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Abstract

In 1996, Dontchev [14] introduced and investigated a new notion of
non-continuity called contra-continuity. Recently, Baker et al. [6] of-
fered a new generalization of contra-continuous functions via A-closed
sets, called almost contra A-continuous functions. It is the objective
of this paper to further study some more properties of such functions.

1 Introduction and preliminaries

In 1986, Maki [25] introduced the notion of A-sets in topological spaces.
A A-set is a set A which is equal to its kernel(= saturated set), i.e. to the
intersection of all open supersets of A. Arenas et al. [3] introduced and inves-
tigated the notion of A-closed sets by involving A-sets and closed sets. Quite
recently, Caldas et al. ([7], [11]) introduced the notion of A-closure of a set
by utilizing the notion of A-open sets defined in [3]. In [14], Dontchev intro-
duced and studied a new notion of non-continuity called contra-continuity.
It is the aim of this paper to continue our work ([6], [9], [8]) and present
some more properties of almost contra A-continuity which is a generaliza-
tion of contra-continuity. Moreover, we present some of the basic properties
and preservation theorems of almost contra A-continuous functions. Further-
more, we investigate the relationships between almost contra A-continuous
functions and functions with AR-closed graph.
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Throughout this paper, by (X,7) and (Y,0) (or X and Y) we always
mean topological spaces. Let A be a subset of X. We denote the interior, the
closure and the complement of a set A by Int(A), Cl(A) and X\ A or A°, re-
spectively. A subset A of X is said to be regular open (resp. regular closed)
it A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset A of a space X is
called preopen [24] (resp. semi-open [23], S-open [1](also called semipreopen
[2]) it A C Int(Cl(A)) (resp. A C Cl(Int(A)), A C Cl(Int(CIl(A)))). The
complement of a preopen (resp. semi-open, S-open) set is said to be pre-
closed (resp. semi-closed, f-closed). The collection of all regular closed (resp.
semi-open) subsets of X will be denoted by RC(X)(resp. SO(X)). We set
RC(X,z) ={V € RC(X) : z € V}} (resp. SO(X,z) ={V € SO(X) :x €
V1), A subset A of (X,7) is called A-closed [3] if A = LN D, where L is
a A-set and D is a closed set. The complement of a A-closed set is called
A-open. We denote the collection of all A-open sets (resp. A-closed sets) by
AO(X, 1) (resp. AC(X,7)). Weset \O(X,z) ={U : z € U € \O(X,7)}
and \C'(X,z) ={U : 2 € U € A\C(X,7)}. A point z in a topological space
(X, 7) is called a A-cluster point of A [7] if ANU # 0 for every A-open set U
of X containing x. The set of all A-cluster points is called the A-closure of A
and is denoted by Cl,(A) ([3], [7]).

A point z € X is said to be a M-interior point of A if there exists a A-open
set U containing = such that U C A. The set of all A-interior points of A is
said to be A-interior of A and is denoted by Inty(A).

Lemma 1.1 (/3], [7]). Let A, B and A; (i € 1) be subsets of a topological
space (X, 7). The following properties hold:

(1) If A; is A-closed for each i € I, then NicrA; is A-closed.

(2) If A; is M-open for each i € I, then UijcrA; is A-open.

(3) A is A-closed if and only if A= Cl\(A).

(4) A is X-open if and only if A = Int\(A).

(5) Clx(A) =n{F € \C(X,7): AC F}.

(6) A C Cl\(A).

(7) If A C B, then Cl\(A) C Cl\(B).

(8) Cl\(A) is A-closed.

Definition 1 A function f : X — Y s said to be:

(1) M-continuous [3] If f=1(V') is A-closed for every closed set V in'Y, equiv-
alently if the inverse image of every open set V in'Y is X-open in X.

(2) almost \-continuous [21] if f~1 (V) is A-closed in X for every regular



closed set V in Y.

(3) almost contra pre-continuous ([16], [27]) if f~ (V') is preclosed in X for
every reqular open set V in Y.

(4) almost contra B-continuous [5] if f~' (V) is B-closed in X for every reg-
ular open set'V in Y.

(5) almost contra A-continuous if f~1(V) is A-closed in X for each regular
open set' V of Y.

Definition 2 Let A be a subset of a space (X, 7). The set N{U € RO(X) :
A C U} is called the r-kernel of A [17] and is denoted by rker(A).

Lemma 1.2 (Ekici [17]) The following properties hold for the subsets A, B
of a space X :

(1) x € rker(A) if and only if ANF #£ 0 for any F € RC(X, x).

(2) A C rker(A) and A =rker(A) if A is regular open in X.

(3) If A C B, then rker(A) C rker(B).

Theorem 1.3 [6] Let f : X — Y be a function from a topological space X
into a topological space Y. The following statements are equivalent:

(1) f is almost contra \-continuous;

(2) The inverse image of each regqular closed set in'Y is X-open in X;

(3) For each point x in X and each regular closed set V in Y containing
f(z), there is a A-open set U in X containing x such that f(U) C V;

(4) For each point x in X and each semiopen set V in'Y containing f(x),
there is a A-open set U in X containing x such that f(U) C ClU(V);

(5) fF(CIA(A)) C rker(f(A)) for every subset A of X;

(6) Clx(f~Y(B)) C fY(rker(B)) for every subset B of Y.

2 Some more properties

Recall that a topological space (X, 7) is said to be:

(i) A-Ty [10] if for any distinct pair of points z and y in X, there exist
U € AO(X) containing = but not y and V' € MO(X) containing y but not z.
(ii) A-T [10] if for any distinct pair of points z and y in X, there exist
U e XO(X,z)and V € NO(X,y) such that UNnV = 0.

(iii) Weakly Hausdorff [30] (briefly weak-T5) if every point of X is an inter-
section of regular closed sets of X.

(iv) s-Urysohn [4] if for each pair of distinct points z and y in X, there exist
U € SO(X,z) and V € SO(X, z) such that CI(U) N Cl(V) = 0.
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Remark 2.1 Observe that Ty, ATy and A\-Ty are equivalent [18] and s-
Urysohn = weak-T5 = T\ = Tj.

Theorem 2.2 [If X is a topological space and for each pair of distinct points
21 and x9 in X, there exists a map f of X into a Urysohn topological space

Y such that f(x1) # f(x2) and f is almost contra A-continuous at x, and
To, then X isTy.

Proof. Let x1 and x5 be any distinct points in X. Then by hypothesis,
there is a Urysohn space Y and a function f : X — Y which satisfies the
conditions of the theorem. Let y; = f(z;) for i = 1,2. Then y; # y2. Since
Y is Urysohn , there exist open sets U,, and U,, of y; and y», respectively,
in Y such that CI(U,,) N Cl(U,,) = (. Since f is almost contra A-continuous
at x;, there exists a A-open set W,, of z; in X such that f(W,,) C Cl(U,,)
for i = 1,2. Hence we get W,, N\W,, = 0 since CI(U,,)NCI(U,,) = 0. Hence
X is A-Ty and therefore by Remark 2.1, X is Tj.

Corollary 2.3 If f is an almost contra A-continuous injection of a topolog-
weal space X into a Urysohn space Y, then X 1s Ty .

Proof. For each pair of distinct points x; and x5 in X | f is an almost
contra A-continuous function of X into a Urysohn space Y such that f(z,) #
f(zo) since f is injective. Hence by Theorem 2.2, X is T.

Theorem 2.4 If f is an almost contra A-continuous injection of a topological
space X into a weakly Hausdorff space Y, then X is Tj.

Proof. Since Y is weakly Hausdorff and f is injective, for any distinct
points x; and x5 of X, there exist V;,V, € RC(Y) such that f(z) € V7,
flzo) ¢ Vi, f(xe) € Vo and f(zy) ¢ Vi, Since f is almost contra A-
continuous, by Theorem 2.2 f~'(V}) and f~!(V3) are A-open sets and x; €
7)), 22 & f7'(V1), ma € f7'(Va), @1 ¢ f'(Va). Then there exists
U,Uy € /\O(X) such that z; € U} C fﬁl(‘/l), To ¢ Ui, x0 € Uy C fﬁl(‘/z)
and 1 ¢ Us. Thus X is A\-T; and therefore by Remark 2.1, X is Tj.

Corollary 2.5 If f is an almost contra A-continuous injection of a topolog-
ical space X into a s-Urysohn space Y, then X is Ty.



Recall that a topological space is called a A-space [3] if the union of any
two A-closed sets is a A-closed set. Observe that if f,g: X — Y are almost
contra A-continuous functions, X is a A-space and Y is s-Urysohn, then it is
obvious that £ = {z € X | f(z) = g(z)} is A-closed in X.

We say that the product space X = X; x ... x X, has Property P, if A;
is a A-open set in a topological space X;, for i = 1,2,...n, then A; x ... x A,
is also A-open in the product space X = X; x ... x X, .

Theorem 2.6 Let f;: X1 =Y and fo: Xo = Y be two functions, where
(1) X = X x X5 has the Property Py.

(2) Y is a Urysohn space.

(3) f1 and fy are almost contra A-continuous .

Then {(x1,22) : fi(z1) = folza)} is A-closed in the product space X =
X x Xo .

Proof. Let A denote the set {(x1,x2) : fi(z1) = fo(z2)}. In order to show
that A is A-closed, we show that (X7 x X5)\A is A-open. Let (z1,x9) ¢ A.
Then fi(x1) # fo(zo) . Since Y is Urysohn , there exist open sets V; and
Vo of fi(xy) and fo(xs), respectively, such that Cl1(Vy) N Cl(V,) = (). Since
fZ (z = 1,2) is almost contra A-continuous and CI(V;) is regular closed, then

“HCI(V;)) is a A-open set containing z; in X; (i = 1,2). Hence by (1),

CHCI(W)) x 5 H(CL(Vy)) is M-open. Furthermore (1, 15) € fi H(CI(V1)) X
f2 HC1(Vy)) € (X1 x Xo)\A. It follows that (X; x X5)\A is A-open. Thus
A is A-closed in the product space X = X; x Xo.

Corollary 2.7 Assume that the product space X x X has the Property Pj.
If f: X =Y s almost contra \-continuous and Y is a Urysohn space. Then
A={(x1,29) : f(x1) = f(xa)} is A-closed in the product space X x X.

Recall that a topological space X is called a T -space ([15], [22]) if every
singleton is open or closed.

Lemma 2.8 Let (X,7) be a T1 -space and f : X — Y. If f is almost
contra-3-continuous or almost com‘m -pre-continuous then f is almost contra-
A-conlinuous.

Proof. Tt follows directly from Theorem 2.6 of [3].
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Remark 2.9 Observe that a topological space (X, T) in which every two non-
void A-closed subsets of (X, T) intersect is indiscrete. It is obvious that if a
topological space X is indiscrete and f : X —'Y is a surjective almost contra
A-continuous function, then Y 1s hyperconnected. Recall that a topological
space is hyperconnected if every open set is dense. To see this, suppose that
Y is not hyperconnected. This implies that there exists an open set V' such
that CL(V) # Y. Thus, there exist disjoint reqular open sets D and E in
Y, d.e, Int(CU(V)) and Y\CI(V). Since f is a surjective almost contra -
continuous function, we have A = f~Y(D) and B = f~'(E) such that A
and B are disjoint non-empty A-closed subsets of X. By hypothesis, X is
indiscrete and this implies that AN B # 0. But this is a contradiction.
Hence Y 1s hyperconnected.

Theorem 2.10 Let f: X — Y be a function and g : X — X XY the graph
function, given by g(x) = (z, f(x)) for every x € X. Then f is almost contra
A-continuous if g is almost contra A-continuous.

Proof. Let x € X and V be a regular open subset of Y containing f(x).
Then we have X x V is a regular open. Since g is almost contra A\-continuous,
g HX x V) = f~Y(V) is A-closed. Hence f is almost contra A-continuous.

Recall that for a function f : X — Y, the subset {(z, f(z)) : z € X} C
X x Y is called the graph of f and is denoted by G(f).

Definition 3 A function f : X — Y has a A-closed graph if for each (z,y) €
(X XY)—G(f), there exists U € NO(X, x) and an open set V of Y containing
y such that (U x V)NG(f) =0.

Lemma 2.11 The graph, G(f) of a function f : X — Y is A-closed if and
only if for each (z,y) € (X xY) — G(f) there exists U € N\O(X,x) and an
open set V' of Y containing y such that f(U)NV = 0.

Theorem 2.12 If f : X — Y s a function with A-closed graph, then for
each z € X, f(x) =n{CI(f(U)): U € N\O(X,x)}.

Proof. Suppose the theorem is false. Then there exists a y # f(z) such
that y € N{CI(f(U)) : U € AO(X,x)}. This implies that y € CI(f(U)),
for every U € NO(X,z). So V N f(U) # 0, for every V € O(Y,y). which
contradicts the hypothesis that f is a function with A-closed graph. Hence
the theorem.



Theorem 2.13 If f : X — Y is almost contra A-continuous and Y is Hau-
dorff, then G(f) is A-closed.

Proof. Let (z,y) € (X xY)—G(f). Theny # f(x). Since Y is Hausdorf,
there exists disjoint open sets V and W of Y such that y € V and f(z) € W.
Then f(z) ¢ Y—CI(W). Since Y —CI{(W) is a regular open set containg V, it
follows that f(z) ¢ rKer(V) and hence z ¢ f~!(rKer(V')). Then by Theorem
1.3(6) z ¢ CL\(f~'(V)). Therefore we have (z,y) € (X —ClL\(f~1(V)))xV C
(X xY) — G(f), which proves that G(f) is A-closed.

Theorem 2.14 Let f: X — Y have a \-closed graph.
(1) If f is injective, then X is Ty.
(2) If f is surjective, then Y is T7.

Proof. (1) Let 21 and x5 be two points in X. Then (z1, f(22)) € (X XY)—
G(f). Since f has a A-closed graph, there exist U € AO(X, z;) and an open
set V of Y containing f(z9) such that f(U)NV =@. Then UN f~1(V) = 0.
Since zy3 € fH(V), x2 ¢ U. Therefore U is a A-open set containing x; but
not x9, which proves that X is A-7} and hence by Remark 2.1 that Xis 7.
(2) Let y; and y» be two points in Y. Since Y is surjective, there exists
x € X such that f(x) = y;. Then (z,y2) € (X xY) — G(f). Since f has a
A-closed graph, there exist U € AO(X, x) and an open set V of Y containing
yo such that f(U)NV = . Since y; = f(z) and z € U, y; € f(U). Therefore
y1 ¢ V', which proves that Y is 7.

It is clear that if f : X — Y has a A-closed graph and X is a A-space ,
then f~1(K) is A-closed for every compact subset K of Y.

3 AR-closed graphs

Definition 4 A function f : X — Y has a AR-closed graph if for each
(x,y) € (X x Y)\G(f), there exist U € NO(X,z) and V € RC(Y,y) such
that (U xV)NG(f)=0.

Remark 3.1 The above definition is equivalent with the statement that a
function f: X =Y has a AR-closed graph if for each (z,y) € (X xY)\G(f),
there exist U € NO(X,x) andV € SO(Y,y) such that (UxCLV))NG(f) = 0.



Lemma 3.2 A graph G(f) of a function f : X — Y is AR-closed if for each
(z,y) € (X xY)\G(f), there exist U € NO(X) containing x and V € RC(Y)
containing y such that f(U)NV = 0.

Remark 3.3 Observe that a graph G(f) of a function f : X — Y is AR-
closed if for each (x,y) € (X x Y)\G(f), there exist U € NO(X) containing
z and V € SO(Y) containing y such that f(U)NCUV) = 0.

Theorem 3.4 For a function f: X — Y, the following are equivalent:

(1) fis A\-continuous;

(2) for each x € X and each V € O(Y, f(x)), there exists U € AO(X, x) such
that f(U) C V.

Proof. Straightforward.

Remark 3.5 Ezamples 3.4 and 3.5 in [6] show that \-continuity and almost
contra A-continuity are, in general, independent

Theorem 3.6 If f : X — Y is A-continuous and Y is Hausdorff, then G(f)
is AR-closed.

Proof. Let (x,y) € X x Y\G(f). Since Y is Hausdorff, then there exists
a set V € O(Y,y) such that f(z) ¢ CI(V). Now Y\CU(V) € O(Y, f(z)).
Therefore, by the A-continuity of f there exists U € AO(X,z) such that
f(U) c Y\CU(V). Consequently, f(U)NCI(V) = () where C1(V') is a regular
closed set since V' is open. By Lemma 3.2, G(f) is AR-closed.

Theorem 3.7 Let f: X — Y has a A\ R-closed graph.
(1) If f is injective, then X is Ty.
(2) If f is surjective, then Y is weakly-T,.

Proof. (1) Suppose that = and y are any two distinct points of X. We

have (z, f(y)) € X xY\G(f). Since f has a AR-closed graph, then there exist
a A-open neighborhood U of z and a regular closed set F' of Y containing
f(y) such that f(U)NF = (. Hence U N f~1(F) = (). This means that we
have y ¢ U. Thus X is Tj.
(2) Let y; and y, be any distinct points of Y. Since f is surjective, then
f(z) = y; for some x € X and (z,15) € X x Y\G(f). Since f has a AR-
closed graph, then there exist a A-open neighborhood U of x and a regular
closed set F' of Y containing y, such that f(U) N F = (. This means that
y1 ¢ F. It follows that YV is weakly-T5.
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Theorem 3.8 If f : X — Y s almost contra A-continuous and Y s Urysohn,
then G(f) is AR-closed in X x Y.

Proof. Let (z,y) € (X x Y)\G(f), then y # f(x). Since Y is Urysohn
there exist open sets V and W in Y such that y € V, f(z) € W with
Cl(V)NCUHW) = (). Since f is almost contra A-continuous, by Theorem
1.3(3) and since CI(W) is regular closed containing f(z) there exists U €
AO(X, x) such that f(U) C CI(W). Therefore, we obtain f(U)NCI(V) = 0.
By definition G(f) is AR-closed in X x Y.

Theorem 3.9 If f : X — Y 14s almost contra \-continuous and Y is s-
Urysohn, then G(f) is AR-closed in X X Y.

Definition 5 A subset A of a space X is said to be S-closed relative to X
[26] if for every cover {V,, | « € V} of A by semi-open sets of X, there ezists
a finite subset Vo of V such that A C U{Cl(V,) | @ € Vo}. A space X is
said to be S-closed [32] if X is S-closed relative to X.

It should be noted that if a function f : X — Y has a AR-closed graph
and X is A-space, then f~!'(K) is A-closed in X for every subset K which is
S-closed relative to Y.

Definition 6 A topological space X is said to be:

(1) strongly \S-closed if every A-closed cover of X has a finite subcover.
(resp. A C X is strongly AS-closed if the subspace A is strongly AS-closed).
(2) nearly-compact [28] if every regular open cover of X has a finite subcover.

Theorem 3.10 If f : X — Y s an almost contra \-continuous surjection
and X 1s strongly AS-closed , then'Y s nearly compact.

Proof. Let {V, : @ € I} be a regular open cover of Y. Since f is almost
contra A-continuous, we have that {f~'(V,) : @ € I} is a cover of X by \-
closed sets. Since X is strongly AS-closed, there exists a finite subset Iy of 1
such that X = U{f ' (V,) : a € Iy}. Since f is surjective Y = U{V,, : a € Iy}
and therefore Y is nearly compact.

Definition 7 A topological space X is said to be almost-reqular [29] if for
each regular closed set F' of X and each point x € X\F, there exist disjoint
open sets U and V' such that F CV and x € U.
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Theorem 3.11 If a function f : X — Y s almost contra \-continuous and
Y is almost-regqular, then f is almost \-continuous.

Proof. Let x be an arbitrary point of X and V' an open set of Y con-
taining f(z). Since Y is almost-regular, by Theorem 3.2 of [29] there exists
a regular open set W in Y containing f(z) such that CI(W) C Int(Cl(V)).
Since f is almost contra A-continuous, and CI(W) is regular closed in Y, by
Theorem 1.3(3) there exists U € NO(X, z) such that f(U) C CI(W). Then
f(U) c Cl W) C Int(CI(V)). Hence, f is almost A-continuous.

Recall that Caldas et al. [7] introduced the notion of A-frontier of A,
denoted by Fry(A), as Fry(A) = Cly\(A)\Int,(A), equivalently Fry(A) =
CiL(A) NCL(X\A).

Theorem 3.12 The set of points v € X at which f: (X,7) = (Y, 0) is not
almost contra A-continuous is identical with the union of the A-frontiers of
the inverse images of reqular closed sets of Y containing f(x).

Proof. Necessity. Suppose that f is not almost contra A-continuous at
a point x of X. Then there exists a regular closed set F' C Y containing
f(z) such that f(U) is not a subset of F' for every U € AO(X,z). Hence
we have U N (X\f 1 (F)) # 0 for every U € MO(X,z). It follows that
z € Cly(X\fH(F)). We also have z € f1(F) C Cl,(f ' (F)). This means
that x € Fra(f~'(F)).
Sufficiency. Suppose that x € Fry(f~'(F)) for some F € RC(Y, f(x)) Now,
we assume that f is almost contra A-continuous at € X. Then there exists
U € AO(X, z) such that f(U) C F. Therefore, we have z € U C f~!(F) and
hence x € Inty(f 1 (F)) € X\Frx(f '(F)). This is a contradiction. This
means that f is not almost contra A-continuous.

Definition 8 A space (X, 7) is called A-compact ([7], [8]) (also called NO-
compact [19]) if every cover of X by A-open sets has a finite subcover.

Definition 9 A space X is said to be

(1) S-Lindeldf [12] if every cover of X by reqular closed sets has a countable
subcover,

(2) countably S-closed [1] if every countable cover of X by reqular closed sets
has a finite subcover,

(3) mildly compact [31] if every clopen cover of X has a finite subcover.
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Theorem 3.13 Let f : (X,7) — (Y,0) be an almost contra \-continuous
surjection.

(1) If X is AO-compact, then'Y is S-closed.

(2) If X is S-Lindeldf, then Y is S-Lindeldf.

(8) If X is countably NO-compact, then Y is countably S-closed.

Proof. We prove only (1) since the proofs of (2) and (3) are analogous.
Suppose that {V,, | & € V} be any regular closed cover of Y. Since f is almost
contra A-continuous, then {f~1(V,) | @ € V} is a Ad-open cover of X. Thus,
there exists a finite subset Vg of V such that X = J{f~"(V,) | a € Vo}. We
have Y = U{V, | @ € Vi} and this shows that Y is S-closed [[20], Theorem
3.2].
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