
Log-trigonometric integrals and elliptic functions

Martin Nicholson

A class of log-trigonometric integrals are evaluated in terms of elliptic functions.

I. INTRODUCTION

The following integrals were calculated in [7]

π/2∫
0

ln
[
x2 + ln2(2e−a cosx)

]
dx = π ln

a

eb − 1
, (1)

π/2∫
0

ln
[
x2 + ln2(2e−a cosx)

]
cos 2x dx =

π

2

(
1− 1

a
− eb +

1

eb − 1

)
, (2)

π/2∫
0

x sin 2x

x2 + ln2(2e−a cosx)
dx =

π

4

(
1

a2
+ eb − eb

(eb − 1)2

)
, (3)

π/2∫
−π/2

(
1 + e2ix

)γ
ix− a+ ln (2 cosx)

dx = −π
a

+ π
e(γ+1)a

ea − 1
H(ln 2− a), (4)

where a ∈ R, b = min{a, ln 2}, and H is unit step function. These are log-trigonometric integrals of the

type whose study was initiated in the series of papers [1–4, 6]. The author of the paper [7] also noted

that integral (1) can be used to obtain integrals that can be evaluated in terms of logarithm of Dedekind

eta function. However the resulting integrals contained special functions of complex argument. In this

paper we modify this approach to obtain integrals of elementary functions of real argument that are

evaluated in terms of infinite products or Lambert series. These infinite products and Lambert series

can be expressed in terms of elliptic integrals and allow one to obtain closed form evaluation of certain

log-trigonometric integrals at particular values of the parameter.

In the following we will use standard notations from the theory of elliptic functions. Let k be modulus,

k′ =
√

1− k2 the complementary modulus, and define the complete elliptic integrals of the first and

second kind with modulus k

K = K(k) =

π/2∫
0

dϕ√
1− k2 sin2 ϕ

, E = E(k) =

π/2∫
0

√
1− k2 sin2 ϕ dϕ,

respectively. Let K ′ = K(k′) and define α according to α = K ′/K. These notations will be used

throught the paper. So that whenever a parameter α is encountered in a formula it is assumed that the

corresponding values of k, k′, K, K ′, E contained in the same formula are determined from the formulas

above.

The outline of the paper is as follows. In the next section II we formulate and prove main theorems

of this paper. These theorems are derived from the integrals (1-4). However these integrals can be

generalized, as shown in Appendix A for the case γ = 0 of integral (4). Section III is devoted to the

study of these integrals that are consequences of the integral in Appendix A. All integrals in sections

II and III are expressed in terms of elliptic integrals. This means that elliptic integral singular values

provide closed form evaluations of log-trigonometric integrals derived in sections II, III for particular

values of the parameter α. Corresponding illustrative examples are considered in section IV. Last section

V is devoted to discussion of the results presented in this paper.



2

II. MAIN THEOREMS

Theorem 1. If k, k′, and K are defined in terms of α as described in the introduction, then

π/2∫
0

ln

(
cosh

x

α
− cos

ln(2 cosx)

α

)
dx = −π

2α

12
− π

6
ln

16kk′K3α6

π3
, α >

ln 2

2π
; (5)

π/2∫
0

ln

(
cosh

x

α
+ cos

ln(2 cosx)

α

)
dx =

π2α

24
+
π

6
ln

4
√
k

k′
, α >

ln 2

π
. (6)

Proof. For r > ln 2 and n ∈ N, one has from equation (1)

π/2∫
0

ln

{
x2

r2n2
+

[
ln(2 cosx)

rn
− 1

]2}
dx = 0,

π/2∫
0

ln

{
x2

r2n2
+

[
ln(2 cosx)

rn
+ 1

]2}
dx = −π ln(1− e−rn).

Now we take the sum of these equations from n = 1 to infinity. Using the formula{
x2

r2n2
+

[
ln(2 cosx)

rn
− 1

]2}{ x2

r2n2
+

[
ln(2 cosx)

rn
+ 1

]2}

= 1 + 2
x2 − log2(2 cosx)

r2n2
+

[
x2 + log2(2 cosx)

]2
r4n4

,

and
∞∏
n=1

{
1 + 2

x2 − log2(2 cosx)

r2n2
+

[
x2 + log2(2 cosx)

]2
r4n4

}
=

r2

2π2
cosh 2πx

r − cos 2π ln(2 cosx)
r

x2 + log2(2 cosx)
,

yields
π/2∫
0

ln

{
r2

2π2
cosh 2πx

r − cos 2π ln(2 cosx)
r

x2 + log2(2 cosx)

}
dx = −π ln

∞∏
n=0

(1− e−rn) .

Interchanging the order of infinite product and integral can be justified using Fubini’s theorem. Using

π/2∫
0

ln
[
x2 + ln2(2 cosx)

]
dx = 0 ,

and replacing r by 2πα one gets

π/2∫
0

ln

(
cosh

x

α
− cos

ln(2 cosx)

α

)
dx = −π

2
ln(2α2)− π ln

∞∏
n=1

(1− e−2παn) , α >
ln 2

2π
; (7)

π/2∫
0

ln

(
cosh

x

α
+ cos

ln(2 cosx)

α

)
dx =

π

2
ln 2 + π ln

∞∏
n=1

(1 + e−παn) , α >
ln 2

π
. (8)
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Equation (8) is easily deduced from (7) by taking its linear combinations. The infinite products in these

formulas are calculated in [8], ch.21, ex.10:

∞∏
n=1

(1− e−2παn) = e
πα

12

(
2kk′K3

π3

)1/6

,

∞∏
n=1

(1 + e−παn) = e
πα

24

(√
k

2k′

)1/6

.

This completes the proof.

Theorem 2.
π/2∫
0

cosh x
2α cos ln(2 cosx)

2α

cosh x
α + cos ln(2 cosx)

α

dx =
π

8
(α+ 2)− α

4
K, α >

ln 2

π
. (9)

Proof. The case γ = 0 of (4) gives for r > ln 2

π/2∫
−π/2

1

ix+ r(2n+ 1) + ln (2 cosx)
dx =

π

r(2n+ 1)
, n = −1,−2,−3, ...

π/2∫
−π/2

1

ix+ r(2n+ 1) + ln (2 cosx)
dx =

π

r(2n+ 1)
− π 1

er(2n+1) − 1
, n = 0, 1, 2, ...

Summing these equations with the help of

∞∑
n=−∞

(−1)n

ix+ r(2n+ 1) + log(2 cosx)
=
π

r

cosh πx
2r cos π ln(2 cosx)

2r

cosh πx
r + cos π ln(2 cosx)

r

,

and replacing r by πα, one is immediately lead to

π/2∫
0

cosh x
2α cos ln(2 cosx)

2α

cosh x
α + cos ln(2 cosx)

α

dx =
π

4
− πα

2

∞∑
n=0

(−1)n

eπα(2n+1) − 1
, α >

ln 2

π
.

The interchanging of summation and integration is easily justified by Fubini’s theorem. The infinite series

in this expression is calculated in [8], ch.22.6:

∞∑
n=0

(−1)n

eπα(2n+1) − 1
=
K

2π
− 1

4
.

Theorem 3.

π/2∫
0

sin 2x sinh x
α

cosh x
α − cos ln(2 cosx)

α

dx =
13πα

48
+

π

24α
+

πα

4 tanh 2πα
+

α

4π

(
E − 2− k2

3
K

)
K, α >

ln 2

2π
; (10)

π/2∫
0

sin 2x sinh x
α

cosh x
α + cos ln(2 cosx)

α

dx =
π

8α
+

πα

4 sinhπα
+

α

4π
(E −K)K, α >

ln 2

π
. (11)
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Proof. It is convenient to rewrite formula (3) as

π/2∫
−π/2

sin 2x

ix+ ln (2 cosx)− a
dx =

πi

2

(
1

a2
+ eb − eb

(eb − 1)2

)
. (12)

Thus for r > ln 2 and n ∈ N
π/2∫
−π/2

sin 2x

ix+ ln (2 cosx)− rn
dx =

πi

2r2n2
,

π/2∫
−π/2

sin 2x

ix+ ln (2 cosx) + rn
dx =

πi

2

(
1

r2n2
+ e−rn − e−rn

(1− e−rn)2

)
.

From this it follows with the help of the summation

1

ix+ log(2 cosx)
+ 2

∞∑
n=1

ix+ log(2 cosx)

[ix+ log(2 cosx)]2 − r2n2
=
π

r

sin 2π ln(2 cosx)
r − i sinh 2πx

r

cosh 2πx
r − cos 2π ln(2 cosx)

r

and integration ([7], eq. (47))
π/2∫
−π/2

sin 2x

ix+ ln (2 cosx)
dx =

13π

24
, (13)

that
π/2∫
0

sin 2x sinh 2πx
r

cosh 2πx
r − cos 2π ln(2 cosx)

r

dx =
π2

12r
+

13r

48
+

r

4(er − 1)
− r

16

∞∑
n=0

1

sinh2 rn
2

.

After change of parameter r = 2πα, this identity takes the form

π/2∫
0

sin 2x sinh x
α

cosh x
α − cos ln(2 cosx)

α

dx =
π

24α
+

13πα

24
+

πα

2(e2πα − 1)
− πα

8

∞∑
n=1

1

sinh2 παn
, α >

ln 2

2π
.

One can easily deduce taking linear combinations of the previous identity that

π/2∫
0

sin 2x sinh x
α

cosh x
α + cos ln(2 cosx)

α

dx =
π

8α
+

πα

4 sinhπα
− πα

8

∞∑
n=0

1

sinh2 πα(2n+1)
2

, α >
ln 2

π
.

The infinite series in these formulas were calculated in [5] in terms of elliptic integrals

∞∑
n=1

1

sinh2 παn
=

1

6
− 2

π2
KE +

2(2− k2)
3π2

K2, (14)

∞∑
n=0

1

sinh2 πα(2n+1)
2

=
2

π2
K(K − E). (15)

The proof of (10) and (11) is complete.

Theorem 4.

π/2∫
0

cos 2x sin ln(2 cosx)
α

cosh x
α − cos ln(2 cosx)

α

dx =
11πα

48
− π

24α
+

πα

4 tanh 2πα
− α

4π

(
E − 2− k2

3
K

)
K, α >

ln 2

2π
; (16)

π/2∫
0

cos 2x sin ln(2 cosx)
α

cosh x
α + cos ln(2 cosx)

α

dx =
π

8α
− πα

4 sinhπα
+

α

4π
(E −K)K, α >

ln 2

π
. (17)
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Proof. These identities are proved in a similar manner to the proof of the previous theorem. The starting

log trigonometric integral is

π/2∫
−π/2

cos 2x

ix+ ln (2 cosx)− a
dx = πeaH(ln 2− a)− π

2

(
1

a2
+ eb − eb

(eb − 1)2

)
, (18)

where a ∈ R, b = min{a, ln 2}, which is a consequence of (3) and the γ = 0 and γ = 1 cases of (4). From

this, it follows that

π/2∫
0

cos 2x sin 2π ln(2 cosx)
r

cosh 2πx
r − cos 2π ln(2 cosx)

r

dx =
11r

48
− π2

12r
+

r

4 (er − 1)
+

r

16

∞∑
n=1

1

sinh2 rn
2

, r > ln 2.

Thus

π/2∫
0

cos 2x sin ln(2 cosx)
α

cosh x
α − cos ln(2 cosx)

α

dx =
11πα

24
− π

24α
+

πα

2 (e2πα − 1)
+
πα

8

∞∑
n=1

1

sinh2 παn
, α >

ln 2

2π
; (19)

π/2∫
0

cos 2x sin ln(2 cosx)
α

cosh x
α + cos ln(2 cosx)

α

dx =
π

8α
− πα

4 sinhπα
− πα

8

∞∑
n=0

1

sinh2 πα(2n+1)
2

, α >
ln 2

π
. (20)

(20) is a consequence of (19). The infinite series in these formulas are the same as in the previous theorem,

eqs. (14) and (15).

III. SOME OTHER INTEGRALS

Theorem 5.

π∫
0

sinh 4x−π
α

cosh 4x−π
α − cos 4 ln(2 sinx)

α

dx = π coth
π

2α
− πα

8(
√

2− 1)
− αK

4

(
1 +
√

2 + 2k
)
, α >

ln 2

π
; (21)

π∫
0

sinh 4x−π
α

cosh 4x−π
α + cos 4 ln(2 sinx)

α

dx = π tanh
π

2α
− αkK

4

(
1 +

√
2 + 2/k

)
, α >

ln 4

π
. (22)

Proof. The case θ = π/4 of equation (A1) is

π∫
0

dx

i(x− π/4)− a+ ln (2 sinx)
=

4π

πi− 4a
+

π

1− eπi/4−a
H(ln 2− 2a), a ∈ R.

Replacing a with παn/2, where α > ln 2
π and n ∈ Z, and summing all these equations one can get

π∫
0

sinh 4x−π
α

cosh 4x−π
α − cos 4 ln(2 sinx)

α

dx = π coth
π

2α
− πα

4(
√

2− 1)
− πα

4

∞∑
n=1

1√
2 cosh παn

2 − 1
,

and as a consequence

π∫
0

sinh 4x−π
α

cosh 4x−π
α + cos 4 ln(2 sinx)

α

dx = π tanh
π

2α
− πα

4

∞∑
n=0

1
√

2 cosh πα(2n+1)
4 − 1

, α >
ln 4

π
.

The series in these equations is calculated in terms of elliptic integrals in the appendix B.

Another interesting case is θ = π
3 .



6

Theorem 6. If α > 0, then

π∫
0

sinh π−6x
2α

cosh π−6x
2α + cos 3 ln(2 sinx)

α

dx =
αkK√

3
cn
(
iK′

3 , k
)
− π tanh

π

2α
. (23)

Proof. The proof is similar to the proof of the previous theorem. We get

π/2∫
−π/2

sinh
(
3x
α + π

α

)
dx

cosh
(
3x
α + π

α

)
+ cos 3 ln(2 cosx)

α

= π tanh
π

2α
− πα√

3

∞∑
n=0

1

2 cosh πα(2n+1)
3 − 1

, α > 0,

and the series in this formula was calculated in the Appendix B.

Theorem 7. If α > 0, then

2π∫
0

arctan

{
tanh π−3x

4α

cot
3 ln(2 sin x

2
)

2α

}
cosx dx =

π
√

3

4 sinh πα
3

− 3π

2α
tanh

π

2α
+

√
3kK

2
cn
(
iK′

3 , k
)
. (24)

Proof. Only an outline of the proof is given here. We start from the generalization of (18)

π/2∫
−π/2

cos 2x dx

i(x+ θ)− a+ ln (2 cosx)
= − π

2(iθ − a)2
+
π

2

(
ea−iθ +

ea−iθ

(1− ea−iθ)2

)
H [ln(2 cos θ)− a] , (25)

where −π
2 < θ < π

2 , a ∈ R, and a 6= ln(2 cos θ). Its proof is similar to the one considered in Appendix

A with slight modifications. First we set θ = π/3 in this equation, in which case ln(2 cos θ) = 0, then

replace a with (2n+ 1)r where r > 0, and take the sum from n = −N − 1 to n = N (N ∈ N). It is easily

checked that integration and the limit limN→∞ can be interchanged in this case by Fubini’s theorem.

Hence

π

2r

π/2∫
−π/2

cos 2x tan
π(ix+ iθ + ln(2 cosx))

2r
dx

=

∞∑
n=0

π

(iθ − r(2n+ 1))2
− π

2

∞∑
n=0

(
e−(2n+1)r−iθ +

e−(2n+1)r−iθ(
1− e−(2n+1)r−iθ

)2
)
.

On the RHS of this equation, we first integrate wrt to θ and then take real part, while on the lhs it is

easier first to take real part and then to integrate wrt to θ by using the value of the elementary integral∫
sin πy

r

cosh π(θ+x)
r + cos πyr

dθ =
2r

π
arctan

{
tanh

π(θ + x)

2r
tan

πy

2r

}
.

The result is

π/2∫
−π/2

arctan

{
tanh

π(π + 3x)

6r
tan

π ln(2 cosx)

2r

}
cos 2x dx

=
π2

4r
tanh

π2

6r
− π

√
3

8 sinh r
− π
√

3

4

∞∑
n=0

1

2 cosh(2n+ 1)r − 1
.

The sum on the RHS is calculated in Appendix B.

It is clear that a lot of other log-trigonometric evaluations in terms of elliptic integrals can be obtained

in this way.
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IV. EXAMPLES

Using elliptic integral singular values one can find closed form evaluations of log-trigonometric integrals

considered above at certain values of the parameter α, e.g.

π/2∫
0

ln {coshx− cos (ln (2 cosx))} dx = −π
2

12
+ π ln

(
π

3

4

√
2

Γ
(
1
4

) ) , (26)

π/2∫
0

ln

(
cosh

x√
3

+ cos
ln (2 cosx)√

3

)
dx =

π2

8
√

3
− π

4
ln
(

1 +
√

3
)

+
13π

24
ln 2, (27)

π/2∫
0

cosh x
4 cos ln(2 cosx)

4

cosh x
2 + cos ln(2 cosx)

2

dx =
π

2
−
(√

2 + 1
)

Γ2
(
1
4

)
16
√

2π
, (28)

π/2∫
0

sin 2x sinhx

coshx+ cos (ln (2 cosx))
dx =

π

8
+

π

4 sinhπ
+

1

16
−

Γ4
(
1
4

)
128π2

, (29)

π/2∫
0

cos 2x sin ln(2 cosx)√
3

cosh x√
3

+ cos ln(2 cosx)√
3

dx =
π

8
√

3
− π

√
3

4 sinhπ
√

3
+

1

16
− 3−

√
3

22/3
Γ6
(
1
3

)
128π3

, (30)

π∫
0

sinh π−6x
2
√
3

cosh π−6x
2
√
3

+ cos 3 ln(2 sinx)√
3

dx =
Γ3
(
1
3

)
210/3π

− π tanh
π

2
√

3
, (31)

2π∫
0

arctan

{
tanh π−3x

4
√
3

cot
3 ln(2 sin x

2
)

2
√
3

}
cosx dx =

√
3 Γ3

(
1
3

)
216/3π

− π
√

3

4 sinh π√
3

(
cosh

π√
3
− 3

2

)
. (32)

Equation (6) in Theorem 1 is particularly interesting because in this case k and k′ are algebraic. That’s

why evaluation of the integral (27) does not contain any gamma functions.

V. DISCUSSION

To better understand the integrals calculated in the previous sections, let’s consider the integral (9)

from Theorem 2 and transform it into another form

I(α) =

π/2∫
0

cosh x
2α cos ln(2 cosx)

2α

cosh x
α + cos ln(2 cosx)

α

dx =
1

4

π/2∫
−π/2

dx

cos
(
ix
2α + ln(2 cosx)

2α

)
=

1

4

π/2∫
−π/2

dx

cos ln(1+e2ix)
2α

.

Here making the substitution z = ln(1 + e2ix) as explained in the Appendix A, one obtains

I(α) =
1

8i

∫
C

dz

(1− e−z) cos z
2α

.

Contour C is the same as in Appendix A. Thus, what we essentially did in this paper was to rewrite

certain contour integrals as integrals of real valued functions over an interval.
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There are other integrals that can be evaluated in terms of Lambert series, e.g.

π/2∫
0

sin ln(2 cosx)
α

cosh x
α − cos ln(2 cosx)

α

dx =
πα

2
− πα

∞∑
n=1

1

e2παn − 1
, (33)

π/2∫
0

sin ln(2 cosx)
α

cosh x
α + cos ln(2 cosx)

α

dx = πα

∞∑
n=0

1

eπα(2n+1) − 1
. (34)

However these Lambert series can not be expressed in terms of elliptic integrals.

For θ = π/2 the discontinuity in the parameter a disappears altogether:∫ π

0

x

x2 + ln2(2ea sinx)
dx =

2π2

π2 + 4a2
,∫ π

0

ln(2ea sinx)

x2 + ln2(2ea sinx)
dx =

4πa

π2 + 4a2
, a ∈ R.

These formulas lead to the analogs of (34)

∫ π

0

sin ln(2 sinx)
α

cosh x
α + cos ln(2 sinx)

α

dx = 0,∫ π

0

sinh x
α

cosh x
α + cos ln(2 sinx)

α

dx = π tanh
π

4α
, α ∈ R,

that obviously does not contain any Lambert series.

Another type of integrals can be obtained from log-trigonometric integrals (1-4) when |Im a| ≥ π
2 , e.g.

π/2∫
0

sinh ln(2 cosx)
α

cosh ln(2 cosx)
α − cos xα

=
πα

2
, α ∈ R.

These integrals also does not contain any Lambert series.

Appendix A: Generalization of equation (4) with γ = 0

Here we consider a generalization of (3) when β = 0. Namely, it will be proved that

π/2∫
−π/2

dx

i(x+ θ)− a+ ln (2 cosx)
=

π

iθ − a
+

π

1− eiθ−a
H [ln(2 cos θ)− a] , (A1)

where −π
2 < θ < π

2 , a ∈ R, and a 6= ln(2 cos θ).

To do this first rewrite this integral as a contour integral. Let

z = ix+ ln(2 cosx), −π
2
< x <

π

2
. (A2)

When x varies from −π
2 to π

2 the complex variable z traverses the path C given by the parametric equation

Re z = ln(2 cosx), Im z = x. This path is plotted in the figure below (the blue line).
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−3 −2 −1 1

−1

1

Im z=θ

Re z=ln(2 cos θ)

Re z

Im z

As can be seen, this path extends from −∞ below the line Im z = 0, passes through the point (ln 2, 0),

then extends back to −∞ above the line Im z = 0. It is easy to solve eq. (A2) for x in terms of z:

x = 1
2i ln(ez − 1), with the choice of the branch cut for the complex logarithm as the ray going from 0 to

−∞. Thus
π/2∫
−π/2

dx

i(x+ θ)− a+ ln (2 cosx)
=

1

2i

∫
C

dz

(z + iθ − a)(1− e−z)
.

The integral in the z-domain does not have any branching points, therefore there is no need to include

any branch cuts in the picture above.

There can be at most two poles of the function 1
(z+iθ−a)(1−e−z) inside the contour of integration. The

pole z = 0 is always inside the contour, while the pole z = a − iθ can be either inside or outside of

the contour depending on the values of a and θ. Let’s fix the value of −π
2 < θ < π

2 and plot the line

Im z = θ in the picture above (the dashed horizontal line). It has only one point of intersection with

path C which is (ln(2 cos θ), θ). Thus if a < ln(2 cos θ), then the pole z = a− iθ is inside the contour C.

If a > ln(2 cos θ) then the pole z = a− iθ is outside the contour C. Now one can easily apply the residue

theorem to complete the proof of (A1).

Appendix B: Calculating certain sums with hyperbolic functions

Let

S1(α) =

∞∑
n=−∞

1√
2 cosh παn

2 + 1
,

S2(α) =

∞∑
n=−∞

1√
2 cosh παn

2 − 1
,

then due to 2 cosh2 x− 1 = cosh 2x one obtains

S2(α)− S1(α) = 2

∞∑
n=−∞

1

coshπαn
,

S2(α) + S1(α) = 2
√

2

∞∑
n=−∞

cosh παn
2

coshπαn
.

Well known formulas from the theory of elliptic functions [8] state that

∞∑
n=−∞

1

coshπαn
=

2K

π
,

∞∑
n=−∞

cosh παn
2

coshπαn
=

2K

π

√
1 + k.
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One can deduce from this by trivial algebra that

S2(K
′/K) =

∞∑
n=−∞

1√
2 cosh παn

2 − 1
=

2K

π

(
1 +
√

2 + 2k
)
.

Similarly
∞∑
n=0

1
√

2 cosh πα(2n+1)
4 − 1

=
kK

π

(
1 +

√
2 + 2/k

)
. (B1)

To calculate the sums we encountered in the proofs of thereoms 6 and 7 note that 2 cosh 2x−1 = cosh 3x
coshx .

Then it is easy to deduce that

∞∑
n=0

1

2 cosh πα(2n+1)
3 − 1

=
kK

π
cn
(
iK′

3 , k
)
. (B2)
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