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ABSTRACT. We prove a Korovkin-type approximation theorem using the rel-
ative uniform convergence of a sequence of functions at a point, which is a
method stronger than the classical ones. We give some examples on this new
convergence method and we study also rates of convergence.

1. INTRODUCTION

Since their discovery, the simplicity and the power of the classical theorems of
Korovkin (see [33]) have impressed several mathematicians. Starting with these
results, many authors have extended the Korovkin theorem to several contexts
using different, new and strong convergence methods (for an overview, see e.g.,
[1, 2, 8] and their bibliographies).

The Korovkin-type theorems give conditions for uniform approximation of con-
tinuous functions on a compact space using sequences or nets of positive linear oper-
ators on the space of continuous functions. The classical Bohman-Korovkin theorem
gives uniform convergence in the space C([a, b]) of all continuous real-valued func-
tions defined on the compact subinterval [a, b] of the real line, with the only hypoth-
esis of convergence on the test functions 1, z, 22 (see e.g., [13, 23, 32, 33]). There
have been several extensions of the Korovkin theorem to abstract functional spaces,
like for instance LP spaces (see e.g., [25, 30, 37, 40]), Orlicz spaces (see e.g., [34, 38]),
general modular spaces (see e.g., [6, 7, 9]). There have been also several studies
about Korovkin-type theorems with respect to convergence generated by summabil-
ity matrices, statistical and filter convergence (see e.g., [2, 4, 22, 26, 27, 28, 29, 41]),
and “triangular A-statistical convergence”, which is an extension of statistical con-
vergence, associated with a suitable non-negative regular matrix A (see e.g., [4, 5]).
In [11] it is dealt with Korovkin-type results about convergence and estimates of
rates of approximation with respect to abstract convergences for nets of operators
acting on an abstract modular function space and satisfying suitable axioms (see
e.g., [6]), including as particular cases convergence generated by summability ma-
trices, filter convergence and almost convergence, which is not generated by any
filter (see [12]). Moreover, in [11] the general case of a net of operators, acting
on an abstract modular function space, is treated, and earlier results proved in
[4, 5, 6, 10, 19, 26] are extended, unifing different previous theories. Furthermore,

Key words and phrases. Korovkin theorem, rate of convergence, relative uniform convergence.
2010 Mathematics Subject Classification. 40A35, 41A35, 46E30.
This research was supported by Sinop University Scientific Research Coordination Unit, Project
N. FEF-1901-18-28, University of Perugia and G.N.A.M.P.A. (Italian National Group of Mathe-
matical Analysis, Probability and Applications).

1



2 KAMIL DEMIRCI', ANTONIO BOCCUTO?, SEVDA YILDIZ' AND FADIME DIRIK?

these topics have several recent meaningful applications to signal processes, image
reconstruction, neural networks, thermography and seismic engineering (see e.g.,
[17, 18, 20, 21, 39] and their bibliographies).

From now on, we assume that I C R is a compact interval.
The classical notion of uniform convergence of function sequences is formulated
as follows:

Definition 1.1. The function sequence (f,),,, defined on I and with values in R,
converges uniformly on I to f: I — R iff for every € > 0 there exists an integer N
such that, if n > N and « € I, then |f, () — f (z)| < e.

Observe that, in general, the notions of “uniform convergence on each closed
subinterval of an open interval” and “uniform convergence on the open interval”
are not equivalent. For example, the sequence (f,),, given by f,, (z) = 2™ converges
uniformly to 0 on any interval [0,a] with 0 < a < 1, but neither on [0, 1] nor on
[0,1).

Recently, the idea of uniform convergence of a sequence of functions at a point
was formerly defined by J. Klippert and G. Williams (see for details [31]).

Definition 1.2. Suppose that (f,,), is a sequence of real functions defined on I.
Let zog € I. We say that (f,),, converges uniformly at the point xq to f: I — R iff
for every € > 0 there are § > 0 and N € N such that

[fn(z) = f(2)] <e

whenever n > N and |z — x| < 4.

Example 1.1. Define g, : [0,1] — [0,1] by

| =z, ifnisasquare
(1.1) gn (7) = { 0, otherwise
It is readily seen that the sequence (g,), converges to 0 at the point 0 and does
not converge at any point = €]0,1]. Now we claim that (gy,),, converges uniformly
to 0 at g = 0. Indeed, let € > 0 be given, and choose § = and N = 1. Let n > N
and x € [0,1] with |z| <. Then,

|gn (2)| <] <6 =e.

The notion of uniform convergence of a function sequence with respect to a scale
function was introduced by E. H. Moore in [36] and developed by E. W. Chittenden
in [14, 15, 16]. A scale function is any map o : [ — R\ {0}.

Definition 1.3. A sequence (f,), of real-valued functions, defined on I, converges
relatively uniformly to a function f: I — R with respect to the scale function o iff
for every € > 0 there is an integer n. such that for every n > n. and x € I the
inequality

|fn (z) = [ (z)| < elo(2)]
holds.

In this paper we introduce the notion of relative uniform convergence of a se-
quence of functions at a point. We apply our new kind of convergence to prove a
Korovkin-type approximation theorem. Furthermore, we study the rates of conver-
gence, extending earlier results proved in [3, 10, 11, 19].
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2. RELATIVE UNIFORM CONVERGENCE AT A POINT

We begin with the definition of our new convergence method.

Definition 2.1. Suppose that (f,),, is a sequence of real-valued functions defined
on I. Let zg € I. We say that (fy), converges relatively uniformly at the point
xg € I to f: I — R with respect to the scale function o, iff for every € > 0 there
are 6 > 0 and N € N such that for every n > N, if |z — 2| < §, then

[fm (2) = f ()| < elo ()]

Now we give the following special cases to show the effectiveness of the new
proposed method.

Remark 2.1. Observe that uniform convergence of a sequence of functions at a
point is a special case of relative uniform convergence of a sequence of functions
at a point, in which the scale function is a non-zero constant. If o(x) is bounded,
then relative uniform convergence at a point implies uniform convergence at a point.
However, in general, relative uniform convergence at a point does not imply uniform
convergence at a point, when o(x) is unbounded.

Now we give the following example of a function sequence which converges rela-
tively uniformly at x¢y = 0 with respect to a scale function, but does not converge
uniformly at xg = 0.

Example 2.1. Define h,, : [0,1] — [0,1] by

2 if n is a square
2.1 ={ e
(2.1) fin () { 0, otherwise

We claim that (hy,), converges relatively uniformly at zo = 0 to 0 with respect to
the scale function

o(x) =

1 ifo<z<i

1, ifz=0
Indeed, let € > 0 be given, and choose § = ¢ and N =1. Let n > N and z € [0,1]
be with z < §. We get

’IlLEz

~— 14+nx

<z<f==e.
0’(,’1}) ST S 3

However, (hy,), does not converge uniformly at xo = 0. Indeed, choose arbitrarily

1
0 >0and N € N, and let n > N and = € [0,1] be with < 4. For5:§,

1 1
x = — € [0,1], we have Moo
n l1+nx 2

3. KOROVKIN TYPE APPROXIMATION THEOREMS

Let C (I) be the space of all continuous real-valued functions on I, and for every

x €I, set eg(x) =1, ep(x) = 2", r € N. We know that C (I) is a Banach space

with norm [|f|| ;) = sup|f (z)| . First, we give the well-known classical Korovkin
zel

approximation theorem.
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Theorem 3.1. (see also [32, 33]) Suppose that (L), is a sequence of positive
linear operators acting from C' (I) into itself, satisfying the following conditions:

nh_>1r010 [Ln (er) —erllery =0, r=0,1,2.
Then, for all f e C(I),
nh_{go [ Ln (f) — fHC(I) =0.
Now we present our following main theorem.

Theorem 3.2. Let (L,), be a sequence of positive linear operators acting from
C (I) into itself. Then (Ly, (ey)),, r = 0,1,2, converges relatively uniformly at o
to e, with respect to the (possibly unbounded) scale function o, if and only if for all
fe (), (Ln(f)), converges relatively uniformly at xo to f with respect to the
scale function o defined by

(3.1) o (z) = max {|o, (z)] : ¥ =0,1,2}.

Proof. Let I = [a,b], with a < b € R, and let zy € I be fixed. Since each e, € C (I),
the sufficient condition is obvious. Now, let f € C(I) and = € I be fixed. Let
Q = max{—a, b}, R = max{Q, Q?}. Of course, |z| < R and 22 < R for every z € I.
By the continuity of f on I, there is a positive real number S with |f (x)] < S for
every x € I. Therefore, we get

[f @) = f @) < [f @O+ 1S (2)] <28

Moreover, since f is uniformly continuous on I, for every € > 0 there exists n > 0
with |f () — f(x)] < €/4 for all ¢ € I satisfying |t — x| < 7. Hence, for each z,
t € I we have

\f(t>—f(w)\§f+f7—§(t—:v)2,
that is
S S
B LG VIR IOES T

Without loss of generality, € can be chosen such that 0 < & < 1, so that g2 <e. By

2
Z»%, 3;25} and r = 0,1, 2 there are

hypothesis, in correspondence with min{
6 >0 and N,. € N with

2
(e € €
(3.2) |Ln(er;2) — ep(x)] < mln{z, 15 %} | ()]

whenever n > N, and |z — 29| < §,. From (3.2) we get

2
. (e € €nm
(3.3) |Ln(er;x) —ep(z)] < mm{z, 15 m} o(x)
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for every n > N and z € I with |z — z9| < §, where 6 = min {4, : r = 0,1,2} and
N = max{N, : r =0,1,2}. We have

L((- — @)% )
|Ln(ea — 2z ey + 2% ) — 2% + 222 — 2|

< |Lp(eg; ) — 2% + 2 x| |Ly(er; ) — 2| + 22 | Ly (eg; ) — 1
= |Ln(ea;x) — 22| + 22| |Ln(er; ) — er(z)| + 22 | Ly (eo; ) — eo(w)]
< o)
— o(x
- 885

for each n > N and = € I with |z — 2| < §. As the operators L,, are linear and
positive, taking into acount (3.3), we have

L (f; ) = (=)

< |Ln (fs2) = f(2)Ln (€03 )| + [ f(2) Ln (e0; z) — f(2)]
< S Lufenio) + 25 La((- - 0)%)

+8 |Ly (€0; ) — eo()]
< Z |L,, (eo; ) — eo(x)| + Zeo(x) + f’—f L,((- —z)%2)

+S |Ln (eo;m) - 60(1’)|
< % o(z)+ Za(x) + Za(x) + Za(x) <eo(x).

whenever n > N and |z — z¢| < 6. This ends the proof. O

When the involved scale functions are non-zero constants, the next result follows
immediately from our main Korovkin-type approximation theorem.

Corollary 3.3. Let (L,), be a sequence of positive linear operators acting from
C (I) into itself. Then (L, (e;)),, r = 0,1,2, converges uniformly at xq to e, if
and only if for all f € C(I), (L, (f)),, converges uniformly at xqy to f.

In the next example we will show that our main Korovkin-type approximation
theorem is stronger.

Example 3.1. Let I = [0,1] and consider the following Meyer-Konig and Zeller
polynomials introduced by W. Meyer-Konig and K. Zeller in [35]:

M, (f;x) = (1 —2)"" ;f <nik> <”‘£k)xk fecio,1].

It is well-known that M, (1;z) =1, M,, (t;z) =  and

1—x)
M, (2:2) = 22 +1n, < 2 x (
(t%2) =2+, (z) <2* + o

i

where

> +k—-1 xk
n — 1_ n+1 n I
M (@) =z (1 =) kz_()( k >n+/<;+1

Using these polynomials, we define the following positive linear operators on C' [0, 1] :

(3.4) T, (f;x) = (14 hy ()M, (f;2),



6 KAMIL DEMIRCI', ANTONIO BOCCUTO?, SEVDA YILDIZ' AND FADIME DIRIK?

where h,, is given by (2.1), and we choose o, () = o (z), r =0, 1,2, where

{ L ifo<a<l1

)

o (z) = 1, ifz=0

Now we claim that (75, (e,)), r =0, 1,2, converges uniformly at zo = 0 to e, with
respect to the scale function o,. Let € > 0 be given. Choose dg = ¢ and Ny = 1.
Let n > Ny and z € [0, 1] with |z| < dg. Then,

oo () o (z)
Also, choose §; = v/e and N; = 1. Let n > N; and z € [0, 1] with |z| < 6;. Then,
‘Tn (t;x) —z x hy ()
o1 () o (z)
h
— ol |2 <y < 82 = e
o (z)

2
Finally, choose 62 = 78 and Ny = 1. Let n > Ny and = € [0, 1] with |z| < d2. Then,

we obtain

T, (t%x) — a? (14 hp (2)) (xZ i 3:(7117;115)) 2
B e
x(1— =) ha () s(l—x)| 7 7
e | T ew ||F T e | Skl sgi=c

Hence, by Theorem 3.2, for € > 0 there
2
are ) = min {5, Ve, 78} and N = 1 such that for every n > N,

o (z) =€

holds for all z € I = [0,1] satisfying || < §. However, since |T), (1;z) — 1| =

T %, n is square
(14 P (2)) = 1] { 0, otherwise
convergent to eg (z) = 1 and also, (T}, (eg)) is not converges uniformly at zo = 0
to eg. Hence, we can say that Theorem 3.1 (classical Korovkin type theorem) and
Corollary 3.3 do not work for our operators defined by (3.4). O

, the sequence (T, (eg)) is not uniformly

Example 3.2. Let I = [0,1], and consider the classical Bernstein polynomials

n k n e
B, (f;z) = = 1 —a)"
=Y (5)(3)et -0
k=0
on C'[0,1]. It is well-known that B, (1;z) = 1, B, (t;x) = « and
B, (i) I Gt )
n ’ n :

Using these polynomials, we define the following positive linear operators on C' [0, 1] :

(3.5) T (f;2) = (1 + hy (2))Bn (f32)
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where h,, is given by (2.1), and we choose o, () = o (z), r =0, 1,2, where
(2) = %, fo<ax<1
TW=V1, ifz=0
Then it is not difficult to see that the sequence of the operators defined in (3.5)

converges relatively uniformly at o = 0 with respect to the scale function o, but
does not converge uniformly at zo = 0.

1 1
= Exact f(x) _— E:ict f(x)/<
- n=4 L
0.8  [—n=g 08 |—n-s
- /. ====n=16
e nm16
n=36 W 0.6 n=36
0.6 | |—noca , 6 |—n=64 y
> // /
04t /
0.4 LY ,
b ¢ Y
A /
02 P ”",.o' 021 . Z,
o A -,
” - -~
- = 0 1 1 1
0
0 02 oa 06 08 0 02 0.4 0.6 08 1
X X
FIGURE 1. The opera- FIGUREB (?:x)The oper-
n
tors B, (f;x) and the ators —ov= and the
function f (z) = 3. function fgm;
o(x
2 2 :
— Exact f(x) — Exact f(x)/o]
- n=4 02 o
—n=9 _
r —n=9
157 n=t6 0.1 , 15
n=36 9“‘"/" n=36
_ ]
—n=64 0 =64
: . Al
05f
% Tob

FIGURE 3. The FIGURE 4. The opera-
operators tors W and
(L+ hy (%)) B (f; 7) f(@)

the function ==

o)

and the function f ().

Figurel: We can see the Bernstein operators, which converge uniformly, and also
converge uniformly at the point xy = 0.

Figure2: We can see the Bernstein operators, divided by the scale function, that
converge uniformly with respect to the scale function o, and also converge
uniformly at the point o = 0 with respect to the scale function o.
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Figure3: We can see the new operators given via the Bernstein operators with the
function sequence (hy),, which do not converge uniformly at the point
Tog = 0.

Figure4 : We can see the new operators, divided by the scale function, given via
the Bernstein operators with the function sequence (hy),, that converge
uniformly at the point ¢y = 0 with respect to the scale function o.

4. RATES OF CONVERGENCE

In this section we study the rate of convergence with the aid of the modulus of
continuity, which is defined by

w(f,0) = sup  |f@) = f(@)], feC(), §>0.

t,wel,|t—z|<8
It is readily seen that, for any A > 0 and f € C(I),
w(f,A0) < (1 +[A))w(f,9),
where [A] denotes the greatest integer less than or equal to .
Theorem 4.1. Let (Ly), be a sequence of positive linear operators acting from

C (I) into itself. Assume that the following conditions hold:

(2) (Ln (e0)),, converges relatively uniformly at xo to eq with respect to the scale
function oq;

(#4) lim w(f,0n) =0 for each x € I, where
n—oo |oy ()]

(4.1) G0 =1/ Ln ((. — ) :r) n€N.

Then, for every f € C(I), (L, (f)),,
respect to the scale function o, where

o (z) = max {|o, (z)] : r =0,1}.

converges relatively uniformly at xo to f with

Proof. Let « € I and f € C(I) be fixed. Since the operators L,, are linear and
positive, then for every n € N and § > 0 we have

L (f;2) = f ()]
< La([f C) = F@)]52) +|f (2)] L (152)
2
< Ly <<1+ s _(;2%) )w(fﬁ);m) +[f (@) Ln (15 2)
= w(/f,0) Ln (1;)
P BT (= s0)] 4 1f @) 2 (1:).
Now, let § = d,, be as in (4.1). We get

o (x) - o oo(z)|
+20|J0(1f£;|)[[,n(1;x)+1].

The assertion follows by using (¢) and (i4). O
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