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ABSTRACT

This article presents the problem of the symmetrical traveling salesman (the distance between the 
city A → B is the same distance as the city B → A) and a non-deterministic algorithm to solve it  
in some cases using time and feasible computational resources.
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I. INTRODUCTION

This  work  deals  with  the  classic  problem  of  the 
symmetrical traveling salesman (henceforth PCV). In item 
II  we  present  the  problem  and  verify  that  it  is  a  NP-
complete problem, where we easily have a combinatorial 
explosion that makes difficult the calculation of routes for a 
large  number  of  cities.  In  item  III  we  discuss  some 
questions  regarding  the  algorithm  we  propose  to  find 
solutions for the PCV. Such questions involve the computer 
memory limit and processing speed issues. In item IV we 
present our algorithm and show numerically how it reduces 
the search space to avoid combinatorial explosion. In item 
V we show some processing results of the algorithm in tests 
for sets from 5 to 12,500 cities. Due to computer memory 
exhaustion problems we were unable to test the algorithm 
for an even larger number of cities. 

Finally  we  conclude,  according  to  observations 
made  in  the  tests,  that  our  algorithm  does  have  some 
effectiveness,  although  it  cannot  be  compared  with 
specialized  algorithms  that  find  shorter  routes  to  this 
problem.

II. UNDERSTANDING THE PROBLEM

The problem of the traveling salesman is one of the 
most studied problems of combinatorial optimization. It can 
be paraphrased  in  the  following situation:  given a set  of 
cities  C, and the distances  between them, find a route R 
that,  starting from a given city A,  passes  through all  the 
cities of C, only once in each one of them, and returns to 
city A (point of origin) making the shortest or least costly 
path [1].

The origin of the problem of the traveling salesman 
(PCV) dates back to the 1800s, the problem having been 
defined  from the  year  1920 onwards.  Since  then  several 
challenges have been proposed and many solved (without 
necessarily finding the optimum solution for a large number 
of cities). Among the applications of this problem are the 
manufacture of electronic circuit boards,  task sequencing, 
robot control, vehicle routing, etc [4].

Although the  problem is  easy  to  understand,  it  is 
NP-complete and grows exponentially. For a small number 
of cities the response can be exact and fast but for a large 
set of cities there is no deterministic algorithm that provides 
the optimum response (the best route, the shortest path) in a 
reasonable time [2]. 

"A  search  problem  is  NP-complete  if  all  
search problems are reduced to it. This is a  
very  strong  demand!  For  a  problem  to  be  
NP-complete, it must be able to solve all the  
world's search problems [2]."

To  illustrate  the  difficulty  of  enumeration  of  the 
possible  routes  in  the  PCV we  see  that  there  are  (n-1)! 
possibilities, where n represents the number of cities. For 
small  numbers  this  calculation  is  quick  but  for  large 
numbers  the  method of  looking  for  the  best  solution  by 
checking  all  possible  routes  is  not  feasible.  
The fact that the calculation of combinations is based on the 
factorial function makes the combinatorial explosion reach 
very quickly.

Table 1 illustrates these values:



NUMBER OF CITIES
 (N)

POSSIBILITIES
(N-1)!

8 5.040

10 362.880

11 3.628.800

12 39916..800

30 8,84176 ×1030

50 6,08281 × 1062

1.000 4,02387 ×102564

Table 1: Route Combinations

To get  an idea  of  how large  the  number  of  route 
combinations is for 1000 cities it is enough to say that the 
number of atoms in the observable universe is something 
around 1080 [5]. This number is infinitely smaller than the 
number  of  route  combinations  for  1000 cities.  Thus,  the 
exhaustive search to solve the PCV for this number of cities 
is  unthinkable.  Really  good  alternatives,  but  that  do  not 
guarantee the optimal solution, are approximate algorithms, 
use of heuristics, genetic algorithms, among others [4].

"One way to reduce the complexity in solving  
the problem computationally  is  through the  
use of heuristics, which although they do not  
guarantee  the  exact  solution,  establish  a  
compromise between the results obtained and  
the computational cost [3].

We  will  present  below  some  issues  that  were 
considered for the implementation of our algorithm such as 
the use of computer memory and the processing speed.

III. QUESTIONS CONSIDERED

The  algorithm  we  will  present  here  depends  on 
having  some  permutations  lists  available.  The  necessary 
lists are these:

1.  Permutation 3 → [1,2,3] : 6 combinations
2.  Permutation 4 → [1,2,3,4] : 24 
3.  Permutation 5 → [1,2,3,4,5] : 120
4.  Permutation 6 → [1,2,3,4,5,6] : 720
5.  Permutation 7 → [1,2,3,4,5,6,7] : 5.040
6.  Permutation 8 → [1,2,3,4,5,6,7,8] : 40.320
7.  Permutation 9 → [1,2,3,4,5,6,7,8,9] : 362.880

The permutation lists with less than 3 elements are 
unnecessary since for a single city the route has size 0 and 
for  two cities  the route formed by path  A → B → A is 
unique and therefore the shortest. The algorithm we use to 
generate these lists generates the combinations of 3, 4, 5, 6 
and 7 elements by brute force. The 8 and 9 element lists are 
generated by joining adapted lists of 4 and 5 elements that 
contain 4 or 5 digits, respectively, of a set of 8 or 9 digits, 
respectively,  per  record.  The  lists  were  generated 
successfully in a timely manner.

Another issue considered was deciding whether the 
use of genetic algorithms would be useful for this problem. 

Given the way our algorithm was structured we decided not 
to use a pseudo-random genetic algorithm precisely to test 
the  efficiency  of  our  algorithm  in  a  deterministic  way. 
However, the group joining mechanism does a similar job 
as  the  genetic  algorithm.  Pacheco  [7]  talks  about  his 
experience  with  genetic  algorithms  applied  to  solve  the 
problem of the traveling salesman:

"The  use  of  genetic  algorithms  to  solve  the  
problem  of  the  traveling  delivery  man  was  
motivated by the fact that there is an algorithm  
that can solve the optimum problem for only a  
few  vertices.  For  larger  problems,  there  are  
only heuristics to obtain sub-optimal solutions.  
With the genetic algorithm it was expected to  
obtain  better  results  than  the  heuristics  
(possibly  optimal),  which  had  a  lower  
computational  cost  than  the  algorithm  that  
obtains the optimal. (...) The big problem found  
was  that  the  genetic  algorithm  did  not  find  
better results nor compared to the heuristics of  
the traditional algorithm, which is very fast".  
[7] 

Another  important  issue  is  processing  time  and 
memory  usage.  In  this  case  we  had  no  problems.  The 
algorithm can calculate a route for 1,000 cities in just over 
3  minutes,  using  about  2.3  GB of  memory  and  4  CPUs 
working in parallel1.

Figure  1:  Memory  map  and  CPU  resources  during  the 
execution  of  the  algorithm  for  a  1,000  city  route.

An important  note is  that  we decided  to  save  the 
distances  between  cities  in  a  matrix  to  increase  the 
processing  speed.  This  implies  that  our  algorithm,  as 
written, will have a limitation in the number of cities, for 
the  purpose  of  calculating  the  shortest  route,  due  to 
exhaustion  of  computer  memory.  
For 10,000 cities the memory used reached 5.2 GB and the 
parallel execution of the 4 cores of the Intel i5 processor 
reached 100% of resources  for each of them, that  is,  the 
notebook was, so to speak, at the "limit of its forces".

1 A notebook with Intel® processor Core™ i5-3210M CPU @ 2.50GHz × 
4 , 6 GB memory, Ubuntu 16.04 LTS 64-bit operating system was used.



Figure  2:  Memory  map  and  CPU  resources  during  the 
execution of the algorithm for a 10,000 city route.

This memory limitation can be easily remedied by 
eliminating the distance matrix between cities and checking 
the  distance  directly  at  each  route  calculation.  The 
algorithm processing will be a little slower but it would be 
possible to increase the number of cities a  little  more as 
long as there are processor resources.

IV. FEATURING THE ALGORITHM
 
The algorithm we designed uses the principle of the 

optimum solution through brute force with the division of 
the problem to achieve a viable and fast solution when the 
number of cities is very large.

If the number of cities is less than or equal to 10 the 
problem  is  solved  through  the  deterministic  algorithm 
(testing all  possible routes).  As the maximum number of 
combinations for 10 cities is 9! (362.880) this is perfectly 
feasible.

If  the number of cities is  greater than 10 then we 
divide the cities into groups of 10 and calculate the optimal 
route for each of these groups. Before starting this process 
we  should  sort  the  cities,  starting  with  city  1 and  then 
continuing with the others in the order of distance that city 
n has  from  city  1 (starting  point).  This  sorting  is  very 
important  because  it  allows  us  to  identify  which  are  the 
cities closest to the starting point.

1 2 3 4 5 6 7 8 9 10

For each of the 10 groups 362.880 routes are analyzed
The starting point of group 1 is city 1
The starting point of group 2 is the city 11
The starting point of group 3 is the city 21
And so on

Table 2: Shows the division of a set of 100 cities

The  second  part  of  the  algorithm  focuses  on  the 
junction points of each group. The algorithm calculates the 
additions or decreases in route value from the permutation 
of the last 4 and the first 4 elements of each group pair.

Group 1 Group 2

5 6 7 8 9 10 11 12 13 14 15 16

With these 8 elements the algorithm makes 
the 40.320 permutations so that one finds a 
smaller  route  than  the  one  already  found 
considering the first 20 cities. 

Table 3: Shows the joining of different groups

Considering the hypothetical table of 100 cities we 
have 9 pairs of sequential groups so that we have to analyze 
9 × 40.320 permutations, or 362.880 routes.

The junction point of groups can be analyzed from 7 
different points. This new scenario gives us the possibility 
to test more possibilities to join two groups of cities already 
optimized  in  an  optimal  route  (considering  each  group 
separately). 
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Table 4: Shows the joining of different groups at different points

To test all the possibilities of joining groups we have 
to  travel  7  ×  362.880 routes,  which results  in  2.540.160 
combinations.  If  the  number  of  cities  chosen  is  not  a 
multiple  of  10  the  last  incomplete  block  has  a  special 
treatment obeying its limits.

The summary table below shows the computational 
cost  of the algorithm to generate a  route in a  set  of 100 
cities:

WORK
TOTAL OF 

COMBINATIONS

1
Process the 10 city groups 
separately.

3.628.800

2
Processing  route  junction 
points

2.540.160

Total routes to test: 6.168.960
Table 5: Table of the computational effort to find a route for 100 cities

The  total  number  of  routes  for  100  cities  is  99!, 
something  around  9,332621544  ×  10155,  an  absolutely 
unfeasible number of routes to search. With our algorithm 
we have reduced the search space to just over 6.16 million 
combinations  which  is  perfectly  possible  to  run  using  a 
single computer.

V. RESULTS

To  generate  data  for  the  traveling  clerk  problem, 
pseudo-random  points  are  selected  over  an  area  of 
1,000,000  km2  (1000  ×  1000).  These  points  are  natural 
numbers in the range of 1 to 1000 and for each city two 
coordinates are required. 

The  distance  between  cities  is  calculated  by  the 
Pythagorean  theorem,  where  the  hypotenuse  reveals  the 



distance between the points considering a two-dimensional 
space.

The algorithm is deterministic for a set of up to 10 
cities (ie, finds the optimal solution, the shortest route). For 
sets of  more than 10 cities  you do not have the shortest 
route but a route smaller than the initial. Next we have data 
of a route for 5 cities:

------------------------------
CITY LOCATION

------------------------------
City   Column   Line

------------------------------
C1     268     114
C2     313     138
C3     521     234
C4     45      382
C5     989     40 

------------------------------
Table 1: Location of the 5 cities

------------------------------------
   DISTANCE BETWEEN CITIES  

------------------------------------
            Num. City A City B Distance

------------------------------------
[ 1]  C01   C02    51.000
[ 2]  C01   C03   280.016
[ 3]  C01   C04   348.645
[ 4]  C01   C05   724.788
[ 5]  C02   C03   229.085
[ 6]  C02   C04   362.436
[ 7]  C02   C05   683.067
[ 8]  C03   C04   498.478
[ 9]  C03   C05   506.616
[10]  C04   C05   1004.042

------------------------------------
Table 2: Distance between cities

-------------------------------------------------- 
ROUTES FOUND

--------------------------------------------------
Best route..: [C01][C04][C03][C05][C02]: 2087,805
Worst route...: [C01][C03][C02][C04][C05]: 2600.367
Difference...: 512,562
--------------------------------------------------

Table 3: Routes found for 5 cities

For 5 cities  the route calculation time is  minimal. 
For  10  cities  the  time  is  approximately  2  seconds.  We 
remind you that the optimal solution is being found. Let's 
see in the tables below a case for 10 cities.

--------------------------------
CITY LOCATION

--------------------------------
City   Column   Line

--------------------------------
C01     753     331
C02     859      90
C03     489     368
C04     497     141
C05     758     733
C06     780     754
C07     993     725
C08     289      75
C09     201     441
C10     162     340

--------------------------------
Table 4: Location of the 10 cities

-------------------------------------------------
ROUTES FOUND

-------------------------------------------------
Best route..: [C01][C07][C08][C09][C10][C02][C05]
[C06][C03][C04]: 4355.347
-------------------------------------------------
Worst route.: [C01][C06][C07][C08][C10][C02][C03]
[C04][C05][C09]: 5160.023
-------------------------------------------------
Difference..: 804.676
-------------------------------------------------

Table 5: Routes found for 10 cities

These two examples show the optimal route for each 
case.  However,  for  a  larger  number of  cities,  there is  no 
way to obtain the optimal route due to the combinatorial 
explosion  problem.  In  this  case  our  algorithm  selects  a 
searchable set from all possible routes, of course, without 
evaluating all routes. The table below shows some results:

Number 
of cities

Route 
Initial

Route found
Comparison
Reduction 

(%)

Algorithm 
run-time

25 11.304.941 6.369.950 56,34% 4 sec.

50 24.098.151 12.387.283 51,40% 9 sec.

75 40.279.086 16.772.864 41,64% 14 sec.

100 49.858.463 20.336.077 40,78% 18 sec.

150 79.005.689 25.984.490 32,88% 27 sec.

250 126.067.231 38.866.095 30,82% 47 sec.

500 271.146.655 70.504.488 26,00% 1 m 32 sec.

750 401.423.531 107.817.185 26,85% 2 m 19 sec.

1000 518.458.473 160.797.248 31,01% 3 m 5 sec.

Table 6: Shows information about the algorithm processing for multi-city 
scenarios.

Table 6 shows the processing results for sets ranging 
from 25 to 1000 cities. The processing time is very good 
(just  over  3  minutes  for  1000  cities)  and  the  level  of 
reduction of routes compared to the initial route has reached 
26%.

Table 7 shows the results of tests applied to sets of 
5000 or more cities.

Number 
of cities

Route 
Initial

Route found

Compar
ison

Reducti
on (%)

Algorithm 
run-time

5.000 2.581.943.589 768.084.115 29,74% 18 min.

5.000 2.601.570.648 671.360.146 25,80% 15 m 31 sec.

7.500 3.912.821.962 1.027.090.615 26,24% 23 m 33 sec.

7.500 3.946.900.932 1.004.572.210 25,45% 23 m 32 sec.

7.777 4.052.261.825 1.147.234.520 28,31% 25 m 18 sec.

10.000 5.236.526.037 1.359.459.510 25,96% 32 m 45 sec.

10.000 5.218.839.793 1.650.957.590 31,63% 31 m 45 sec.

12.500 6.531.562.713 1.808.435.581 27,68% 40 m 5 sec.

Table 7: Shows information about the algorithm processing for sets with 
more than 5000 cities.

In the tests we observed that the route found for a set 
of cities above 150 is always close to 30% of the original 
(with  variations  for  more  and  for  less  depending  on  the 
location of each city).



Another  test  we  conducted  was  to  compare  the 
performance of our algorithm using the bier127 challenge 
that is available along with others at  http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/tsp/.

This site contains several challenges related to the 
traveling clerk problem and other related issues.  Actually 
TSPLIB [6] is a library of example instances for the TSP 
(Traveling salesman problem) and related problems from 
various sources and of various types. The bier127 challenge 
provides cities with the following coordinates:

City           X             Y          City              X             Y    
1 9860 14152 33 8236 11020
2 9396 14616 34 8468 12876
3 11252 14848 35 8700 14036
4 11020 13456 36 8932 13688
5 9512 15776 37 9048 13804
6 10788 13804 38 8468 12296
7 10208 14384 39 8352 12644
8 11600 13456 40 8236 13572
9 11252 14036 41 9164 13340
10 10672 15080 42 8004 12760
11 11136 14152 43 8584 13108
12 9860 13108 44 7772 14732
13 10092 14964 45 7540 15080
14 9512 13340 46 7424 17516
15 10556 13688 47 8352 17052
16 9628 14036 48 7540 16820
17 10904 13108 49 7888 17168
18 11368 12644 50 9744 15196
19 11252 13340 51 9164 14964
20 10672 13340 52 9744 16240
21 11020 13108 53 7888 16936
22 11020 13340 54 8236 15428
23 11136 13572 55 9512 17400
24 11020 13688 56 9164 16008
25 8468 11136 57 8700 15312
26 8932 12064 58 11716 16008
27 9512 12412 59 12992 14964
28 7772 11020 60 12412 14964
29 8352 10672 61 12296 15312
30 9164 12876 62 12528 15196
31 9744 12528 63 15312 6612
32 8352 10324 64 11716 16124

Table 8: first 64 cities of the bier127 challenge

City           X             Y          City              X             Y    
65 11600 19720 97 5336 10324
66 10324 17516 98 812 6264
67 12412 13340 99 14384 20184
68 12876 12180 100 11252 15776
69 13688 10904 101 9744 3132
70 13688 11716 102 10904 3480
71 13688 12528 103 7308 14848
72 11484 13224 104 16472 16472
73 12296 12760 105 10440 14036
74 12064 12528 106 10672 13804
75 12644 10556 107 1160 18560
76 11832 11252 108 10788 13572
77 11368 12296 109 15660 11368
78 11136 11020 110 15544 12760
79 10556 11948 111 5336 18908
80 10324 11716 112 6264 19140
81 11484 9512 113 11832 17516
82 11484 7540 114 10672 14152
83 11020 7424 115 10208 15196
84 11484 9744 116 12180 14848
85 16936 12180 117 11020 10208
86 17052 12064 118 7656 17052
87 16936 11832 119 16240 8352
88 17052 11600 120 10440 14732
89 13804 18792 121 9164 15544
90 12064 14964 122 8004 11020
91 12180 15544 123 5684 11948
92 14152 18908 124 9512 16472
93 5104 14616 125 13688 17516
94 6496 17168 126 11484 8468
95 5684 13224 127 3248 14152
96 15660 10788

Table 9: last 65 cities of bier127 challenge

With  this  data  we  tested  our  algorithm  which 
returned the following result in 23 seconds:

[C001][C006][C007][C008][C010][C002][C003][C004][C005]
[C018][C016][C020][C009][C012][C013][C019][C028][C026]
[C029][C021][C015][C011][C014][C017][C030][C022][C023]
[C024][C025][C027][C032][C033][C037][C040][C038][C036]
[C031][C034][C035][C048][C042][C043][C050][C039][C047]
[C056][C045][C046][C051][C044][C049][C041][C057][C058]
[C060][C052][C053][C054][C055][C063][C061][C070][C059]
[C066][C067][C068][C062][C064][C071][C072][C065][C069]
[C079][C080][C077][C078][C073][C088][C076][C089][C090]
[C087][C075][C081][C074][C082][C085][C091][C099][C098]
[C086][C084][C100][C097][C083][C092][C095][C096][C093]
[C094][C108][C103][C107][C109][C102][C101][C110][C104]
[C118][C117][C116][C120][C111][C112][C106][C115][C114]
[C105][C113][C119][C121][C122][C123][C125][C126][C127]
[C124]

This route has a size of 247.163.183 and the initial 
route has a size of 393.998.276. The route found represents 
62.73% of the original. A much smaller reduction than we 
observed  in  other  tests.  The  best  known  solution  to  the 
bier127  challenge  has  a  route  of  118,282 that  represents 
30.02%  of  the  original  route  size.  The  optimal  solution, 
however, begins with the city number twelve2. 

12 - 14 - 41 - 36 - 37 - 35 - 40 - 43 - 34 - 42 - 39 - 38 - 26 – 25 – 33
122 - 28 - 29 - 32 - 98 - 97 - 123 - 95 - 93 - 127 - 107 – 111 – 112
94 - 46 - 118 - 48 - 53 - 49 - 47 - 55 - 66 - 113 - 65 - 99 – 92 – 89
125 - 104 - 110 - 85 - 86 - 87 - 88 - 109 - 96 - 119 - 63 – 102 – 101
83 - 82 - 126 - 81 - 84 - 117 - 78 - 76 - 75 - 69 - 70 - 71 – 68 – 74
73 - 67 - 8 - 72 - 19 - 22 - 4 - 23 - 24 - 9 - 11 - 3 - 90 – 116 – 60
59 - 62 - 61 - 91–58 - 64 - 100 - 10 - 120 - 13 - 115 - 50 – 5 – 52
124 - 56 - 121 - 57 - 54 - 45 - 103 - 44 - 51 - 2 - 16 - 1 – 7 – 105
114 - 6 - 106 - 15 - 108 - 20 - 17 - 21 - 18 - 77 - 79 - 80 – 31 – 27
30

Our  algorithm  is  not  sophisticated  and  for  this 
reason  it  is  not  able  to  reach  levels  of  route  reduction 
comparable to the best algorithms that are used to overcome 
these challenges.

VI. CONCLUSION

The  problem  of  the  traveling  salesman  has  been 
studied for a long time and there is still no algorithm to find 
the optimal route in time (polynomial). Our goal with this 
work was to  learn a little  about the problem and test  an 
algorithm that we built to find good routes between cities.
Our  goal  was  partially  achieved  since  the  analyzed 
algorithm found better routes than the initial one in a very 
short time, mainly for sets of up to 1000 cities. Improving 
this performance is a complex job. About this complexity 
Porto da Silveira says:

"Don't be fooled by the playful appearance of  
this  problem.  It  is  NOT  another  
inconsequential  curiosity  to  entertain  
unmotivated students. In fact, it is a problem  
that should be part of the baggage of every  
competent math professional". [8]

We  then  concluded  that  our  algorithm,  although 
simple, proved effective in finding better than initial routes 
between a set of cities. We tested sets of up to 12.500 cities 
and had route reduction levels of between 26% and 62% 
compared to the initial route.
2 Available at: 
https://github.com/ashleywang1/TSP-solver/blob/master/TSP/2-opt-p/
2optpresult/bier127.tour 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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