
AN ALTERNATIVE ALGORITHM TO CREATE A ROUTE OPTIMIZED
FOR THE TRAVELING SALESMAN PROBLEM

Edimar Veríssimo da Silva

INPE, ARTIFICIAL INTELLIGENCE - CAP-354
São José dos Campos, SP
yugi386@yahoo.com.br

May, 2017

ABSTRACT

This article presents the problem of the symmetrical traveling salesman (the distance between the
city A → B is the same distance as the city B → A) and a non-deterministic algorithm to solve it
in some cases using time and feasible computational resources.

Keywords: traveling salesman, combinatorial analysis, graphs.

I. INTRODUCTION

This work deals with the classic problem of the
symmetrical traveling salesman (henceforth PCV). In item
II we present the problem and verify that it is a NP-
complete problem, where we easily have a combinatorial
explosion that makes difficult the calculation of routes for a
large number of cities. In item III we discuss some
questions regarding the algorithm we propose to find
solutions for the PCV. Such questions involve the computer
memory limit and processing speed issues. In item IV we
present our algorithm and show numerically how it reduces
the search space to avoid combinatorial explosion. In item
V we show some processing results of the algorithm in tests
for sets from 5 to 12,500 cities. Due to computer memory
exhaustion problems we were unable to test the algorithm
for an even larger number of cities.

Finally we conclude, according to observations
made in the tests, that our algorithm does have some
effectiveness, although it cannot be compared with
specialized algorithms that find shorter routes to this
problem.

II. UNDERSTANDING THE PROBLEM

The problem of the traveling salesman is one of the
most studied problems of combinatorial optimization. It can
be paraphrased in the following situation: given a set of
cities C, and the distances between them, find a route R
that, starting from a given city A, passes through all the
cities of C, only once in each one of them, and returns to
city A (point of origin) making the shortest or least costly
path [1].

The origin of the problem of the traveling salesman
(PCV) dates back to the 1800s, the problem having been
defined from the year 1920 onwards. Since then several
challenges have been proposed and many solved (without
necessarily finding the optimum solution for a large number
of cities). Among the applications of this problem are the
manufacture of electronic circuit boards, task sequencing,
robot control, vehicle routing, etc [4].

Although the problem is easy to understand, it is
NP-complete and grows exponentially. For a small number
of cities the response can be exact and fast but for a large
set of cities there is no deterministic algorithm that provides
the optimum response (the best route, the shortest path) in a
reasonable time [2].

"A search problem is NP-complete if all
search problems are reduced to it. This is a
very strong demand! For a problem to be
NP-complete, it must be able to solve all the
world's search problems [2]."

To illustrate the difficulty of enumeration of the
possible routes in the PCV we see that there are (n-1)!
possibilities, where n represents the number of cities. For
small numbers this calculation is quick but for large
numbers the method of looking for the best solution by
checking all possible routes is not feasible.
The fact that the calculation of combinations is based on the
factorial function makes the combinatorial explosion reach
very quickly.

Table 1 illustrates these values:

NUMBER OF CITIES
 (N)

POSSIBILITIES
(N-1)!

8 5.040

10 362.880

11 3.628.800

12 39916..800

30 8,84176 ×1030

50 6,08281 × 1062

1.000 4,02387 ×102564

Table 1: Route Combinations

To get an idea of how large the number of route
combinations is for 1000 cities it is enough to say that the
number of atoms in the observable universe is something
around 1080 [5]. This number is infinitely smaller than the
number of route combinations for 1000 cities. Thus, the
exhaustive search to solve the PCV for this number of cities
is unthinkable. Really good alternatives, but that do not
guarantee the optimal solution, are approximate algorithms,
use of heuristics, genetic algorithms, among others [4].

"One way to reduce the complexity in solving
the problem computationally is through the
use of heuristics, which although they do not
guarantee the exact solution, establish a
compromise between the results obtained and
the computational cost [3].

We will present below some issues that were
considered for the implementation of our algorithm such as
the use of computer memory and the processing speed.

III. QUESTIONS CONSIDERED

The algorithm we will present here depends on
having some permutations lists available. The necessary
lists are these:

1. Permutation 3 → [1,2,3] : 6 combinations
2. Permutation 4 → [1,2,3,4] : 24
3. Permutation 5 → [1,2,3,4,5] : 120
4. Permutation 6 → [1,2,3,4,5,6] : 720
5. Permutation 7 → [1,2,3,4,5,6,7] : 5.040
6. Permutation 8 → [1,2,3,4,5,6,7,8] : 40.320
7. Permutation 9 → [1,2,3,4,5,6,7,8,9] : 362.880

The permutation lists with less than 3 elements are
unnecessary since for a single city the route has size 0 and
for two cities the route formed by path A → B → A is
unique and therefore the shortest. The algorithm we use to
generate these lists generates the combinations of 3, 4, 5, 6
and 7 elements by brute force. The 8 and 9 element lists are
generated by joining adapted lists of 4 and 5 elements that
contain 4 or 5 digits, respectively, of a set of 8 or 9 digits,
respectively, per record. The lists were generated
successfully in a timely manner.

Another issue considered was deciding whether the
use of genetic algorithms would be useful for this problem.

Given the way our algorithm was structured we decided not
to use a pseudo-random genetic algorithm precisely to test
the efficiency of our algorithm in a deterministic way.
However, the group joining mechanism does a similar job
as the genetic algorithm. Pacheco [7] talks about his
experience with genetic algorithms applied to solve the
problem of the traveling salesman:

"The use of genetic algorithms to solve the
problem of the traveling delivery man was
motivated by the fact that there is an algorithm
that can solve the optimum problem for only a
few vertices. For larger problems, there are
only heuristics to obtain sub-optimal solutions.
With the genetic algorithm it was expected to
obtain better results than the heuristics
(possibly optimal), which had a lower
computational cost than the algorithm that
obtains the optimal. (...) The big problem found
was that the genetic algorithm did not find
better results nor compared to the heuristics of
the traditional algorithm, which is very fast".
[7]

Another important issue is processing time and
memory usage. In this case we had no problems. The
algorithm can calculate a route for 1,000 cities in just over
3 minutes, using about 2.3 GB of memory and 4 CPUs
working in parallel1.

Figure 1: Memory map and CPU resources during the
execution of the algorithm for a 1,000 city route.

An important note is that we decided to save the
distances between cities in a matrix to increase the
processing speed. This implies that our algorithm, as
written, will have a limitation in the number of cities, for
the purpose of calculating the shortest route, due to
exhaustion of computer memory.
For 10,000 cities the memory used reached 5.2 GB and the
parallel execution of the 4 cores of the Intel i5 processor
reached 100% of resources for each of them, that is, the
notebook was, so to speak, at the "limit of its forces".

1 A notebook with Intel® processor Core™ i5-3210M CPU @ 2.50GHz ×
4 , 6 GB memory, Ubuntu 16.04 LTS 64-bit operating system was used.

Figure 2: Memory map and CPU resources during the
execution of the algorithm for a 10,000 city route.

This memory limitation can be easily remedied by
eliminating the distance matrix between cities and checking
the distance directly at each route calculation. The
algorithm processing will be a little slower but it would be
possible to increase the number of cities a little more as
long as there are processor resources.

IV. FEATURING THE ALGORITHM

The algorithm we designed uses the principle of the

optimum solution through brute force with the division of
the problem to achieve a viable and fast solution when the
number of cities is very large.

If the number of cities is less than or equal to 10 the
problem is solved through the deterministic algorithm
(testing all possible routes). As the maximum number of
combinations for 10 cities is 9! (362.880) this is perfectly
feasible.

If the number of cities is greater than 10 then we
divide the cities into groups of 10 and calculate the optimal
route for each of these groups. Before starting this process
we should sort the cities, starting with city 1 and then
continuing with the others in the order of distance that city
n has from city 1 (starting point). This sorting is very
important because it allows us to identify which are the
cities closest to the starting point.

1 2 3 4 5 6 7 8 9 10

For each of the 10 groups 362.880 routes are analyzed
The starting point of group 1 is city 1
The starting point of group 2 is the city 11
The starting point of group 3 is the city 21
And so on

Table 2: Shows the division of a set of 100 cities

The second part of the algorithm focuses on the
junction points of each group. The algorithm calculates the
additions or decreases in route value from the permutation
of the last 4 and the first 4 elements of each group pair.

Group 1 Group 2

5 6 7 8 9 10 11 12 13 14 15 16

With these 8 elements the algorithm makes
the 40.320 permutations so that one finds a
smaller route than the one already found
considering the first 20 cities.

Table 3: Shows the joining of different groups

Considering the hypothetical table of 100 cities we
have 9 pairs of sequential groups so that we have to analyze
9 × 40.320 permutations, or 362.880 routes.

The junction point of groups can be analyzed from 7
different points. This new scenario gives us the possibility
to test more possibilities to join two groups of cities already
optimized in an optimal route (considering each group
separately).

Group 1 Group 2

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Table 4: Shows the joining of different groups at different points

To test all the possibilities of joining groups we have
to travel 7 × 362.880 routes, which results in 2.540.160
combinations. If the number of cities chosen is not a
multiple of 10 the last incomplete block has a special
treatment obeying its limits.

The summary table below shows the computational
cost of the algorithm to generate a route in a set of 100
cities:

WORK
TOTAL OF

COMBINATIONS

1
Process the 10 city groups
separately.

3.628.800

2
Processing route junction
points

2.540.160

Total routes to test: 6.168.960
Table 5: Table of the computational effort to find a route for 100 cities

The total number of routes for 100 cities is 99!,
something around 9,332621544 × 10155, an absolutely
unfeasible number of routes to search. With our algorithm
we have reduced the search space to just over 6.16 million
combinations which is perfectly possible to run using a
single computer.

V. RESULTS

To generate data for the traveling clerk problem,
pseudo-random points are selected over an area of
1,000,000 km2 (1000 × 1000). These points are natural
numbers in the range of 1 to 1000 and for each city two
coordinates are required.

The distance between cities is calculated by the
Pythagorean theorem, where the hypotenuse reveals the

distance between the points considering a two-dimensional
space.

The algorithm is deterministic for a set of up to 10
cities (ie, finds the optimal solution, the shortest route). For
sets of more than 10 cities you do not have the shortest
route but a route smaller than the initial. Next we have data
of a route for 5 cities:

CITY LOCATION

City Column Line

C1 268 114
C2 313 138
C3 521 234
C4 45 382
C5 989 40

Table 1: Location of the 5 cities

 DISTANCE BETWEEN CITIES

 Num. City A City B Distance

[1] C01 C02 51.000
[2] C01 C03 280.016
[3] C01 C04 348.645
[4] C01 C05 724.788
[5] C02 C03 229.085
[6] C02 C04 362.436
[7] C02 C05 683.067
[8] C03 C04 498.478
[9] C03 C05 506.616
[10] C04 C05 1004.042

Table 2: Distance between cities

--
ROUTES FOUND

--
Best route..: [C01][C04][C03][C05][C02]: 2087,805
Worst route...: [C01][C03][C02][C04][C05]: 2600.367
Difference...: 512,562
--

Table 3: Routes found for 5 cities

For 5 cities the route calculation time is minimal.
For 10 cities the time is approximately 2 seconds. We
remind you that the optimal solution is being found. Let's
see in the tables below a case for 10 cities.

CITY LOCATION

City Column Line

C01 753 331
C02 859 90
C03 489 368
C04 497 141
C05 758 733
C06 780 754
C07 993 725
C08 289 75
C09 201 441
C10 162 340

Table 4: Location of the 10 cities

ROUTES FOUND

Best route..: [C01][C07][C08][C09][C10][C02][C05]
[C06][C03][C04]: 4355.347

Worst route.: [C01][C06][C07][C08][C10][C02][C03]
[C04][C05][C09]: 5160.023

Difference..: 804.676

Table 5: Routes found for 10 cities

These two examples show the optimal route for each
case. However, for a larger number of cities, there is no
way to obtain the optimal route due to the combinatorial
explosion problem. In this case our algorithm selects a
searchable set from all possible routes, of course, without
evaluating all routes. The table below shows some results:

Number
of cities

Route
Initial

Route found
Comparison
Reduction

(%)

Algorithm
run-time

25 11.304.941 6.369.950 56,34% 4 sec.

50 24.098.151 12.387.283 51,40% 9 sec.

75 40.279.086 16.772.864 41,64% 14 sec.

100 49.858.463 20.336.077 40,78% 18 sec.

150 79.005.689 25.984.490 32,88% 27 sec.

250 126.067.231 38.866.095 30,82% 47 sec.

500 271.146.655 70.504.488 26,00% 1 m 32 sec.

750 401.423.531 107.817.185 26,85% 2 m 19 sec.

1000 518.458.473 160.797.248 31,01% 3 m 5 sec.

Table 6: Shows information about the algorithm processing for multi-city
scenarios.

Table 6 shows the processing results for sets ranging
from 25 to 1000 cities. The processing time is very good
(just over 3 minutes for 1000 cities) and the level of
reduction of routes compared to the initial route has reached
26%.

Table 7 shows the results of tests applied to sets of
5000 or more cities.

Number
of cities

Route
Initial

Route found

Compar
ison

Reducti
on (%)

Algorithm
run-time

5.000 2.581.943.589 768.084.115 29,74% 18 min.

5.000 2.601.570.648 671.360.146 25,80% 15 m 31 sec.

7.500 3.912.821.962 1.027.090.615 26,24% 23 m 33 sec.

7.500 3.946.900.932 1.004.572.210 25,45% 23 m 32 sec.

7.777 4.052.261.825 1.147.234.520 28,31% 25 m 18 sec.

10.000 5.236.526.037 1.359.459.510 25,96% 32 m 45 sec.

10.000 5.218.839.793 1.650.957.590 31,63% 31 m 45 sec.

12.500 6.531.562.713 1.808.435.581 27,68% 40 m 5 sec.

Table 7: Shows information about the algorithm processing for sets with
more than 5000 cities.

In the tests we observed that the route found for a set
of cities above 150 is always close to 30% of the original
(with variations for more and for less depending on the
location of each city).

Another test we conducted was to compare the
performance of our algorithm using the bier127 challenge
that is available along with others at http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/tsp/.

This site contains several challenges related to the
traveling clerk problem and other related issues. Actually
TSPLIB [6] is a library of example instances for the TSP
(Traveling salesman problem) and related problems from
various sources and of various types. The bier127 challenge
provides cities with the following coordinates:

City X Y City X Y
1 9860 14152 33 8236 11020
2 9396 14616 34 8468 12876
3 11252 14848 35 8700 14036
4 11020 13456 36 8932 13688
5 9512 15776 37 9048 13804
6 10788 13804 38 8468 12296
7 10208 14384 39 8352 12644
8 11600 13456 40 8236 13572
9 11252 14036 41 9164 13340
10 10672 15080 42 8004 12760
11 11136 14152 43 8584 13108
12 9860 13108 44 7772 14732
13 10092 14964 45 7540 15080
14 9512 13340 46 7424 17516
15 10556 13688 47 8352 17052
16 9628 14036 48 7540 16820
17 10904 13108 49 7888 17168
18 11368 12644 50 9744 15196
19 11252 13340 51 9164 14964
20 10672 13340 52 9744 16240
21 11020 13108 53 7888 16936
22 11020 13340 54 8236 15428
23 11136 13572 55 9512 17400
24 11020 13688 56 9164 16008
25 8468 11136 57 8700 15312
26 8932 12064 58 11716 16008
27 9512 12412 59 12992 14964
28 7772 11020 60 12412 14964
29 8352 10672 61 12296 15312
30 9164 12876 62 12528 15196
31 9744 12528 63 15312 6612
32 8352 10324 64 11716 16124

Table 8: first 64 cities of the bier127 challenge

City X Y City X Y
65 11600 19720 97 5336 10324
66 10324 17516 98 812 6264
67 12412 13340 99 14384 20184
68 12876 12180 100 11252 15776
69 13688 10904 101 9744 3132
70 13688 11716 102 10904 3480
71 13688 12528 103 7308 14848
72 11484 13224 104 16472 16472
73 12296 12760 105 10440 14036
74 12064 12528 106 10672 13804
75 12644 10556 107 1160 18560
76 11832 11252 108 10788 13572
77 11368 12296 109 15660 11368
78 11136 11020 110 15544 12760
79 10556 11948 111 5336 18908
80 10324 11716 112 6264 19140
81 11484 9512 113 11832 17516
82 11484 7540 114 10672 14152
83 11020 7424 115 10208 15196
84 11484 9744 116 12180 14848
85 16936 12180 117 11020 10208
86 17052 12064 118 7656 17052
87 16936 11832 119 16240 8352
88 17052 11600 120 10440 14732
89 13804 18792 121 9164 15544
90 12064 14964 122 8004 11020
91 12180 15544 123 5684 11948
92 14152 18908 124 9512 16472
93 5104 14616 125 13688 17516
94 6496 17168 126 11484 8468
95 5684 13224 127 3248 14152
96 15660 10788

Table 9: last 65 cities of bier127 challenge

With this data we tested our algorithm which
returned the following result in 23 seconds:

[C001][C006][C007][C008][C010][C002][C003][C004][C005]
[C018][C016][C020][C009][C012][C013][C019][C028][C026]
[C029][C021][C015][C011][C014][C017][C030][C022][C023]
[C024][C025][C027][C032][C033][C037][C040][C038][C036]
[C031][C034][C035][C048][C042][C043][C050][C039][C047]
[C056][C045][C046][C051][C044][C049][C041][C057][C058]
[C060][C052][C053][C054][C055][C063][C061][C070][C059]
[C066][C067][C068][C062][C064][C071][C072][C065][C069]
[C079][C080][C077][C078][C073][C088][C076][C089][C090]
[C087][C075][C081][C074][C082][C085][C091][C099][C098]
[C086][C084][C100][C097][C083][C092][C095][C096][C093]
[C094][C108][C103][C107][C109][C102][C101][C110][C104]
[C118][C117][C116][C120][C111][C112][C106][C115][C114]
[C105][C113][C119][C121][C122][C123][C125][C126][C127]
[C124]

This route has a size of 247.163.183 and the initial
route has a size of 393.998.276. The route found represents
62.73% of the original. A much smaller reduction than we
observed in other tests. The best known solution to the
bier127 challenge has a route of 118,282 that represents
30.02% of the original route size. The optimal solution,
however, begins with the city number twelve2.

12 - 14 - 41 - 36 - 37 - 35 - 40 - 43 - 34 - 42 - 39 - 38 - 26 – 25 – 33
122 - 28 - 29 - 32 - 98 - 97 - 123 - 95 - 93 - 127 - 107 – 111 – 112
94 - 46 - 118 - 48 - 53 - 49 - 47 - 55 - 66 - 113 - 65 - 99 – 92 – 89
125 - 104 - 110 - 85 - 86 - 87 - 88 - 109 - 96 - 119 - 63 – 102 – 101
83 - 82 - 126 - 81 - 84 - 117 - 78 - 76 - 75 - 69 - 70 - 71 – 68 – 74
73 - 67 - 8 - 72 - 19 - 22 - 4 - 23 - 24 - 9 - 11 - 3 - 90 – 116 – 60
59 - 62 - 61 - 91–58 - 64 - 100 - 10 - 120 - 13 - 115 - 50 – 5 – 52
124 - 56 - 121 - 57 - 54 - 45 - 103 - 44 - 51 - 2 - 16 - 1 – 7 – 105
114 - 6 - 106 - 15 - 108 - 20 - 17 - 21 - 18 - 77 - 79 - 80 – 31 – 27
30

Our algorithm is not sophisticated and for this
reason it is not able to reach levels of route reduction
comparable to the best algorithms that are used to overcome
these challenges.

VI. CONCLUSION

The problem of the traveling salesman has been
studied for a long time and there is still no algorithm to find
the optimal route in time (polynomial). Our goal with this
work was to learn a little about the problem and test an
algorithm that we built to find good routes between cities.
Our goal was partially achieved since the analyzed
algorithm found better routes than the initial one in a very
short time, mainly for sets of up to 1000 cities. Improving
this performance is a complex job. About this complexity
Porto da Silveira says:

"Don't be fooled by the playful appearance of
this problem. It is NOT another
inconsequential curiosity to entertain
unmotivated students. In fact, it is a problem
that should be part of the baggage of every
competent math professional". [8]

We then concluded that our algorithm, although
simple, proved effective in finding better than initial routes
between a set of cities. We tested sets of up to 12.500 cities
and had route reduction levels of between 26% and 62%
compared to the initial route.
2 Available at:
https://github.com/ashleywang1/TSP-solver/blob/master/TSP/2-opt-p/
2optpresult/bier127.tour

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

REFERENCES

[1] Xuesong Yan, Can Zhang, Wenjing Luo, Wei Li, Wei
Chen, Hanmin Liu. Solve Traveling Salesman Problem
Using Particle Swarm Optimization Algorithm. Wuhan,
Hubei 430050, China. Disponível em:
<http://www.ijcsi.org/papers/IJCSI-9-6-2-264-271.pdf >.
Acessado em: 24/05/2017, 12:30h

[2] Vignatti, André. P, NP e NP-Completo. DINF- UFPR.
Disponível em:
<http://www.inf.ufpr.br/vignatti/courses/ci165/23.pdf>
Acessado em: 24/05/2017, 12:43h.

[3] Colares, Flávio Martins; Silva, José Lassance de Castro;
Silva, José Ramos de Oliveira; Carvalho, Maria do Socorro
de. Uma heuristica aplicada ao problema do caixeiro
viajante. XXXVII simpósio brasileiro de pesquisa
operacional. 27 a 30/09/05, Gramados. Disponível em:
<http://www.repositorio.ufc.br/bitstream/riufc/13121/1/200
5_eve_jclsilva.pdf>. Acessado em: 24/05/2017, 13:00h.

[4] Araujo, Silvio Alexandre de. Heurísticas para
Otimização Combinatória. UNESP. Disponível em:
<https://www.dcce.ibilce.unesp.br/~saraujo/disciplinas/Met
aheuristicas.pdf>. Acessado em 24/05/2017, 15:11h.

[5] Wikipedia. Universo observável. Disponível
em:<https://pt.wikipedia.org/wiki/Universo_observ
%C3%A1vel>, Acessado em 25/05/2017.

[6] Reinelt, Gerhard. TSPLIB. TSPLIB is a library of
sample instances for the TSP (and related problems) from
various sources and of various types. Disponível em:
<http://comopt.ifi.uni- heidelberg.de/software/TSPLIB95/in
dex.html> Acessado em: 25/05/2017, 13:10h.

[7] Pacheco, Marco Aurélio; Fukasawa, Ricardo.
Resolução do problema do entregador viajante.
Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro. Disponível em:
<http://rica.ele.puc-rio.br/media/Revista_rica_n4_a8.pdf>
Acessado em: 26/05/2017.

[8] Silveira, J.F. Porto da. Problema do caixeiro viajante.
UFRGS, 29-junho-2000. Disponível em:
<http://www.mat.ufrgs.br/~portosil/caixeiro.html>
Acessado em: 28/05/2017, 00:00h

http://www.mat.ufrgs.br/~portosil/caixeiro.html
http://rica.ele.puc-rio.br/media/Revista_rica_n4_a8.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
https://pt.wikipedia.org/wiki/Universo_observ%C3%A1vel
https://pt.wikipedia.org/wiki/Universo_observ%C3%A1vel
https://www.dcce.ibilce.unesp.br/~saraujo/disciplinas/Metaheuristicas.pdf
https://www.dcce.ibilce.unesp.br/~saraujo/disciplinas/Metaheuristicas.pdf
http://www.repositorio.ufc.br/bitstream/riufc/13121/1/2005_eve_jclsilva.pdf
http://www.repositorio.ufc.br/bitstream/riufc/13121/1/2005_eve_jclsilva.pdf
http://www.inf.ufpr.br/vignatti/courses/ci165/23.pdf
http://www.ijcsi.org/papers/IJCSI-9-6-2-264-271.pdf

