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Abstract 

It has been more than 100 years since the advent of special relativity, but the 

reasons behind the related phenomena are still unknown. This article aims to inspire 

people to think about such problems. With the help of Mathematica software, I have 

proven the following problem by means of statistics: In 3-dimensional Euclidean space, 

for point particles whose speeds are c and whose directions are uniformly distributed in 

space (assuming these particles’ reference system is R0 if their average velocity is 0), 

when some particles (assuming their reference system is Ru), as a particle swarm, move 

in a certain direction with a group speed u (i.e., the norm of the average velocity) 

relative to R0, their (or the sub-particle swarm’s) average speed relative to Ru is slower 

than that of particles (or the same scale sub-particle swarm) in R0 relative to R0. The 

degree of slowing depends on the speed u of Ru and accords with the quantitative 

relationship described by the Lorentz factor . 

1. Introduction 

The research object of this article is the case in which the random motion (random 

motion in the following refers to motion with the speed of c and direction uniformly 

distributed in the Euclidean 3-dimensional space) of infinitely many point particles in 

infinite Euclidean space. It is difficult for us to track the trajectory of a point particle 

among a large number of randomly moving particles. In most cases, it is not necessary 

to obtain the trajectory of a single particle. All the information we perceive is usually 

the statistical average of a large number of particles. Therefore, statistical methods are 

very effective in solving this kind of problem. 

As a symbolic mathematical calculation tool, Mathematica (Wolfram Research 

Inc.) can provide strong support for mathematical calculation and scientific exploration. 

Especially when the experimental scheme has been designed well and the specific 

mathematical calculations are more complex, the use of Mathematica can greatly 

improve efficiency. Version 8.0 (2010) of Mathematica introduced the symbolic 

statistics module for the first time and version 12.0 strengthened this module; the 

corresponding functions were very perfect, and some more difficult symbolic statistical 

problems were easily solved. 

The random motion of particles in 3-dimensional Euclidean space has been 

historically studied in detail. James Clerk Maxwell(Maxwell 1860) studied the average 

c
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speed of random collided gas molecules at a certain temperature and proposed the 

Maxwell distribution for the first time. On this basis, Ludwig Boltzmann(Boltzmann 

1872) developed the Maxwell distribution using a more rigorous approach. In this 

article, based on the Maxwell distribution, I use modern tools to study the relationship 

between the average velocity of randomly moving particles in different reference 

systems. 

2. Methods 

Mathematica 12.1 for Mac (Wolfram Research Inc.) was used for all of the 

mathematical calculations, and the operating system was macOS High Sierra 10.13.6.   

3. Results and Discussions 

Suppose that the speeds of these particles (throughout this article, the "point 

particles" described in the above are called "particles", "1st-order particles", while 

larger finite-mass-level particles composed of k particles are called "kth-order particles") 

are exactly the same (or , where c is the mean value of the particle speeds and 

 is their standard deviation), and the directions of their motions in 3-dimensional 

space are random. Therefore, these particles can be represented by random vectors with 

equal norms in Euclidean space. When a group of particles in the same 3-dimensional 

space is moving in one direction on average (i.e., their centroid is moving in one 

direction), they will lose some probability of movement in other directions due to 

statistical effects, i.e., the movement trends in other directions will decrease. This 

phenomenon will be quantitatively explained in detail below. 

Note that the velocity of a kth-order particle is the velocity of the overall center of 

mass of the k particles, which is the average of the velocity vectors of all these particles. 

Moreover, the projection of the velocity vector of a kth-order particle onto one of the 

three equivalent coordinate axes of the 3-dimensional Cartesian coordinate system is 

the mean value of the projection (onto the same axis) of the velocity vectors of the 1st-

order particles forming the kth-order particle, which follow the same distribution; 

therefore, it approximately follows a normal distribution (central limit theorem). There 

are three equivalent (approximate) normal distributions, one on each of the three axes, 

which are not completely independent. However, James Clerk Maxwell(Maxwell 1860) 

and Ludwig Boltzmann(Boltzmann 1872) proved that these distribution can, in fact, be 

equivalently treated as completely independent. This is because randomly selecting a 

vector is equivalent to randomly determining a three-axis coordinate; moreover, the 

σ 1≪ c

σ 1
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problem of the momentum transfer of gas molecules participating in random collisions 

is also equivalent to the problem discussed in this article. Accordingly, the speeds of 

kth-order particles follow the Maxwell distribution. Suppose that the standard deviation 

of the projection (treated as a random variable; the same is done below) of the velocity 

of any one of the k equivalent particles forming a kth-order particle onto each equivalent 

coordinate axis is . Then, the standard deviation of the projection of the velocity of 

a kth-order particle onto each equivalent coordinate axis is , namely the projection 

onto each coordinate axis follows a normal distribution with a mean value of 0 and a 

standard deviation of . As a result, the speed of kth-order particles follows the 

Maxwell distribution with scale parameter  (see Part 1 of the Supplementary 

Information for details). 

As already mentioned, it is assumed that the speed of all particles is c (c > 0) and 

that the directions of their movement are evenly distributed in 3-dimensional space. 

Among the possible systems composed of randomly moving particles, the system with 

an average velocity of 0 is called the stationary reference system (denoted by R0), and 

a 3-dimensional Cartesian (rectangular) coordinate system Oxyz is established for it. A 

particle swarm formed by a subset of particles in a certain period of time and moving 

at an average velocity u is called a moving reference system (denoted by Ru). Let the 

direction of the velocity of Ru be parallel to the z-axis in the direction of increasing z. 

Then, the mean value of the velocity component of the particles in Ru along the z-axis 

must be u. Under the assumptions that all particles in Ru are represented by vectors 

with their starting points at the origin of the coordinate system and that the point (0, 0, 

u) is taken as the dividing point of the z-axis, the vectors in Ru can be separated into 

two groups: the components of the vectors above this dividing point and the 

components of the vectors below it. These vectors randomly enter Ru from R0 with 

equal probability. Therefore, the distribution of the vectors in Ru can be thought of as 

a mixed distribution of the vector distribution of the components above the dividing 

point and the vector distribution of the components below the dividing point. When the 

mean value of the components on the z-axis of this mixed distribution is u, the mixture 

weights w can be determined. With this value as the reference, the distribution of the 
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vectors that form the mixed distribution on the x-axis (or y-axis) can be determined; 

thus, their standard deviation  can also be obtained. When the standard deviation 

of the components on the z-axis of this mixed distribution is also , then the speed of 

kth-order particles (of mass , where  is the mass of a single particle; the same is 

true below) in Ru follows the Maxwell distribution with scale parameter , where 

   (1) 

Therefore,  is directly proportional to the average speed  of the kth-order 

particle, namely, 

   (2) 

By substituting Eq. 1 into Eq. 2, we obtain 

   (3) 

The distribution of the vectors in R0 is relatively simple. Suppose that the standard 

deviation of their components on the x-axis (or y- or z-axis) is ; similarly, the 

average velocity of the kth-order particles that is formed by them is 

   (4) 

When particles of the same mass level are formed in both Ru and R0, the ratio between 

their average speeds (Eq. 3 to Eq. 4) is 

   (5) 

Therefore, the ratio of  to  is the ratio between the average speeds of particles 

of higher mass levels in Ru and R0. A more detailed introduction will be presented in 

the following. 

As mentioned above, in the 3-dimensional Cartesian coordinate system 

constructed in the stationary reference system R0, if the moving reference system Ru 

moves along the z-axis at velocity u, then the x- and y-coordinates are equivalent; hence, 

only the x-coordinate is considered in the following. In view of the nature of probability 

theory, in R0, if the components of these vectors along the z-axis are uniformly 

distributed in the interval [–c, c], then the probability density on the x-axis is 

   (6) 
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where the random variables are Q~U(–p, p) and H~U(–1, 1). Note that in this article, 

random variables (vectors) are expressed in capital letters, and the values of random 

variable (vectors) are expressed in the corresponding lower-case letters. The component 

distribution of the vectors whose components are above (0, 0, u) on the x-axis is denoted 

by D1, and its probability density is written as 

   (7) 

where the random variables are Q~U(–p, p) and H~U( , 1). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D3, namely, D3~U(u, 

c). The component distribution of the vectors whose components are below (0, 0, u) on 

the x-axis is denoted by D2, and its probability density is written as 

   (8) 

where the random variables are Q~U(–p, p) and H~U(–1, ). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D4, namely, D4~U(–

c, u). When the mean value of the components of the mixed distribution consisting of 

D3 and D4 on the z-axis is u, the corresponding mixture weights are  and , 

respectively. Note that D1 and D2 are randomly selected from the vector swarms with 

the same characteristics as D3 and D4, respectively. Then, the mixed distribution 

consisting of D1 and D2 can be calculated in accordance with these two weights (the 

analytical form of this mixed distribution cannot be given in this article at present); then, 

it can be found that the standard deviation of the velocity components on the x-axis of 

the particles in Ru is 

   (9) 

By evaluating the ratio between Eq. 9 and the standard deviation of the velocity 

components on the x-axis of the particles in R0, we can obtain the corresponding scale 

factor, namely, 

 . (10) 

This is equivalent to the additive inverse of the Lorentz factor when c represents the 

speed of light. Obviously, the ratio of the standard deviations of the velocity 

D1(θ ,η) = c ⋅cosθ ⋅sincos
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components on the y-axis is also this scale factor, as shown in Eq. 10. This same factor 

can also be obtained by evaluating the ratio of the standard deviation of the velocity 

components on the z-axis of the mixed distribution in Ru to the standard deviation of 

the velocity components on the z-axis in R0. In view of the indistinguishable feelings 

in Ru and R0, the particles in R0 can also be regarded as formed by the particles in Ru. 

The detailed Mathematica code for the above calculation can be found in Part 2 of the 

Supplementary Information. 

Based on the above conclusions, the following result will be easily obtained: The 

abovementioned case is the movement of the particle swarm relative to Ru observed 

from R0. If the movement of the particle swarm in Ru relative to R0 are observed from 

R0, the probability density of the magnitude of the momentum of the particle swarm 

formed by k particles in Ru relative to R0 observed from R0 can be obtained based on 

the above conclusions, namely, 

   (11) 

The detailed Mathematica code for the above calculation can be found in Part 3 of the 

Supplementary Information. 

4. Conclusions 

This result implies that when a subset of the particles in the reference system R0 

composed of particles moving at the same speed (such as c) and in random directions 

forms a reference system Ru moving at speed u, the speed of the moving aggregate 

particle of a larger mass level in Ru will be relatively decreased, with a degree of 

deceleration corresponding to the value determined by the scale factor given by Eq. 10. 

When the average velocity of a larger-mass-level particle composed of Kth-order 

particles is measured in a moving reference system Ru with velocity u, the 

corresponding degree of deceleration is determined by the average speed cK of the Kth-

order particles in accordance with the scale factor , and when the average 

velocity of a larger-mass-level particle composed of Lth-order particles is measured 

similarly, the corresponding degree of deceleration is determined by the average speed 

cL of the Lth-order particles in accordance with the scale factor . It is also 
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noted that in Ru, the slowdown on all three axes is the same. This means that there is 

no difference in physical laws that can be perceived between Ru and the stationary 

reference system R0. Therefore, when another moving reference system  appears 

in Ru, Ru can, in turn, be treated as a stationary reference system, which is a useful 

feature.�

�
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Supplementary Information
(Mathematica v12.1 code of TraditionalForm)

Part 1��The Ratio of the Standard Deviations Equals the Ratio of the Average 
Speeds for the Same Mass Level Particles in Different References

Definition: Particles with a higher mass level composed of k particles are called kth-order particles.
Then, the velocity of a kth-order particle is the velocity of the overall center of mass of the k particles, 
which is the average of the velocity vectors of all these particles.
Assumption: Each particle is moving at the same speed and in a random direction in space.
Thus, the projection of the velocity vector of a kth-order particle onto one of the three equivalent 
coordinate axes of the 3-dimensional Cartesian coordinate system is the mean value of the projection 
(onto the same axis) of the velocity vectors of the 1st-order particles forming the kth-order particle, 
which follow the same distribution; therefore, it approximately follows a normal distribution (central 
limit theorem).
There are three equivalent (approximate) normal distributions, one on each of the three axes, which are 
not completely independent. However, James Clerk Maxwell and Ludwig Boltzmann proved that these 
distribution can, in fact, be equivalently treated as completely independent. This is because randomly 
selecting a vector is equivalent to randomly determining a three-axis coordinate; moreover, the prob-
lem of the momentum transfer of gas molecules participating in random collisions is also equivalent to 
the problem discussed in this article.

First, the probability density of the norm of the 3-dimensional vectors formed by three normal distribu-
tion N(0, σ2) components that are independent on three coordinate axes is calculated.

Clear["Global`*"];
$= SimplifyPDFTransformedDistributionx2 + y2 + z2,

{x, y, z} * ProductDistribution[{NormalDistribution[0, σ2], 3}], x, Assumptions→σ2 > 0;

$1 = PDFTransformedDistribution x , x* ProbabilityDistribution[$, {x, 0, +∞}], x

Out[!]=

2

π
x2 ⅇ

-
x2

2 σ2
2

σ2
3

x > 0

0 True

Then, we find the probability density of the Maxwell distribution with scale parameter σ2:

In[!]:= $2 = PDF[MaxwellDistribution[σ2], x]

Out[!]=

2

π
x2 ⅇ

-
x2

2 σ2
2

σ2
3

x > 0

0 True

Therefore, these two probability densities are equal:

In[!]:= $1 -$2

Out[!]= 0

We verify the above conclusion (c is the speed of the 1st-order; n is the number of vectors) (This code 
takes approximately 166 seconds):



In[!]:= c = 1;
n = 1000;
m = 1 000 000;
dd = {};
ProgressIndicator[Dynamic[i], {1, m}]
For[i = 1, i <m, i++,

ℋ =RandomPoint[Sphere[{0, 0, 0}, c], n];
ℋℋ =Norm[Total /@ Transpose[ℋ]];
dd =AppendTo[dd, ℋℋ]];

$= SmoothKernelDistribution[dd, {"Adaptive", Automatic, Automatic}];

PlotPDF[$, x], PDFMaxwellDistribution
c

3
n , x,

{x, 0, 100 c}, PlotStyle→ {{Red, Thickness→ 0.0032}, {Blue, Thickness→ 0.0032}},
Frame→ {{True, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.0017],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 14],
Epilog→ Inset[LineLegend[{Directive[Blue, Thickness[0.0032]], Directive[Red, Thickness[0.0032]]},

{Style["Theoretical", FontFamily→ "Arial", FontSize→ 14],
Style["Simulated", FontFamily→ "Arial", FontSize→ 14]}, LegendFunction→
(Framed[#, RoundingRadius→ 4, FrameStyle→GrayLevel[.6]]&)], Scaled[{0.732, 0.644}]]

Out[!]=

Out[!]=

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020
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Accordingly, the norm of the 3-dimensional vectors formed by three normal distribution N(0, σ2) 
components which are independent on three coordinate axes follows the Maxwell distribution with the 
scale parameter σ2.
Suppose that the standard deviation of the projection of the velocity of any one of the k equivalent 
particles forming a kth-order particle onto each equivalent coordinate axis is σ. Then, the standard 
deviation of the projection of the velocity of a kth-order particle onto each equivalent coordinate axis 
(i.e., the mean value of the projection of the velocity of 1st-order particle) is σ

k
, namely, the projec-

tion onto each coordinate axis (approximate) follows a normal distribution with a mean value of 0 and 
a standard deviation of σ

k
. As a result, the speed of kth-order particles follows the Maxwell distribu-

tion with scale parameter σ
k

.

Then, the average velocity of the kth-order particles is
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In[!]:= v =MeanMaxwellDistribution
σ

k


Out[!]=

2 2
π
σ

k

For the kth-order particles in different references (Ru and R0) and with different standard deviations 
(σu and σ0), the ratio of their average velocity vu / v0 =

In[!]:=

2 2
π
σu

k

2 2

π
σ0

k

Out[!]=
σu

σ0

Therefore, the ratio of σu to σ0 is the ratio between the average speeds of particles of higher mass 
levels in Ru and R0.

Part 2��The Process of  Obtaining the Lorentz Factor for Randomly Moving 
Particles

Correspondence:
The mixed distribution of "1and "2 is represented by (12;
The mixed distribution of "3and "4 is represented by (34;
The rest of the symbols are consistent with those in the main text.

Clear["Global`*"];
$= TransformedDistribution[cCos[θ] Sin[ArcCos[η]],

{θ *UniformDistribution[{-π, π}], η *UniformDistribution[{-1, 1}]}];
$1 = TransformedDistributioncCos[θ] Sin[ArcCos[η]],

θ *UniformDistribution[{-π, π}], η *UniformDistribution
u

c
, 1;

$2 = TransformedDistributioncCos[θ] Sin[ArcCos[η]],

θ *UniformDistribution[{-π, π}], η *UniformDistribution-1,
u

c
;

$3 = TruncatedDistribution[{u, c}, UniformDistribution[{-c, c}]];
$4 = TruncatedDistribution[{-c, u}, UniformDistribution[{-c, c}]];
$34 =MixtureDistribution[{w, 1 - w}, {$3, $4}];
Simplify[Mean[$34], Assumptions→ 0 < u < c]

Out[!]=
1

2
(c (2w - 1) + u)

Let the mean value expression be
1

2
(c (2w - 1) + u) = u, then find the weightw

In[!]:= Reduce
1

2
(c (2 w - 1) + u) ⩵ u, w

Out[!]= (u, 0 ∧ c, 0) ∨ c ≠ 0 ∧ w,
c + u

2 c

Then, the mixed distribution (12 consisting of "1 and "2 can be calculated in accordance with this 
weight w. The analytical form of (12 cannot be given by Mathematica.�Therefore, the standard devia-
tion of (12 is calculated directly.
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Then, the mixed distribution (12 consisting of "1 and "2 can be calculated in accordance with this 
weight w. The analytical form of (12 cannot be given by Mathematica.�Therefore, the standard devia-
tion of (12 is calculated directly.

In[!]:= w =
c + u

2 c
;

$12 =MixtureDistribution[{w, 1 - w}, {$1, $2}];
σu = Simplify[StandardDeviation[$12], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

3

The standard deviation of (34 is the same.

In[!]:= Simplify[StandardDeviation[$34], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

3

Then, the ratio between σu and the velocity components on the x-axis of the particles in R0 can be 
obtained.

In[!]:= Simplify[σu /StandardDeviation[$], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

c

The same factor can also be obtained by evaluating the ratio of the standard deviation of (34 to the 
standard deviation of the velocity components on the z-axis in R0.

In[!]:= Simplify[StandardDeviation[$34]/StandardDeviation[UniformDistribution[{-c, c}]],
Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

c

Part 3��The Probability Density of the Magnitude of the Momentum of the Parti-
cle Swarm in Ru Relative to R0 Observed from R0

Based on the above conclusions, the following result will be easily obtained:

When observing all of the moving particles in Ru from R0, all the randomly moving particles in Ru 
can be considered to have an additional velocity component u along the z-axis. Then, according to 
cosine theorem, the probability density of the particles in Ru observed in R0 can be expressed as 
(where k is the number of the particles, u is the speed of Ru and v is the norm of momentum of these k 
particles observed from Ru):
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In[!]:= Clear["Global`*"];

$= TransformedDistribution (k u)2 + v2 - 2 k u vCos[ArcCos[η]] ,

v*MaxwellDistribution
k c2 - u2

3
, η *UniformDistribution[{-1, 1}];

FullSimplify[PDF[$, x], Assumptions→ c > 0 ∧ 0 < u < c]

Out[!]=

3 x ⅇ
6 u x

c2-u2 -1 ⅇ
-

3 k u+x2

2 k c2-u2

k u 2 π c2 k-2 π k u2
k > 0 ∧ ((x > 0 ∧ k u > x) ∨ k u < x)

-
6 π c2 k-u x 5 u x-2 c2 k erf 6 x

c2 k-u x
+4 x ⅇ

6 x2

u x-c2 k c2 6 k+2-u 2 u+3 x-8 x (c-u) (c+u)

4 6 π k52 u ((c-u) (c+u))32
k u, x ∧ k > 0

The meaningful part (first branch) is selected to be verified. Note that the sampling with the replace-
ment method in the particle swarm with a mean speed of u can simulate all of the cases of the particle 
swarm with a mean speed of u. (The following code takes averagely 108 + 77 minutes)
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In[!]:= c = 1;
n = 1 000 000;
ℋℋ = 0;
While[ℋℋ < 2700,

ℋ =RandomPoint[Sphere[{0, 0, 0}, c], n];
ℋℋ =Norm[Total /@ Transpose[ℋ]]];

m = 100 000;
dd = {};
ProgressIndicator[Dynamic[ j], {1, m}]
For[ j = 1, j <m, j++,

ℋ0 =RandomChoice[ℋ , 0.3 n];
ℋℋ0 =Norm[Total /@ Transpose[ℋ0]];
dd =AppendTo[dd, ℋℋ0]];

$= SmoothKernelDistribution[dd, {"Adaptive", Automatic, Automatic}];
k = 0.3 n;

u =
ℋℋ

n
;

PlotPDF[$, x],
3 x ⅇ

6 u x

c2-u2 - 1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k - 2 π k u2
, {x, 0, 2500},

PlotStyle→ {{Red, Thickness→ 0.0032}, {Blue, Thickness→ 0.0032}},
Frame→ {{True, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.0017],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 14],
Epilog→ Inset[LineLegend[{Directive[Blue, Thickness[0.0032]], Directive[Red, Thickness[0.0032]]},

{Style["Theoretical", FontFamily→ "Arial", FontSize→ 14],
Style["Simulated", FontFamily→ "Arial", FontSize→ 14]}, LegendFunction→
(Framed[#, RoundingRadius→ 4, FrameStyle→GrayLevel[.6]]&)], Scaled[{0.753, 0.644}]]

Out[!]=

Out[!]=
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