
ON CERTAIN FINITE AND INFINITE SUMS OF INVERSE TANGENTS
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Abstract. An identity is proved connecting two finite sums of inverse tangents. This identity is dis-
cretized version of Jacobi’s imaginary transformation for the modular angle from the theory of elliptic
functions. Some other related identities are discussed.

1. Introduction

Sums of inverse tangents have attracted a lot of attention. For example, the following sums of inverse
tangents can be calculated in closed form:

∞∑
n=0

arctan
2

(2n+ 1)2
=
π

2
, (1.1)

∞∑
n=0

(−1)n+1 arctan
1

F2n
= arctan

√
5− 1

2
, (1.2)

∞∑
n=0

arctan
sinhx

coshnx
=

3π

4
− arctan ex. (1.3)

(1.1) is a classic sum evaluated first by Glaisher in [1]. The sum (1.2), where Fn is n-th Fibonacci number,
was calculated by Hoggatt and Ruegels [6]. The sum (1.3) was noted in [8]. See [2] for further references
and a brief summary of research in this direction.

All summations of the type (1.1) and (1.2) seem to be based on two methods: the telescopic principle,
and the method of zeroes, as was noted in [7].

Even earlier, in his studies of elliptic functions, Jacobi proved identity of which he wrote in his treatise
on elliptic functions “one is obliged to rank among the most elegant formulas” [9],[10]:

1

4
arcsin k = arctan q1/2 − arctan q3/2 + arctan q5/2 − . . . (1.4)

Here q = e−πK
′/K , K is the complete elliptic integral of the first kind with modulus k

K = K(k) =

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

,

K ′ = K(k′) with k′ =
√

1− k2 being the complementary modulus. The quantity arcsin k is called modular
angle. Together with the obvious relation

arcsin k + arcsin k′ =
π

2
,

this implies
∞∑
n=1

χ(n) arctan e−αn +

∞∑
n=1

χ(n) arctan e−βn =
π

8
, αβ =

π2

4
, (1.5)

where χ(n) = sin πn
2 is Dirichlet character modulo 4 ([3], ch.14, entry 15). (1.5) is Jacobi’s imaginary

transformation for the modular angle.
Another arctan series related to elliptic functions was found in an unpublished manuscript by B. Cais

[4]:
∞∑
n=1

(n
3

)
arctan

√
3

1 + 2eαn
+
∞∑
n=1

(n
3

)
arctan

√
3

1 + 2eβn
=

π

18
, αβ =

4π2

9
, (1.6)

where
(
j
3

)
= 2√

3
sin 2πj

3 is Legendre symbol modulo 3.
The focus of this paper will be two reciprocal identities for finite sums of inverse tangents, Theorems

1 and 3 below and another transformation formula with two continuous parameters, Theorem 5. We give
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two proofs of Theorem 1 in sections 2, 3. Theorems 3 and 5 are proved in sections 4 and 5, respectively.
In section 6 we mention another transformation formula for sum of two finite reciprocal sums related to
solution of Dirichlet problem on a finite rectangular grid.

Theorem 1. Let n,m ∈ N0 and αβ = 1, α > 0. Then∑
|j|≤n

(−1)n+j arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

+
∑
|k|≤m

(−1)m+k arctan

(√
1 + β2 cos2 πk

2m+1 − β cos πk
2m+1

)2n+1

=
π

4
. (1.7)

Note that when n = m and α = 1 both sums in (1.7) are equal and we get a closed form summation:

Corollary 2. For n ∈ N0:∑
|j|≤n

(−1)n+j arctan

(√
1 + cos2 πj

2n+1 − cos πj
2n+1

)2n+1

=
π

8
. (1.8)

It is instructive to write (1.7) in another form by shifting the summation variable and simple rearrangement
of terms

2n∑
j=1

χ4(j) arctan

(√
1 + α2 sin2 πj

4n+2 − α sin πj
4n+2

)2m+1

+
2m∑
k=1

χ4(k) arctan

(√
1 + β2 sin2 πj

4m+2 − β sin πj
4m+2

)2n+1

=
π

8
− 1

2
(−1)n arctan

(√
1 + α2 − α

)2m+1
− 1

2
(−1)m arctan

(√
1 + β2 − β

)2n+1
.

From this form of (1.7), it is evident that letting n = m→∞ and redefining α and β, one recovers (1.5).
Thus, (1.7) is discretized version of (1.5). Our proof is completely elementary and provides an elementary
proof of the modular relation (1.5).

Theorem 3. Let n and m be positive odd numbers and αβ = 1. Then
3n/2∑
j=1

(
j

3

)
arctan

√
3

1 + 2

(
α+ tan πj

3n

α− tan πj
3n

)m +

3m/2∑
k=1

(
k

3

)
arctan

√
3

1 + 2

(
β + tan πk

3m

β − tan πk
3m

)n = −π
6
, (1.9)

where
(
j
3

)
is Legendre symbol modulo 3.

If n = m and α = 1 the two sums in Theorem 3 are equal and we get closed form summation

Corollary 4. For an odd positive integer n:

3n/2∑
j=1

(
j

3

)
arctan

√
3

1 + 2 cotn
(
π

4
−
πj

3n

) = − π

12
. (1.10)

As an illustration of (1.10) note the case n = 3:

arctan

√
3

1 + 2 cot3 π
36

− arctan

√
3

1 + 2 cot3 5π
36

− arctan

√
3

1 + 2 cot3 29π
36

=
π

12
.

Although (1.9) has a structure similar to (1.6) it is not clear if (1.6) can be derived from (1.9) as
a limiting case. However, by combining the limiting case of Theorem 3 with (1.6) one can find the
transformation formula for another infinite arctan series:

∞∑
n=0

(
n− 1

3

)
arctan

√
3

1− 2eα(2n+1)
+

∞∑
n=0

(
n− 1

3

)
arctan

√
3

1− 2eβ(2n+1)
=

2π

9
, αβ =

π2

9
. (1.11)
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More generally one has as a consequence of imaginary transform for theta functions [10] (see Theorem 5
below for definition of s(x))

∞∑
j=−∞

s(j) arctan
sin 2θ

e2α(π|j|+ϕs(j)) − cos 2θ
+

∞∑
k=−∞

s(k) arctan
sin 2ϕ

e2β(π|k|+θs(k)) − cos 2ϕ
=

2

π

(π
2
− θ
)(π

2
− ϕ

)
,

which suggests the following generalization of Theorem 3 with two additional continuous parameters.

Theorem 5. Let n and m be positive odd integers, αβ = 1 (α > 0), and θ, ϕ ∈ (0, π/2). Define function

s(x) =

{
1, x ≥ 0

−1, x < 0
, which differs from the sgn function only at 0 where it takes value 1 instead of

value 0. Then∑
|j|≤n−1

2

s(j) arctan
sin 2θ(

α+ tan ϕ+πj
n

α− tan ϕ+πj
n

)ms(j)
− cos 2θ

+
∑

|k|≤m−1
2

s(k) arctan
sin 2ϕ(

β + tan θ+πk
m

β − tan θ+πk
m

)ns(k)
− cos 2ϕ

=
π

2
− θ − ϕ. (1.12)

To see that Theorem 3 is a particular case of Theorem 5 let θ = ϕ = π/3 in 1.12. The first sum in 1.12
becomes

n−1
2∑
j=0

arctan

√
3

1 + 2

(
α+ tan π(1+3j)

3n

α− tan π(1+3j)
3n

)m −
n−1
2∑
j=1

arctan

√
3

1 + 2

(
α− tan π(1−3j)

3n

α+ tan π(1−3j)
3n

)m .
After shifting the summation index of the second sum in this expression, one obtains using the definition
of Legendre symbol

n−1
2∑
j=0

arctan

√
3

1 + 2

(
α+ tan π(1+3j)

3n

α− tan π(1+3j)
3n

)m −
n−3
2∑
j=0

arctan

√
3

1 + 2

(
α+ tan π(2+3j)

3n

α− tan π(2+3j)
3n

)m

=

3n−1
2∑
j=1

(
j

3

)
arctan

√
3

1 + 2

(
α+ tan πj

3n

α− tan πj
3n

)m .

When m = n, ϕ = θ, α = β = 1 in Theorem 5 one gets the summation formula

Corollary 6. Let n be a positive odd integer, θ ∈ (0, π/2), and the function s(x) defined as in Theorem
5. Then ∑

|j|≤n−1
2

s(j) arctan
sin 2θ{

tan
(
π
4 + θ+πj

n

)}ns(j)
− cos 2θ

=
π

4
− θ. (1.13)

As an illustration of the corollary above note the case n = 3

arctan
sin 2θ

cos 2θ + cot3
(
π
12 + θ

3

) − arctan
sin 2θ

cos 2θ + cot3
(
π
12 −

θ
3

)
+ arctan

sin 2θ

cos 2θ + cot3
(
θ
3 −

π
4

) = θ − π

4
. (1.14)
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Technically, one could generalize Theorem 1 too, but the resulting identity is not nice. We give it here
for illustration purposes only without proof. Assuming θ, ϕ ∈ (0, π/2), α = 1/β > 0, n,m ∈ N0 one has

Re

[ ∑
|j|≤n

(−1)n+j arctan

{(√
1 + α2 cos2 θ+πj2n+1 − α cos θ+πj2n+1

)2m+1

eiϕ

}

+
∑
|k|≤m

(−1)m+k arctan

{(√
1 + β2 cos2 ϕ+πk2m+1 − β cos ϕ+πk2m+1

)2n+1

eiθ

}]
=
π

4
.

2. First proof of Theorem 1

We break the proof into a series of lemmas.
Lemma 7. The following identity holds for α > 0, n,m ∈ N0 and j ∈ Z

2 arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

=
π

2
− arctan (sinh(2m+ 1)αj)

where αj is the positive solution of sinhαj = α cos πj
2n+1 .

Proof. By denoting s = 2m+ 1 for brevity we obtain

2 arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

= 2 arctan (coshαj − sinhαj)
s

= 2 arctan e−sαj

=
π

2
−
(
arctan esαj − arctan e−sαj

)
=
π

2
− arctan

esαj − e−sαj
2

.

Since
ex − e−x

2
= sinhx the proof is complete. �

Lemma 8. For n,m ∈ N0, j ∈ Z, and αj as was defined in the previous lemma, one has

π

2
− arctan (sinh(2m+ 1)αj) = (−1)m

∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

,

Proof. Using properties of complex numbers we write
π

2
− arctan (sinh(2m+ 1)αj) = arg(i) + arg (1− i sinh(2m+ 1)αj)

= arg (sinh(2m+ 1)αj + i)

= (−1)marg
(

sinh(2m+ 1)αj + sinh πi(2m+1)
2

)
.

This expression can be factorised according to the formula

sinh(2m+ 1)a+ sinh(2m+ 1)b = 22m
∏
|k|≤m

(
sinh a+ sinh

(
b+

2πik

2m+ 1

))
.

Its validity is easy to check by standard methods: both sides are polynomials in sinh a of order 2m + 1

with leading coefficient 22m and zeroes − sinh
(
b+ 2πik

2m+1

)
, |k| ≤ m.

Thus

π

2
− arctan (sinh(2m+ 1)αj) = (−1)marg

22m
∏
|k|≤m

(
sinhαj + sinh

(
πi

2
+

2πik

2m+ 1

))
= (−1)marg

 ∏
|k|≤m

(
α cos

πj

2n+ 1
+ i cos

2πk

2m+ 1

)
= (−1)m

∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

,
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as required. �

Lemma 9. For n,m ∈ N0, j ∈ Z, one has∑
|k|≤m

arctan
cos 2πk

2m+1

α cos πj
2n+1

=
∑
|k|≤m

(−1)k arctan
cos πk

2m+1

α cos πj
2n+1

.

Proof. Let f be an odd function. Then∑
|k|≤m

(−1)kf

(
cos

πk

2m+ 1

)
=
∑
|k|≤m

f

(
cos

(
πk

2m+ 1
− πk

))

=
∑
|k|≤m

f

(
cos

2πkm

2m+ 1

)

=
∑
|k|≤m

f

(
cos

2πk

2m+ 1

)
.

The last equality is explained as follows. First, note that cos has period 2π. The sum
∑
|k|≤m is over

residue class mod 2m + 1. When m > 0, the numbers m and 2m + 1 are coprime. Hence, when k runs
over residue class mod 2m+ 1, the set of numbers km runs over residue class mod 2m+ 1.

To complete the proof of the lemma set f(x) = arctan
x

α cos πj
2n+1

. �

Lemma 10. ∑
|j|≤n

(−1)j = (−1)n, n ∈ N0.

Proof. The sum is trivial when n = 0. Let’s assume that n > 0. Then∑
|j|≤n

(−1)j = (−1)n
1− (−1)2n+1

1− (−1)
= (−1)n. �

Now, we are in a position to prove Theorem 1. According to lemmas 7-10 we have that the LHS of
equation (1.7) equals∑

|j|≤n

(−1)n+j
1

2

∑
|k|≤m

(−1)m+k arctan
cos πk

2m+1

α cos πj
2n+1

+
∑
|k|≤m

(−1)m+k 1

2

∑
|j|≤n

(−1)n+j arctan
cos πj

2n+1

β cos πk
2m+1

=
1

2
(−1)n+m

∑
|j|≤n

∑
|k|≤m

(−1)j+k
π

2
sign

(
α cos

πj

2n+ 1
cos

πk

2m+ 1

)
=
π

4
(−1)n+m

∑
|j|≤n

(−1)j
∑
|k|≤m

(−1)k =
π

4
.

3. Second proof of Theorem 1

Lemma 11. We have the partial fractions expansion for arbitrary non-negative integer m:

2m+ 1

cosh
(
(2m+ 1) sinh−1 z

)√
z2 + 1

=
∑
|k|≤m

(−1)m−k cos πk
2m+1

z2 + cos2 πk
2m+1

. (3.1)

Proof. cosh
(
(2m+ 1) sinh−1 z

)√
z2 + 1 is a polynomial in z of order 2m+ 2 with roots

zs = i sin
π(2s+ 1)

2(2m+ 1)
, s = −m− 1, ...,m.

Let us denote the LHS of 3.1 by f(z). Residues of f(z) at the points zs are

res f(z)
∣∣
zs

=
(−1)s

i(1 + δs,m + δs,−m−1)
, s = −m− 1, ...,m,
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where δs,r =

{
1, s = r

0, s 6= r
is the Kronecker delta. It is easy to see this for s = −m, ...,m− 1. The points

zm = i and z−m−1 = −i are more tricky, in which case we write

f(z) =
2m+ 1

z2 + 1
·

√
z2 + 1

cosh
(
(2m+ 1) sinh−1 z

) ,
where the second multiplier does not have singularities at z = ±i.

Now we can write the partial fractions expansion

2m+ 1

cosh
(
(2m+ 1) sinh−1 z

)√
z2 + 1

=
1

i

m−1∑
k=−m

(−1)s

z − i sin π(2s+1)
2(2m+1)

+
(−1)m

2i

(
1

z − i
− 1

z + i

)
.

It is quite easy to bring this to the form stated in the lemma. �

Lemma 12. For arbitrary non-negative integers n and m we have the transformation formula∑
|j|≤n

(−1)n+j
2m+ 1

cosh
(

(2m+ 1) sinh−1
{
z cos πj

2n+1

}) cos πj
2n+1√

1 + z2 cos2 πj
2n+1

=
1

z2

∑
|k|≤m

(−1)m+k 2n+ 1

cosh
(

(2n+ 1) sinh−1
{
z−1 cos πk

2m+1

}) cos πk
2m+1√

1 + z−2 cos2 πk
2m+1

. (3.2)

Proof. Multiply 3.1 by z and replace z with z cos πj
2n+1 . Then summing over j one gets

∑
|j|≤n

(−1)n+j
2m+ 1

cosh
(

(2m+ 1) sinh−1
{
z cos πj

2n+1

}) z cos πj
2n+1√

1 + z2 cos2 πj
2n+1

=
∑
|j|≤n

∑
|k|≤m

(−1)n+m−j−k
cos πj

2n+1 cos πk
2m+1

z cos2 πj
2n+1 + z−1 cos2 πk

2m+1

.

The RHS of this expression is symmetric under the transformation z → z−1, n↔ m. As a result the LHS
is also symmetric under this transformation, which implies 3.2. �

Integrating both sides of 3.2 wrt α using the elementary formulas
∫

dx√
x2+1

= sinh−1 x = ln(
√

1 + x2+x),∫ dy
cosh y = −2 arctan e−y one obtains∑

|j|≤n

(−1)n+j arctan

(√
1 + α2 cos2 πj

2n+1 − α cos πj
2n+1

)2m+1

=
∑
|k|≤m

(−1)m+k

[
π

4
− arctan

(√
1 + β2 cos2 πk

2m+1 − β cos πk
2m+1

)2n+1
]
.

To complete the proof note that
∑
|k|≤m(−1)m+k=1.

4. Proof of Theorem 3

Despite the fact that Theorem 3 is a particular case of Theorem 5 it is instructive to give an independent
proof. Again, as we did in the previous sections, it is convenient to break the proof into several parts.

Lemma 13. We have the partial fractions expansion for arbitrary positive integer m:

sinh
(
m tanh−1 z

)
sinh

(
3m tanh−1 z

) 1

1− z2
=

1

m
√

3

3m/2∑
k=1

(
k

3

)
tan πk

3m

z2 + tan2 πk
3m

. (4.1)

Proof. Since sinh t
sinh 3t = 1

2 cosh 2t+1 , tanh−1 z = 1
2 ln 1+z

1−z , and

2 cosh
(
2m tanh−1 z

)
=

(
1 + z

1− z

)m
+

(
1− z
1 + z

)m
,
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the LHS of (4.1) is a rational function of z of the form f(z) = (1−z2)m−1

P2m(z) , where P2m(z) is polynomial
of degree exactly 2m. This rational function has poles at zk = i tan πk

3m , k = 3r − 1 or 3r − 2 with
r = 1, 2, 3, ...,m. Rezidues of f(z) at zk are

(−1)k

3im
sin

πk

3
=

1

2im
√

3

(
k

3

)
.

Hence, taking into account that
(
k
3

)
= 0 when k ≡ 0 (mod 3)

sinh
(
m tanh−1 z

)
sinh

(
3m tanh−1 z

) 1

1− z2
=

1

2im
√

3

3m∑
k=1

(
k

3

)
1

z − i tan πk
3m

.

Due to
(
3m−k

3

)
= −

(
k
3

)
and tan π(3m−k)

3m = − tan πk
3m this is equivalent to (4.1). �

Lemma 14. For arbitrary positive integers n and m we have the transformation formula

m

3n/2∑
j=1

(
j

3

) sinh
(
m tanh−1

(
z tan πj

3n

))
sinh

(
3m tanh−1

(
z tan πj

3n

)) tan πj
3n

1− z2 tan2 πj
3n

− n

z2

3m/2∑
k=1

(
k

3

)
sinh

(
n tanh−1

(
z−1 tan πk

3m

))
sinh

(
3n tanh−1

(
z−1 tan πk

3m

)) tan πk
3m

1− z−2 tan2 πk
3m

= 0. (4.2)

Proof. In the previous lemma, replace z with z tan πj
3n , then multiply the resulting identity with

z

n

(
j

3

)
tan

πj

3n
,

and sum wrt j from 1 to 3n/2. It is easy to see the symmetry of the resulting double sum under the
transformation n→ m, m→ n, z → 1/z, from which the identity in the lemma follows. �

Lemma 15.
√

3

∫ ∞
s

sinh t

sinh 3t
dt =

π

6
− arctan

tanh s√
3

= arctan

√
3

1 + 2e2s
.

Proof. The proof of this lemma is given in [4], but we reproduce it here for the sake of completeness.
Since

sinh t

sinh 3t
=

1

2 cosh 2t+ 1
=

1

cosh2 t

1

3 + tanh2 t
,

the integral can be easily calculated. The second equality follows from the elementary formula

arctanx− arctan y = arctan
x− y
1 + xy

with x = 1√
3
, y = tanh s√

3
and the identity

1√
3
− tanh s√

3

1 + tanh s
3

=

√
3

1 + 2es
. �

Lemma 16. For an odd positive integer n:

3n/2∑
j=1

(
j

3

)
= 1.

Proof. This is obvious for n = 1. For arbitrary odd n its validity follows from the fact that the sum of
Legendre symbols mod 3 for three consecutive integers is 0. �

The formula in Theorem 3 now follows easily from these lemmas. We integrate equation (4.2) wrt z
from 1/α to∞ using lemma 15. Then assuming that n and m are odd we complete the proof using lemma
16.
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5. Proof of Theorem 5

With the help of the elementary formula arctan z = 1
2arg 1+iz

1−iz one can recast the first sum in 1.12 in
the following form

1

2

n−1
2∑
j=0

arg

(
α+tan ϕ+πj

n

α−tan ϕ+πj
n

)m
− e−2iθ(

α+tan ϕ+πj
n

α−tan ϕ+πj
n

)m
− e2iθ

− 1

2

n−1
2∑
j=1

arg

(
α−tan ϕ−πj

n

α+tan ϕ−πj
n

)m
− e−2iθ(

α−tan ϕ−πj
n

α+tan ϕ−πj
n

)m
− e2iθ

. (5.1)

In the second sum of 5.1, we make the change of the index of summation j → n − j, then rewrite both
sums as double sums using the fact that xm − 1 =

∏m
k=1

(
x− e

2πik
m

)
:

1

2

n−1
2∑
j=0

m∑
k=1

arg

α+tan ϕ+πj
n

α−tan ϕ+πj
n

− e2i
πk−θ
m

α+tan ϕ+πj
n

α−tan ϕ+πj
n

− e2i
πk+θ
m

− 1

2

n−1∑
j=n+1

2

m∑
k=1

arg

α−tan ϕ+πj
n

α+tan ϕ+πj
n

− e2i
πk−θ
m

α−tan ϕ+πj
n

α+tan ϕ+πj
n

− e2i
πk+θ
m

. (5.2)

After simple algebraic manipulation of the summands, 5.2 becomes

1

2

n−1
2∑
j=0

m∑
k=1

arg

{
e−2i

θ
m
−iα sin πk−θ

m + tan ϕ+πj
n cos πk−θm

−iα sin πk+θ
m + tan ϕ+πj

n cos πk+θm

}

− 1

2

n−1∑
j=n+1

2

m∑
k=1

arg

{
e−2i

θ
m
iα sin πk−θ

m + tan ϕ+πj
n cos πk−θm

iα sin πk+θ
m + tan ϕ+πj

n cos πk+θm

}
. (5.3)

The first sum in 5.3 can be simplified as

−n+ 1

2
θ +

1

2

n−1
2∑
j=0

m∑
k=1

(
arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
− arctan

{
α

tan πk−θ
m

tan ϕ+πj
n

})
,

while the second as

−n− 1

2
θ − 1

2

n−1∑
j=n+1

2

m∑
k=1

(
arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
− arctan

{
α

tan πk−θ
m

tan ϕ+πj
n

})
.

Thus, 5.3 equals

− θ +
1

2

n−1∑
j=0

m∑
k=1

arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
− 1

2

n−1∑
j=0

m∑
k=1

arctan

{
α

tan πk−θ
m

tan ϕ+πj
n

}
. (5.4)

We make the change of the summation variable k → m− k in the second sum of 5.4

−θ +
1

2

n−1∑
j=0

m∑
k=1

arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
+

1

2

n−1∑
j=0

m−1∑
k=0

arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
.

Because of the equivalences
∑n−1

j=0 =
∑n

j=1,
∑m−1

k=0 =
∑m

k=1 we finally get the following symmetric form
for the first sum in 1.12

−θ +
n∑
j=1

m∑
k=1

arctan

{
α

tan πk+θ
m

tan ϕ+πj
n

}
.

Similarly for the second sum in 1.12

−ϕ+

n∑
j=1

m∑
k=1

arctan

{
β

tan ϕ+πj
n

tan πk+θ
m

}
.

Hence, because of the elementary formula arctanx+ arctanx−1 = π
2 sgnx the LHS of 1.12 equals

−θ − ϕ+
π

2

n∑
j=1

sgn

(
tan

ϕ+ πj

n

) m∑
k=1

sgn

(
tan

πk + θ

m

)
.
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When ϕ ∈ (0, π/2), the expression tan ϕ+πj
n takes negative values at n−1

2 points j = n+1
2 , ..., n − 1 and

positive values at the rest n+1
2 points. This means

n∑
j=1

sgn

(
tan

ϕ+ πj

n

)
= 1.

Thus the LHS of 1.12 equals π
2 − θ − ϕ, as required.

6. Other reciprocal relations

In our previous paper [13], we have found many relations of the form P (n,m) = P (m,n) for finite
products of trigonometric functions. However, the identity in Theorem 1 is of the type S(n,m)+S(m,n) =
C, where C is independent of n and m. There is simple method to find other relations of this type. It is
based on the solution of Dirichlet problem on a finite rectangular grid [11]. For example

m

n∑
j=1

(−1)j cot
πj

2n

sinh yαj
sinhmαj

sin
πjx

n
+ n

m∑
k=1

(−1)k cot
πk

2m

sinhxβk
sinhnβk

sin
πky

m
= −xy, (6.1)

where 1 ≤ x ≤ n, 1 ≤ y ≤ m are integers and

cos
πj

n
+ coshαj = 2, cos

πk

m
+ coshβk = 2 (1 ≤ j ≤ n, 1 ≤ k ≤ m). (6.2)

In particular, when x = y, n = m this gives the closed form summation
n∑
j=1

(−1)j cot
πj

2n

sinhxαj
sinhnαj

sin
πjx

n
= −x

2

n
, sinh

αj
2

= sin
πj

2n
. (6.3)

Laplace operator on a finite rectangular grid is defined as

∆f(x, y, k) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y).

One can see that the RHS of (6.1) satisfies the discrete Laplace equation

∆f(x, y) = 0, (0 <≤ x ≤ n, 0 ≤ y ≤ m)

on a rectangular grid of size n × m. Also −xy = f1(x, y) + f2(x, y), where f1(x, y) and f2(x, y) are
solutions of the Laplace equation with boundary conditions{

f1(0, y) = f1(n, y) = 0, 0 ≤ y ≤ m,
f1(x, 0) = 0, f1(x,m) = xm, 0 ≤ x ≤ n,

(6.4)

{
f2(x, 0) = f2(x,m) = 0, 0 ≤ x ≤ n,
f2(0, y) = 0, f2(n, y) = ny, 0 ≤ y ≤ m.

(6.5)

Partial solutions of Laplace equation corresponding to boundary conditions (6.4) and (6.5) are given by,
respectively

u
(1)
j (x, y) = sin

πjx

n
sinh yαj , (1 ≤ j ≤ n).

u
(2)
k (x, y) = sin

πky

m
sinhxβk, (1 ≤ k ≤ m).

In fact this method is quite well known and there are many examples in electrodynamics and heat
conduction problems in physics (e.g., [12]).

One could generalize (6.1) to include one continuous parameter α by requiring that αj and βk be defined
by

sinh
αj
2

= α sin
πj

2n
, sinh

βk
2

=
1

α
sin

πk

2m
, (1 ≤ j ≤ n, 1 ≤ k ≤ m)

instead of (6.2). However to obtain a closed form summation we would need α = 1, so this does not
generalize (6.3).
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