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Abstract

In 1996, Dontchev [14] introduced and investigated a new notion of
non-continuity called contra-continuity. Recently, Baker et al. [6] of-
fered a new generalization of contra-continuous functions via �-closed
sets, called almost contra �-continuous functions. It is the objective
of this paper to further study some more properties of such functions.

1 Introduction and preliminaries

In 1986, Maki [25] introduced the notion of �-sets in topological spaces.
A �-set is a set A which is equal to its kernel(= saturated set), i.e. to the
intersection of all open supersets of A. Arenas et al. [3] introduced and inves-
tigated the notion of �-closed sets by involving �-sets and closed sets. Quite
recently, Caldas et al. ([7], [11]) introduced the notion of �-closure of a set
by utilizing the notion of �-open sets de�ned in [3]. In [14], Dontchev intro-
duced and studied a new notion of non-continuity called contra-continuity.
It is the aim of this paper to continue our work ([6], [9], [8]) and present
some more properties of almost contra �-continuity which is a generaliza-
tion of contra-continuity. Moreover, we present some of the basic properties
and preservation theorems of almost contra �-continuous functions. Further-
more, we investigate the relationships between almost contra �-continuous
functions and functions with �R-closed graph.
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Throughout this paper, by (X; �) and (Y; �) (or X and Y ) we always
mean topological spaces. Let A be a subset of X: We denote the interior, the
closure and the complement of a set A by Int(A), Cl(A) and XnA or Ac, re-
spectively. A subset A of X is said to be regular open (resp. regular closed)
if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset A of a space X is
called preopen [24] (resp. semi-open [23], �-open [1](also called semipreopen
[2]) if A � Int(Cl(A)) (resp. A � Cl(Int(A)), A � Cl(Int(Cl(A)))). The
complement of a preopen (resp. semi-open, �-open) set is said to be pre-
closed (resp. semi-closed, �-closed). The collection of all regular closed (resp.
semi-open) subsets of X will be denoted by RC(X)(resp. SO(X)). We set
RC(X; x) = fV 2 RC(X) : x 2 V g (resp. SO(X; x) = fV 2 SO(X) : x 2
V g). A subset A of (X; �) is called �-closed [3] if A = L \ D, where L is
a �-set and D is a closed set. The complement of a �-closed set is called
�-open. We denote the collection of all �-open sets (resp. �-closed sets) by
�O(X; �) (resp. �C(X; �)). We set �O(X; x) = fU : x 2 U 2 �O(X; �)g
and �C(X; x) = fU : x 2 U 2 �C(X; �)g. A point x in a topological space
(X; �) is called a �-cluster point of A [7] if A\U 6= ; for every �-open set U
of X containing x. The set of all �-cluster points is called the �-closure of A
and is denoted by Cl�(A) ([3], [7]).
A point x 2 X is said to be a �-interior point of A if there exists a �-open
set U containing x such that U � A. The set of all �-interior points of A is
said to be �-interior of A and is denoted by Int�(A).

Lemma 1.1 ([3], [7]). Let A, B and Ai (i 2 I) be subsets of a topological
space (X; �). The following properties hold:
(1) If Ai is �-closed for each i 2 I, then \i2IAi is �-closed.
(2) If Ai is �-open for each i 2 I, then [i2IAi is �-open.
(3) A is �-closed if and only if A = Cl�(A).
(4) A is �-open if and only if A = Int�(A).
(5) Cl�(A) = \fF 2 �C(X; �) : A � Fg.
(6) A � Cl�(A).
(7) If A � B, then Cl�(A) � Cl�(B).
(8) Cl�(A) is �-closed.

De�nition 1 A function f : X ! Y is said to be:
(1) �-continuous [3] If f�1(V ) is �-closed for every closed set V in Y , equiv-
alently if the inverse image of every open set V in Y is �-open in X:
(2) almost �-continuous [21] if f�1(V ) is �-closed in X for every regular
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closed set V in Y:
(3) almost contra pre-continuous ([16], [27]) if f�1(V ) is preclosed in X for
every regular open set V in Y:
(4) almost contra �-continuous [5] if f�1(V ) is �-closed in X for every reg-
ular open set V in Y:
(5) almost contra �-continuous if f�1(V ) is �-closed in X for each regular
open set V of Y:

De�nition 2 Let A be a subset of a space (X; �). The set
T
fU 2 RO(X) :

A � Ug is called the r-kernel of A [17] and is denoted by rker(A).

Lemma 1.2 (Ekici [17]) The following properties hold for the subsets A;B
of a space X :
(1) x 2 rker(A) if and only if A \ F 6= ; for any F 2 RC(X; x).
(2) A � rker(A) and A = rker(A) if A is regular open in X.
(3) If A � B; then rker(A) � rker(B):

Theorem 1.3 [6] Let f : X ! Y be a function from a topological space X
into a topological space Y: The following statements are equivalent:
(1) f is almost contra �-continuous;
(2) The inverse image of each regular closed set in Y is �-open in X;
(3) For each point x in X and each regular closed set V in Y containing
f(x), there is a �-open set U in X containing x such that f(U) � V ;
(4) For each point x in X and each semiopen set V in Y containing f(x),
there is a �-open set U in X containing x such that f(U) � Cl(V );
(5) f(Cl�(A)) � rker(f(A)) for every subset A of X;
(6) Cl�(f

�1(B)) � f�1(rker(B)) for every subset B of Y:

2 Some more properties

Recall that a topological space (X; �) is said to be:
(i) �-T1 [10] if for any distinct pair of points x and y in X, there exist
U 2 �O(X) containing x but not y and V 2 �O(X) containing y but not x.
(ii) �-T2 [10] if for any distinct pair of points x and y in X, there exist
U 2 �O(X; x) and V 2 �O(X; y) such that U \ V = ;:
(iii) Weakly Hausdor� [30] (brie
y weak-T2) if every point of X is an inter-
section of regular closed sets of X.
(iv) s-Urysohn [4] if for each pair of distinct points x and y in X, there exist
U 2 SO(X; x) and V 2 SO(X; x) such that Cl(U) \ Cl(V ) = ;.
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Remark 2.1 Observe that T0, �-T1 and �-T2 are equivalent [18] and s-
Urysohn ) weak-T2 ) T1 ) T0.

Theorem 2.2 If X is a topological space and for each pair of distinct points
x1 and x2 in X, there exists a map f of X into a Urysohn topological space
Y such that f(x1) 6= f(x2) and f is almost contra �-continuous at x1 and
x2, then X is T0.

Proof. Let x1 and x2 be any distinct points in X. Then by hypothesis,
there is a Urysohn space Y and a function f : X ! Y which satis�es the
conditions of the theorem. Let yi = f(xi) for i = 1; 2. Then y1 6= y2. Since
Y is Urysohn , there exist open sets Uy1 and Uy2 of y1 and y2, respectively,
in Y such that Cl(Uy1)\Cl(Uy2) = ;. Since f is almost contra �-continuous
at xi, there exists a �-open set Wxi

of xi in X such that f(Wxi
) � Cl(Uyi)

for i = 1; 2. Hence we get Wx1 \Wx2 = ; since Cl(Uy1)\Cl(Uy2) = ;. Hence
X is �-T2 and therefore by Remark 2.1, X is T0.

Corollary 2.3 If f is an almost contra �-continuous injection of a topolog-
ical space X into a Urysohn space Y , then X is T0 .

Proof. For each pair of distinct points x1 and x2 in X , f is an almost
contra �-continuous function of X into a Urysohn space Y such that f(x1) 6=
f(x2) since f is injective. Hence by Theorem 2.2, X is T0.

Theorem 2.4 If f is an almost contra �-continuous injection of a topological
space X into a weakly Hausdor� space Y , then X is T0.

Proof. Since Y is weakly Hausdor� and f is injective, for any distinct
points x1 and x2 of X, there exist V1; V2 2 RC(Y ) such that f(x1) 2 V1,
f(x2) =2 V1, f(x2) 2 V2 and f(x1) =2 V2. Since f is almost contra �-
continuous, by Theorem 2.2 f�1(V1) and f�1(V2) are �-open sets and x1 2
f�1(V1), x2 =2 f�1(V1), x2 2 f�1(V2), x1 =2 f�1(V2). Then there exists
U1; U2 2 �O(X) such that x1 2 U1 � f�1(V1), x2 =2 U1, x2 2 U2 � f�1(V2)
and x1 =2 U2. Thus X is �-T1 and therefore by Remark 2.1, X is T0.

Corollary 2.5 If f is an almost contra �-continuous injection of a topolog-
ical space X into a s-Urysohn space Y , then X is T0.
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Recall that a topological space is called a �-space [3] if the union of any
two �-closed sets is a �-closed set. Observe that if f; g : X ! Y are almost
contra �-continuous functions, X is a �-space and Y is s-Urysohn, then it is
obvious that E = fx 2 X j f(x) = g(x)g is �-closed in X.

We say that the product space X = X1 � :::�Xn has Property P� if Ai

is a �-open set in a topological space Xi, for i = 1; 2; :::n; then A1 � :::�An

is also �-open in the product space X = X1 � :::�Xn .

Theorem 2.6 Let f1 : X1 ! Y and f2 : X2 ! Y be two functions, where
(1) X = X1 �X2 has the Property P�.
(2) Y is a Urysohn space.
(3) f1 and f2 are almost contra �-continuous .
Then f(x1; x2) : f1(x1) = f2(x2)g is �-closed in the product space X =
X1 �X2 .

Proof. Let A denote the set f(x1; x2) : f1(x1) = f2(x2)g. In order to show
that A is �-closed, we show that (X1 � X2)nA is �-open. Let (x1; x2) =2 A.
Then f1(x1) 6= f2(x2) . Since Y is Urysohn , there exist open sets V1 and
V2 of f1(x1) and f2(x2), respectively, such that Cl(V1) \ Cl(V2) = ;. Since
fi (i = 1; 2) is almost contra �-continuous and Cl(Vi) is regular closed, then
f�1i (Cl(Vi)) is a �-open set containing xi in Xi (i = 1; 2): Hence by (1),
f�11 (Cl(V1))� f�12 (Cl(V2)) is �-open. Furthermore (x1; x2) 2 f�11 (Cl(V1))�
f�12 (Cl(V2)) � (X1 � X2)nA. It follows that (X1 � X2)nA is �-open. Thus
A is �-closed in the product space X = X1 �X2.

Corollary 2.7 Assume that the product space X �X has the Property P�.
If f : X ! Y is almost contra �-continuous and Y is a Urysohn space. Then
A = f(x1; x2) : f(x1) = f(x2)g is �-closed in the product space X �X.

Recall that a topological space X is called a T 1

2

-space ([15], [22]) if every
singleton is open or closed.

Lemma 2.8 Let (X; �) be a T 1

2

-space and f : X ! Y . If f is almost
contra-�-continuous or almost contra-pre-continuous then f is almost contra-
�-continuous.

Proof. It follows directly from Theorem 2.6 of [3].
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Remark 2.9 Observe that a topological space (X; �) in which every two non-
void �-closed subsets of (X; �) intersect is indiscrete. It is obvious that if a
topological space X is indiscrete and f : X ! Y is a surjective almost contra
�-continuous function, then Y is hyperconnected. Recall that a topological
space is hyperconnected if every open set is dense. To see this, suppose that
Y is not hyperconnected. This implies that there exists an open set V such
that Cl(V ) 6= Y . Thus, there exist disjoint regular open sets D and E in
Y , i.e, Int(Cl(V )) and Y nCl(V ). Since f is a surjective almost contra �-
continuous function, we have A = f�1(D) and B = f�1(E) such that A
and B are disjoint non-empty �-closed subsets of X. By hypothesis, X is
indiscrete and this implies that A \ B 6= ;. But this is a contradiction.
Hence Y is hyperconnected.

Theorem 2.10 Let f : X ! Y be a function and g : X ! X � Y the graph
function, given by g(x) = (x; f(x)) for every x 2 X. Then f is almost contra
�-continuous if g is almost contra �-continuous.

Proof. Let x 2 X and V be a regular open subset of Y containing f(x).
Then we have X�V is a regular open. Since g is almost contra �-continuous,
g�1(X � V ) = f�1(V ) is �-closed. Hence f is almost contra �-continuous.

Recall that for a function f : X ! Y , the subset f(x; f(x)) : x 2 Xg �
X � Y is called the graph of f and is denoted by G(f).

De�nition 3 A function f : X ! Y has a �-closed graph if for each (x; y) 2
(X�Y )�G(f), there exists U 2 �O(X; x) and an open set V of Y containing
y such that (U � V ) \G(f) = ;.

Lemma 2.11 The graph, G(f) of a function f : X ! Y is �-closed if and
only if for each (x; y) 2 (X � Y ) � G(f) there exists U 2 �O(X; x) and an
open set V of Y containing y such that f(U) \ V = ;.

Theorem 2.12 If f : X ! Y is a function with �-closed graph, then for
each x 2 X, f(x) = \fCl(f(U)) : U 2 �O(X; x)g:

Proof. Suppose the theorem is false. Then there exists a y 6= f(x) such
that y 2 \fCl(f(U)) : U 2 �O(X; x)g: This implies that y 2 Cl(f(U));
for every U 2 �O(X; x). So V \ f(U) 6= ;, for every V 2 O(Y; y): which
contradicts the hypothesis that f is a function with �-closed graph. Hence
the theorem.
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Theorem 2.13 If f : X ! Y is almost contra �-continuous and Y is Hau-
dor�, then G(f) is �-closed.

Proof. Let (x; y) 2 (X�Y )�G(f). Then y 6= f(x). Since Y is Hausdor�,
there exists disjoint open sets V and W of Y such that y 2 V and f(x) 2 W .
Then f(x) =2 Y �Cl(W ). Since Y �Cl(W ) is a regular open set containg V , it
follows that f(x) =2 rKer(V ) and hence x =2 f�1(rKer(V )). Then by Theorem
1.3(6) x =2 Cl�(f

�1(V )). Therefore we have (x; y) 2 (X�Cl�(f
�1(V )))�V �

(X � Y )�G(f), which proves that G(f) is �-closed.

Theorem 2.14 Let f : X ! Y have a �-closed graph.
(1) If f is injective, then X is T0.
(2) If f is surjective, then Y is T1.

Proof. (1) Let x1 and x2 be two points inX. Then (x1; f(x2)) 2 (X�Y )�
G(f). Since f has a �-closed graph, there exist U 2 �O(X; x1) and an open
set V of Y containing f(x2) such that f(U)\ V = ;. Then U \ f�1(V ) = ;.
Since x2 2 f�1(V ), x2 =2 U . Therefore U is a �-open set containing x1 but
not x2, which proves that X is �-T1 and hence by Remark 2.1 that Xis T0.
(2) Let y1 and y2 be two points in Y . Since Y is surjective, there exists
x 2 X such that f(x) = y1. Then (x; y2) 2 (X � Y ) � G(f). Since f has a
�-closed graph, there exist U 2 �O(X; x) and an open set V of Y containing
y2 such that f(U)\V = ;. Since y1 = f(x) and x 2 U , y1 2 f(U). Therefore
y1 =2 V , which proves that Y is T1.

It is clear that if f : X ! Y has a �-closed graph and X is a �-space ,
then f�1(K) is �-closed for every compact subset K of Y:

3 �R-closed graphs

De�nition 4 A function f : X ! Y has a �R-closed graph if for each
(x; y) 2 (X � Y )nG(f), there exist U 2 �O(X; x) and V 2 RC(Y; y) such
that (U � V ) \G(f) = ;.

Remark 3.1 The above de�nition is equivalent with the statement that a
function f : X ! Y has a �R-closed graph if for each (x; y) 2 (X�Y )nG(f),
there exist U 2 �O(X; x) and V 2 SO(Y; y) such that (U�Cl(V ))\G(f) = ;.

7



Lemma 3.2 A graph G(f) of a function f : X ! Y is �R-closed if for each
(x; y) 2 (X�Y )nG(f), there exist U 2 �O(X) containing x and V 2 RC(Y )
containing y such that f(U) \ V = ;.

Remark 3.3 Observe that a graph G(f) of a function f : X ! Y is �R-
closed if for each (x; y) 2 (X � Y )nG(f), there exist U 2 �O(X) containing
x and V 2 SO(Y ) containing y such that f(U) \ Cl(V ) = ;.

Theorem 3.4 For a function f : X ! Y , the following are equivalent:
(1) f is �-continuous;
(2) for each x 2 X and each V 2 O(Y; f(x)), there exists U 2 �O(X; x) such
that f(U) � V .

Proof. Straightforward.

Remark 3.5 Examples 3.4 and 3.5 in [6] show that �-continuity and almost
contra �-continuity are, in general, independent

Theorem 3.6 If f : X ! Y is �-continuous and Y is Hausdor�, then G(f)
is �R-closed.

Proof. Let (x; y) 2 X � Y nG(f): Since Y is Hausdor�, then there exists
a set V 2 O(Y; y) such that f(x) =2 Cl(V ): Now Y nCl(V ) 2 O(Y; f(x)):
Therefore, by the �-continuity of f there exists U 2 �O(X; x) such that
f(U) � Y nCl(V ): Consequently, f(U)\Cl(V ) = ; where Cl(V ) is a regular
closed set since V is open. By Lemma 3.2, G(f) is �R-closed.

Theorem 3.7 Let f : X ! Y has a � R-closed graph.
(1) If f is injective, then X is T0.
(2) If f is surjective, then Y is weakly-T2.

Proof. (1) Suppose that x and y are any two distinct points of X. We
have (x; f(y)) 2 X�Y nG(f). Since f has a �R-closed graph, then there exist
a �-open neighborhood U of x and a regular closed set F of Y containing
f(y) such that f(U) \ F = ;. Hence U \ f�1(F ) = ;. This means that we
have y =2 U . Thus X is T0.
(2) Let y1 and y2 be any distinct points of Y . Since f is surjective, then
f(x) = y1 for some x 2 X and (x; y2) 2 X � Y nG(f). Since f has a �R-
closed graph, then there exist a �-open neighborhood U of x and a regular
closed set F of Y containing y2 such that f(U) \ F = ;. This means that
y1 =2 F . It follows that Y is weakly-T2.
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Theorem 3.8 If f : X ! Y is almost contra �-continuous and Y is Urysohn,
then G(f) is �R-closed in X � Y .

Proof. Let (x; y) 2 (X � Y )nG(f), then y 6= f(x). Since Y is Urysohn
there exist open sets V and W in Y such that y 2 V , f(x) 2 W with
Cl(V ) \ Cl(W ) = ;. Since f is almost contra �-continuous, by Theorem
1.3(3) and since Cl(W ) is regular closed containing f(x) there exists U 2
�O(X; x) such that f(U) � Cl(W ). Therefore, we obtain f(U)\Cl(V ) = ;.
By de�nition G(f) is �R-closed in X � Y .

Theorem 3.9 If f : X ! Y is almost contra �-continuous and Y is s-
Urysohn, then G(f) is �R-closed in X � Y .

De�nition 5 A subset A of a space X is said to be S-closed relative to X
[26] if for every cover fV� j � 2 rg of A by semi-open sets of X, there exists
a �nite subset r0 of r such that A �

S
fCl(V�) j � 2 r0g. A space X is

said to be S-closed [32] if X is S-closed relative to X.

It should be noted that if a function f : X ! Y has a �R-closed graph
and X is �-space, then f�1(K) is �-closed in X for every subset K which is
S-closed relative to Y .

De�nition 6 A topological space X is said to be:
(1) strongly �S-closed if every �-closed cover of X has a �nite subcover.
(resp. A � X is strongly �S-closed if the subspace A is strongly �S-closed).
(2) nearly-compact [28] if every regular open cover of X has a �nite subcover.

Theorem 3.10 If f : X ! Y is an almost contra �-continuous surjection
and X is strongly �S-closed , then Y is nearly compact.

Proof. Let fV� : � 2 Ig be a regular open cover of Y . Since f is almost
contra �-continuous, we have that ff�1(V�) : � 2 Ig is a cover of X by �-
closed sets. Since X is strongly �S-closed, there exists a �nite subset I0 of I
such that X =

S
ff�1(V�) : � 2 I0g. Since f is surjective Y =

S
fV� : � 2 I0g

and therefore Y is nearly compact.

De�nition 7 A topological space X is said to be almost-regular [29] if for
each regular closed set F of X and each point x 2 XnF , there exist disjoint
open sets U and V such that F � V and x 2 U .
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Theorem 3.11 If a function f : X ! Y is almost contra �-continuous and
Y is almost-regular, then f is almost �-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y con-
taining f(x). Since Y is almost-regular, by Theorem 3.2 of [29] there exists
a regular open set W in Y containing f(x) such that Cl(W ) � Int(Cl(V )).
Since f is almost contra �-continuous, and Cl(W ) is regular closed in Y , by
Theorem 1.3(3) there exists U 2 �O(X; x) such that f(U) � Cl(W ). Then
f(U) � Cl(W ) � Int(Cl(V )). Hence, f is almost �-continuous.

Recall that Caldas et al. [7] introduced the notion of �-frontier of A,
denoted by Fr�(A), as Fr�(A) = Cl�(A)nInt�(A), equivalently Fr�(A) =
Cl�(A) \ Cl�(XnA).

Theorem 3.12 The set of points x 2 X at which f : (X; �)! (Y; �) is not
almost contra �-continuous is identical with the union of the �-frontiers of
the inverse images of regular closed sets of Y containing f(x).

Proof. Necessity. Suppose that f is not almost contra �-continuous at
a point x of X. Then there exists a regular closed set F � Y containing
f(x) such that f(U) is not a subset of F for every U 2 �O(X; x). Hence
we have U \ (Xnf�1(F )) 6= ; for every U 2 �O(X; x). It follows that
x 2 Cl�(Xnf

�1(F )). We also have x 2 f�1(F ) � Cl�(f
�1(F )). This means

that x 2 Fr�(f
�1(F )).

Su�ciency. Suppose that x 2 Fr�(f
�1(F )) for some F 2 RC(Y; f(x)) Now,

we assume that f is almost contra �-continuous at x 2 X. Then there exists
U 2 �O(X; x) such that f(U) � F . Therefore, we have x 2 U � f�1(F ) and
hence x 2 Int�(f

�1(F )) � XnFr�(f
�1(F )). This is a contradiction. This

means that f is not almost contra �-continuous.

De�nition 8 A space (X; �) is called �-compact ([7], [8]) (also called �O-
compact [19]) if every cover of X by �-open sets has a �nite subcover.

De�nition 9 A space X is said to be
(1) S-Lindel�of [12] if every cover of X by regular closed sets has a countable
subcover,
(2) countably S-closed [1] if every countable cover of X by regular closed sets
has a �nite subcover,
(3) mildly compact [31] if every clopen cover of X has a �nite subcover.

10



Theorem 3.13 Let f : (X; �) ! (Y; �) be an almost contra �-continuous
surjection.
(1) If X is �O-compact, then Y is S-closed.
(2) If X is S-Lindel�of, then Y is S-Lindel�of.
(3) If X is countably �O-compact, then Y is countably S-closed.

Proof. We prove only (1) since the proofs of (2) and (3) are analogous.
Suppose that fV� j � 2 rg be any regular closed cover of Y . Since f is almost
contra �-continuous, then ff�1(V�) j � 2 rg is a �-open cover of X. Thus,
there exists a �nite subset r0 of r such that X =

S
ff�1(V�) j � 2 r0g. We

have Y =
S
fV� j � 2 r0g and this shows that Y is S-closed [[20], Theorem

3.2].
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