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Abstract
It is the object of this paper to study further the notion of As-semi-
0-closed sets which is defined as the intersection of a 6-Ag-set and a
semi-f-closed set. Moreover, we introduce some low separation axioms
using the above notions. Also we present and study the notions of A-
continuous functions, As-compact spaces and Ag-connected spaces.
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1 Introduction

The notion of #-As-set is introduced and investigated by Caldas et al. [1]
by utilizing semi-f-open sets. These sets suggested a new class of sets which
they called As-semi-f-closed sets. They offered some properties of these sets.
Among others, they proved that a topological space (X, 7) is semi-6-Tj if and
only if every singleton of X is A-semi-f-closed. Recall that a topological
space is semi-0-Tg [1] if to each pair of points z,y € X and x # y, there
exists a semi-#-open set which contains one of them but not the other.

In what follows (X, 7) and (Y, o) (or X and Y') denote topological spaces.
Let A be a subset of X. We denote the interior and the closure of a set A
by int(A) and cl(A), respectively.



2 Preliminaries
In this section we recall the definitions of A2* [1] and Aj*-sets .

Definition 1 (see [1]) Let A be a subset of a topological space X. By AL+ (A)
we denote the set N{O € SOO(X,7) | A C O}. A subset A of a topological
space (X,7) is called a Ay*-set if A= AL+ (A).

Lemma 2.1 For subsets A and A; (i € 1) of a space (X, T), the following
hold:

(1) A C Ay (A).

(2) A (AR (4)) = A (A).

(3) If A C B, then Ay*(A) C Ay*(B).

(4) Ng*(N{A; i € T}) C N{A)*(A;) i € T}

(5) Ays(U{A; s i e I}) = U{AL:(4;) :i e T}.

(6) A= (A) is a Ay -set.

(7) If A is semi-0-open, then A is a Ay*-set.

(8) If A; is Ny*-set for each i € I, then Nicr A; is a A)*-set.
(9) If A; is Ny*-set for each i € I, then Uit A; is a A)*-set.

Theorem 2.2 Let X be a topological space. We set e = {A: Ais a A)® — set of X}.
The pair (X, TAQS) is an Alexandroff space.

Proof. This is an immediate consequence of Lemma 2.1.

Definition 2 Let A be a subset of a topological space (X, 7). By A)*(A), we
denote the set U{B € SOC(X, 1) | B C A}. A subset A of a topological space
(X, 7) is called a Ay -set if A= A)*(A).

We obtain the following lemma which is similar to Lemma 2.1.
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Lemma 2.3 For subsets A, B and A; (i € 1) of a topological space (X, )
the following properties hold:

(1) Ag*(A) € A.

(2) If A C B, then Ay*(A) C A)*(B).

(3) If A is semi-0-closed, then Ay (A) =

(4) Ng™ (N{A; =i € I}) = N{Ay* (4)) : Gf}

(5) U{AY* (A;) ri e I} C AN (U{A; i e I}).

(6) Ab+(X — A) = X — A)*(A) and

Ay (X — A) = X — A)e(A).

(7) Ay* (A) is a Ay -set.

(8) If A is a semi-0-closed, then A is a A, -set.

(9) If A; is a Ay*-set for each i € I, then U{A; | i € I} and N{A; | i € I}

A*
are Ny* -sets.

Observe that if X is a topological space and 74" = {A : Ais a A — set of X},
then (X, 7 Ay ") is an Alexandroff space.

3 A,-semi-f-closed sets

Definition 3 A subset A of a topological space (X, 1) is called Ag-semi-0-
closed [1], denoted by (A, s6)-closed, if A =T NC, where T is a A)*-set and

C 1s a semi-0-closed set.

Lemma 3.1 ([1], Lemma 2.23) Let A be a subset of a space (X, 7). Then
the following conditions are equivalent:

(1) A is (A, sB)-closed,

(2) A= PnNscly(A), where P is a Ay*-set,

(3) If A= Ay (A) N sclp(A).



Example 3.2 Let X = {a,b,¢,} and 7 = {0, X, {b},{c},{b,c}}. The semi
0-closed sets of (X, 1) are {0, X, {a}, {b},{c}, {a,b}, {a,c}}. Theset A= {c}

is (A, s0)-closed since it is semi 0-closed but it is not closed.

Example 3.3 Let X = {a,b,c, } and T = {0, X, {a}, {b}, {a,b},{b,c}}. The
set A ={c} is closed but it is not (A, s0)-closed.

The Example 3.2 and Example 3.3 shown that the sets (A, sf)-closed and

closed are independent of each other.

Note that every semi #-closed set is (A, sf)-closed, but the converse is not

true in general.

Example 3.4 Let (X, 7) as in the Ezample 3.2.Then B = {b,c} is (A, s0)-

closed since it is Ay -set, but it is not semi -closed.

Lemma 3.5 If A; is (A, sf)-closed for each i € I, then NicrA; is (A, s6)-

closed.

Proof. Suppose that A; is (A, sf)-closed for each i € I. Then, for each
1 € I there exist a Aé\s—set T; and a semi-0-closed set C; such that A; = T;NC;.
Now Nier Ai = Nicr(Ti N Cy) = (Mier Ti) N (Nier Ci). By Lemma 2.1, N T;
is a Ay*-set and (;c; C; is semi-f-closed. This shows that ;e A; is (A, s6)-
closed. O

Definition 4 A subset A of a space (X, T) is said to be (s6, s0)-generalized
closed if scly(A) C G holds whenever A C G and G € SO0(X, T).

Lemma 3.6 A subset A of a space (X, T) is (s0, s8)-generalized closed if and
only if sclg(A) C A)=(A).



Proof. Necessity: Suppose that there is a point zeX such that = ¢ AJ*(A).
Then exists a subset OeSOO(X, 7) such that A C O and x ¢ O. This implies
that sclg(A) C O.Hence x ¢ sClp(A) since A is (s, sf)-generalized closed.
Sufficiency: Obvious.

Theorem 3.7 A subset A of a space (X, T) is semi-0-closed if and only if A
is (s0, s0)-generalized closed and (A, s6)-closed.

Proof. Necessity: Every semi #-closed set is both (s, sf)-generalized
closed and (A, sf)-closed..
Sufficiency: Since A is (s6, sf)-generalized closed, then by Lemma 3.3, sclp(A) C
A)*(A). By assumption and Lemma 3.1 A = A)*(A)NsClg(A) = sClg(A).

i.e., A is semi f-closed.

Definition 5 A subset A of a topological space (X, T) is called (A, s6)-open
if X\ A is (A, s0)-closed.

Theorem 3.8 The union of any family of (A, s0)-open sets is a (A, s8)-open

set.

Proof. The proof of this theorem follows by the fact that the intersection
of a family of (A, sf)-closed sets is (A, sf)-closed. O

Lemma 3.9 The following statements are equivalent for a subset A of a
topological space X :

(1) A is (A, s0)-open

(2) A=TUC, where T is a Aé\l‘- -set and C' is a semi-0-open set.

Proof. The proof of this lemma is clear. O



Lemma 3.10 Every Ay*-set is (A, s6)-open.

Proof. Take A = AU, where A is a Aé\;—set, X is semi-f-closed and
P=X\X.0O

Definition 6 A subset A of a topological space X is called a Aé\s -D set if
there are two (A, s)-open sets U and V in X such that U # X and A =
Uu-V.

It is true that every (A, sf)-open set U different from X is a AJ*-D set if
A=Uand V = 0.

Definition 7 A topological space (X, T) is called:

(i) Ags -Dy if for any distinct pair of points x and y of X there exists a Ag\s -D
set of X containing x but noty or a Aé\s -D set of X containing y but not x.
(i1) Ags -D1 if for any distinct pair of points x and y of X there exist a AQS -D
set of X containing x but not y and a Aé\s -D set of X containing y but not
x.

(111) A‘gs -Ds if for any distinct pair of points x and y of X there exist disjoint
Ags -D sets G and E of X containing x and vy, respectively.

A topological space (X, ) satisfies the (A, sf)-property if for any distinct
pair of points in X, there is a (A, sf)-open set containing one of the points

but not the other.

Remark 3.11 (i) If (X, 7) satisfies the (A, s@)-property, then it is Ay*-Dy.
(ii) If (X, 7) is Ay*-D; , then it is Ay*-D;_, , where i = 1,2.

Theorem 3.12 For a topological space (X, T), the following statements are
true:

(1) (X,7) is Ay*-Dy if and only if it satisfies the (A, s8)-property.

(2) (X,7) is Ay*-Dy if and only if it is Ay=-Ds.
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Proof. The sufficiency for (1) and (2) follows from the above Remark 3.5.

Necessity condition for (1). Let (X,7) be Aj*-Dj so that for any distinct
pair of points z and y of X at least one belongs to a AQS—D set O. Therefore
we choose x € O and y ¢ O. Suppose O = U — V for which U # X and
U and V are (A, sf)-open sets in X. This implies that x € U. For the case
that y ¢ O we have (i) y ¢ U, (ii) y € U and y € V. For (i), the space X
satisfies the (A, sf)-property since € U and y ¢ U. For (ii), the space X
also satisfies the (A, sf)-property since y € V but = ¢ V.

Necessity condition for (2). Suppose that X is Aj<-Dy. It follows from
the definition that for any distinct points = and y in X there exist AQS—D
sets G and E such that G containing x but not y and E' containing y but not
x. Let G=U—-V and E =W — D, where U,V,W and D are (A, sf)-open
sets in X. By the fact that x ¢ E, we have two cases, i.e. either x ¢ W or
both W and D contain . If © ¢ W, then from y ¢ G either (i) y ¢ U or(ii)
y € Uand y € V. If (i) is the case, then it follows from x € U — V' that
x € U—(VUW), and also it follows from y € W — D that y € W — (UU D).
Thus we have U — (VU W) and W — (U U D) which are disjoint. If (ii) is
the case, it follows that z e U —V,y e Vand (U—-V)NV =0. lf z € W
and z € D, we havey € W — D, x € D and (W — D) N D = (). This shows
that X is Aj-D,. O

Definition 8 Let (X, 7) be a topological space. A point x € X which has
only X as the (A, s6)-neighborhood is called a AL*-neat point.

Theorem 3.13 For a topological space (X, T) that satisfies the (A, s@)-property
the following are equivalent:

(1) (X,7) is Ay -Dy;

(2) (X,7) has no Ay*-neat point.



Proof. (1) — (2). Since (X,7) is A)*-D;, so each point z of X is contained
in a AQS-D set O = U —V and thus in U. By definition U # X. This implies
that x is not a AJ*-neat point.

(2) — (1). Since X satisfies the (A, ps#)-property, then for each distinct
pair of points x,y € X, at least one of them, choose = for example has a
(A, sf)-neighborhood U containing = and not y. Thus U which is different
from X is a AQS—D set. If X has no Ags—neat point, then y is not a Aé\s—neat
point. This means that there exists a (A, sf)-neighborhood V' of y such that
V #X. Thus y € (V —U) but not = and V — U is a Aj*-D set. Hence X is
Ay-Dy. O

Remark 3.14 It is clear that a topological space (X, T) that satisfies the
(A, s0)-property is not Ag\s -Dy if and only if there is a unique Aé\s—neat point
i X. It is unique because if x and y are both Ags-neat point in X, then at
least one of them say x has a (A, s8)-neighborhood U containing x but not y.

But this is a contradiction since U # X.

Definition 9 Let (X, 7) be a topological spaces and A C X. A pointz € X is
called (A, s0)-cluster point of A if for every (A, s0)-open set U of X containing
x we have ANU # 0. The set of all (A, s8)-cluster points is called the (A, s6)-
closure of A and is denoted by AX9).

Lemma 3.15 Let A and B be subsets of a topological space (X, 7). For the
(A, s0)-closure, the following properties hold.

(1) A C AAsO),

(2) AN =n{F | ACF and F is (A, s0) — closed}.

(3) If A C B, then AN c BAs9),

(4) A is (A, s0)-closed if and only if A= A0,

(5) A9 s (A, s0)-closed.



Proof. Straightforward.

Definition 10 A topological space (X, T) is called a (A, s0)-symmetric if for

z andy in X, x € y™0 implies y € x50,

Theorem 3.16 A topological space (X, T) is (A, s0)-symmetric if and only
if for v € X, ™9 C E whenever x € E and E is (A, s0)-open in (X, 7).

Proof. Assume that z € y**% but y ¢ 2(**%. This means that the

A,s0)

complement of z contains y. Therefore the set {y} is a subset of the

complement of ("% This implies that y**) is a subset of the complement

A,s0)

of z%_ Now the complement of z contains x which is a contradiction.

Conversely, suppose that {z} C E and E is (A, sf)-open in (X, 7) but

A,s0) As9) and the complement

( is not a subset of E. This means that a!
of E are not disjoint. Let y belongs to their intersection. Now we have
r € y™*9 which is a subset of the complement of E and = ¢ E. But this is

a contradiction. O

Theorem 3.17 For a (A, s0)-symmetric topological space (X, 1), the follow-
g are equivalent:

(1) (X, 7) satisfies the (A, s8)-property;

(2) (X,7) is Ay -Dy;

(3) (X,7) is Ay*-D;.

Proof. (1) «<» (2) : Lemma 3.10.
(3) — (2) : Remark 3.11.
(1) — (3) : Let = # y and by (1), we may assume that © € E C {y}* for some
E (A, s6)-open in (X, 7). Then x ¢ 3% and hence y ¢ 2**%) . Hence there
exists a (A, s)-open set F' such that y € F C {x}°. Since every (A, sf)-open
set is a A)*-D set, we have that (X, 7) is a Aj*-D; space. O
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4 (A, s#)-continuous functions

Definition 11 Let (X, 1) and (Y,0) two topological spaces. A function f :
(X,7) — (Y,0) is called (A, sf)-continuous at a point x € X if for every
(A, p)-open set V of Y such that f(x) € V there exists a (A, s)-open set U
of X such that x € U and f(U) C V.

The function f is called (A, s0)-continuous if f is (A, s#)-continuous at

every point r € X.

Definition 12 Let (X, 7) be a topological space, x € X and {4, s € S} be
a net of X. We say that the net {xs,s € S} (A, s0)-converges to x if for
every (A, s0)-open set U containing x there exists an element sy € S such

that s > so implies x5 € U.

Theorem 4.1 Let (X, 7) be a topological space and A C X. A point x €
AWSO) it and only if there exists a net {xs,5s € S} of A which (A, s0)-

converges to x.

Proof. The existence of such a net clearly implies that z € A™59) . Sup-
pose z € A9 and let us denote by U the set of all (A, sf)-open subsets
U of X such that z € U directed by the relation C, i.e., let us define that
Uy < Uy if Uy C Uy. The net {zy, U € U}, where xy is an arbitrary point of
ANU, (A, sf)-converges to x. O

Theorem 4.2 For a function f: (X,7) — (Y,0), the following are equiva-
lent:

(1) f is (A, s0)-continuous;

(2) f~H(V) is (A, s0)-open in (X, T) for every (A, s0)-open set V of (Y,o);
(3) [7HF) is (A, sO)-closed in (X, T) for every (A, s0)-closed set F of (Y,0);
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(4) FARSD) C [F(A)] D39 for each subset A of X ;

(5) [f1(B)]®59) c f~Y(B™9) for each subset B of Y;

(6) For every x € X and every net {xs,s € S} of X which (A, s6)-converges
to x in X, the net {f(xs),s € S} (A, s0)-converges to f(z) inY.

Proof. (1) — (2): Let V be any (A, sf)-open set of (Y,0) and x € f~1(V).
Since f is (A, sf)-continuous, there exists a (A, sf)-open set U, containing
x such that f(U,) C V. Therefore, we have x € U, C f~'(V) and hence
FYV) =U{U, | z € f74(V)}. By Theorem 3.8, f~1(V) is (A, sf)-open in
(X, 7).

(2) = (1
(2) < (3

(3) — (4): Let A be any subset of X. Since A C f=Y([f(A)]AN),
by Lemma 3.15 we have A9  f=L([f(A)]**9) and hence f(A™)) C
[f(A)A0.

(4) — (5): Let B be any subset of Y. By (4) we have f([f~'(B)]**9) c
S (B € B and hence [ (B4 < (A=),

(5) — (3): Let F be any (A, sf)-closed set in (Y,0). By Lemma 3.15,
JUENO € fH(ERO) =f-1(F) and [f-H(E)9 C f-(F). There
fore, we obtain [f~'(F)]**%) = f~1(F). This shows that f~'(F) is (A, s6)-
closed in (X, 7).

(1) — (6): Let x € X and {z; | s € S} be a net (A, sf)-converging to

— (1): This is obvious.

This is obvious from Definition 5.

x. For any (A, sf)-open set of (Y, o) containing f(x), by (1) there exists a
(A, sf)-open set U of X containing = such that f(U) C V. Since {zs | s €
S} converges to x, there exists sg € S such that s > so implies x4 € U.
Therefore, f(xs) € V for any s > s¢ and the net {f(zs) | s € S} (A, s0)-

converges to f(z).
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(6) — (1): Let us suppose that there exists a point € X and a (A, s6)-
open neighbourhood V' of f(z) such that for every (A, sf)-open set U of X
containing z such that f(U) € V. Then for every (A, sf)-open set U of X
such that © € U, we choose an element xy € U such that f(zy) € V. Let
U be the set of all (A, sf)-open sets U of X containing = and is directed
by the relation C i.e., let us define that U; < U, if Uy C U;. Easily, the
net {zxy, U € U} (A, s)-converges to z but the net {f(zy),U € U} does
not (A, sf)-converge to f(x) which is a contradiction. Thus there exists a
(A, sB)-open set U of X such that x € U and f(U) C V. O

We recall that a function f: (X, 7) — (Y, 0) is said to be quasi irresolute

3] if f71(V) is semi-f-open in (X, T) for each semi-f-open set V of (Y, o).

Clearly, if a function f : (X,7) — (Y,0) is quasi irresolute, then f :
(X, TAQ;) — (Y, O'AQ:) is continuous.

Indeed let V be any Aj*-set of (Y,0). Then V = A)* (V) =U{W |V D
W € SOC(Y,0)}. Since f is quasi irresolute, we have f~1(V) = U{f~ (W) |
fAV) o A (W) € SC(X,7)} c WU | f7H(V) DU € SOC(X,7)} =
AY(f71(V)). By Lemma 2.3, we have f~1(V) D Ab*(f~*(V)) and hence
FHV) is a Ajt-set of (X, 7). O

Observe that if a function f : (X,7) — (Y,0) is quasi irresolute, then

£ (X, 7%°) = (V,6%°) is continuous.

Theorem 4.3 If f : (X,7) — (Y, 0) is a quasi irresolute function, then it is

(A, s0)-continuous.

Proof. Let F be a (A, s8)-closed set of (Y, o). Then there exist a A}*-set
T and a semi-f-closed set C' such that F' = T N C. Since f is quasi irres-
olute f~1(T) is a A)*-set of (X,7) and f~'(C) is semi-f-closed. Therefore,
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fYUE) = f7YT) N f71(C) is (A, s)-closed in (X, 7). By Theorem 4.2, f is

A, sf)-continuous. O

Example 4.4 Let X = {a,b,c,} and 7 = {0, X, {b}, {c},{b,c}} and
o={0,X,{a},{b},{a,b},{b,c}}. The semif-closed sets of (X,T) are
{0, X, {a}, {b},{c},{a,b},{a,c}}, the (A, sf)-closed sets of (X, T) are

{0, X, {a}, {b},{c}, {a, b}, {a,c}, {b,c}} and the semi O-closed sets of (X, o)
are {0, X, {a}, {b,c}}. Let f : (X,7) — (Y,0) be the identity function. Then
f is (A, s0)-continuous but it is not quasi-irresolute since f~*({b,c}) is not

semi O-closed in (X, ).

5 (A, sf)-compactness and (A, sf)-connectedness

Definition 13 A topological space (X, T) is called (A, s0)-compact (resp.
semi-0-compact) if every cover of (A, sf)-open (resp. semi-0-open) sets has

a finite subcover.

Theorem 5.1 A topological space (X, T) is (A, s)-compact (resp. semi-0-
compact) if and only if for every family {A; :i € I} of (A, s0)-closed (resp.
semi-0-closed) sets in X satisfying N{A; : i € I} = ), there is a finite
subfamily A;,,...,A;, with N{A; :k=1,...,n}=0.

Proof. Straightforward. O

Theorem 5.2 For a topological space (X, 1), the following hold:
(1) If (X, TAeAS) is compact, then (X, 1) is semi-0-compact.

(2) If (X, 7) is (A, sO)-compact, then (X, T) is semi-0-compact.
(3) If (X, 7) is (A, sO)-compact, then (X, TAgz) is compact.
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Proof. (1) This follows from Lemma 2.1.

(2) This follows from Theorem 5.1 and of the fact that every semi-6-closed
set is (A, sf)-closed.

(3) This follows from Lemma 3.10. O

Theorem 5.3 If f : (X,7) — (Y,0) is a (A, s0)-continuous surjection and
(X, 7) is a (A, s#)-compact space, then (Y, o) is (A, s)-compact.

Proof. Let {V; | ¢ € I} be any cover of Y by (A, sf)-open sets of (Y,0).
Since f is (A, sf)-continuous, by Theorem 4.2 { f~1(V; | i € I} is a cover of X
by (A, sf)-open sets of (X, 7). By (A, sf)-compactness of (X, 7), there exists
a finite subset Iy of I such that X = U{f~!(V; | i € Iy}. Since f is surjective,
we obtain Y = f(X) = U;er,V;. This shows that (Y, o) is (A, sf)-compact.
O

Corollary 5.4 The (A, sf)-compactness is preserved by quasi irresolute sur-

jections.

Proof. This is an immediate consequence of Theorem 5.3 and Theorem

43. 0O

Definition 14 A topological space (X, T) is called (A, sf)-connected if X

cannot be written as a disjoint union of two non-empty (A, sf)-open sets.

Theorem 5.5 For a topological space (X, T), the following statements are
equivalent:

(1) The space X is (A, s6)-connected;

(2) The only subsets of X, which are both (A, s6)-open and (A, s0)-closed are
the empty set () and X.
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Proof. Straightforward. O
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