z=−1)/(−β1,0 + β2,0β1,0 + β2,0).

From Θ4 for case II

c18(Y,T ) = −

∫ z 1
τ

∂Θ2

∂T
dz|z=0 +

∫ z ∂2Θ2

∂Y2 dz|z=0 +

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=0 +

∫ z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=0 − β1,0(

" z 1
τ

∂Θ2

∂T
dz dz|z=0

−

" z ∂2Θ2

∂Y2 dz dz|z=0 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=0 −

" z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=0 + c19(Y,T ))

−β1,2Θ2|z=0 − β1,4Θ0|z=0.

For case II, the second coupled partial differential equation in terms of c9(Y,T ) and c11(Y,T ) at O(l4) is∫ z 1
τ

∂Θ2

∂T
dz|z=−1 −

∫ z ∂2Θ2

∂Y2 dz|z=−1 −

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=−1 −

∫ z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz|z=−1

−

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=−1 +

∫ z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz|z=−1 +

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=−1

−

∫ z 1
τ

∂Θ2

∂T
dz|z=0 +

∫ z ∂2Θ2

∂Y2 dz|z=0 +

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=0 +

∫ z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz|z=0

+

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=0 −

∫ z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz|z=0 −

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=0

−β1,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=0 −

" z ∂2Θ2

∂Y2 dz dz|z=0 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=0 −

" z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=0)

+β2,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=−1 −

" z ∂2Θ2

∂Y2 dz dz|z=−1 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=−1 −

" z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz dz|z=−1

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=−1 +

" z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz dz|z=−1 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=−1

+

∫ z 1
τ

∂Θ2

∂T
dz|z=0 −

∫ z ∂2Θ2

∂Y2 dz|z=0 −

∫ z ∂Ψ2

∂Y
H′

τ
dz|z=0 −

∫ z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz|z=0

−

∫ z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz|z=0 +

∫ z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz|z=0 +

∫ z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz|z=0

+β1,0(
" z 1

τ

∂Θ2

∂T
dz dz|z=0 −

" z ∂2Θ2

∂Y2 dz dz|z=0 −

" z ∂Ψ2

∂Y
H′

τ
dz dz|z=0 −

" z 1
τ

∂Ψ2

∂Y
∂Θ0

∂z
dz dz|z=0

−

" z 1
τ

∂Ψ0

∂Y
∂Θ2

∂z
dz dz|z=0 +

" z 1
τ

∂Ψ2

∂z
∂Θ0

∂Y
dz dz|z=0 +

" z 1
τ

∂Ψ0

∂z
∂Θ2

∂Y
dz dz|z=0))

+(−β1,2Θ2|z=0 − β1,4Θ0|z=0)(1 − β2,0) + β2,2Θ2|z=−1 + β2,4Θ0|z=−1 = 0.
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7.4 A theorem for a class of nonlinear differential equations
The following Theorem A formalises a procedure outlined in Hildebrand (1956):

Theorem A

Provided that the L + 1 term Maclaurin series of the exact general solution,

A =

L∑
l=0

dlA
dxl |x=0

xl

l!
(7.4.1)

to an Mth order ordinary differential equation
dMA
dxM = ξ (7.4.2)

exists and all the derivatives and integrals of A are defined at x = 0, it only solves the coefficients of xl, l ∈
{0, 1, . . . , L − M} in the residual of (7.4.2) provided ξ is expandable in a Maclaurin series as

ξ =

∞∑
l=0

dlξ

dxl |x=0
xl

l!
, (7.4.3)

where all the derivatives and integrals of ξ are defined at x = 0 and the right hand side of (7.4.2) does not contain
dM A
dxM .

Proof of Theorem A

Since the Maclaurin series of A and ξ exist and all their derivatives and integrals are defined at x = 0, we can integrate
(7.4.2) M times and substitute the result into (7.4.1) to find

A =

L∑
l=0

d(l−M)ξ

dx(l−M) |x=0
xl

l!
. (7.4.4)

Substituting (7.4.4) into the residual r of (7.4.2) then gives

r =

L∑
l=0

d(l−M)ξ

dx(l−M) |x=0
xl−M

(l − M)!
−

∞∑
l=0

dlξ

dxl |x=0
xl

l!
, (7.4.5)

provided ξ is expandable in a Maclaurin series as in (7.4.3). Equating like powers of x in (7.4.5) then yields

r = −

∞∑
l=L−M+1

dlξ

dxl |x=0
xl

l!
, (7.4.6)

which shows that Theorem A is true. �

7.5 Another theorem for a class of nonlinear differential equations
The following Theorem B is of the essence of that given in various texts (see for example Muscalu & Schlag, 2013):

Theorem B

Provided that the 2L + 1 term complex Fourier series of the exact general solution

A =

L∑
n=−L

P(A, einlx)einlx, 0 < l < ∞, (7.5.1)

to an Mth order ordinary differential equation
dMA
dxM = ξ, (7.5.2)

exists, it only solves the coefficients of einlx for n ∈ [−L, L] in the residual of (7.5.2) if ξ is expandable as a complex
Fourier series as

ξ =

∞∑
n=−∞

P(ξ, einlx)einlx, 0 < l < ∞. (7.5.3)

Here A and ξ are periodic with period 2π
l and all of their derivatives and integrals are continuous for all x. Moreover

the right hand side of (7.5.2) must not contain dM A
dxM and P(a, einlx) denotes the projection of a onto einlx.
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Proof of Theorem B

Since the complex Fourier series of A and ξ exist and because A and ξ are periodic with period 2π
l and all their

derivatives and integrals are continuous for all x, we can integrate (7.5.2) M times and substitute the result into
(7.5.1) to find

A =

L∑
n=−L

P(
d(−M)ξ

dx(−M) , e
inlx)einlx, (7.5.4)

where the notation d(−M)ξ

dx(−M) denotes the Mth integral of ξ with respect to x. Substituting (7.5.4) into the residual r of
(7.5.2) then gives

r =
dM

dxM

L∑
n=−L

P(
d(−M)ξ

dx(−M) , e
inlx)einlx −

∞∑
n=−∞

P(ξ, einlx)einlx, (7.5.5)

provided ξ is expandable in complex Fourier series as in (7.5.3). Then equation (7.5.5) can be written as

r = −
∑

n<[−L,L]

P(ξ, einlx)einlx, (7.5.6)

which shows that Theorem B is true. �
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