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1 Introduction

In the course of generalizations of the notion of homeomorphism, Maki et
al. [24]introduced g-homeomorphisms and gc-homeomorphisms in topological
spaces. Devi et al. [6,7] studied semi-generalized homeomorphisms and general-
ized semi-homeomorphisms and also they have introduced �-homeomorphisms
in topological spaces. In this paper, We �rst introduce �-closed maps in topo-
logical spaces and then we introduce and study �-homeomorphism. We also
introduce �*-closed map and �*-homeomorphism. It turns out that the set of
all �*-homeomorphisms forms a group under the operation of composition of
maps.

2 preliminaries

Throughout this paper (X; �), (Y; �) and (Z; �) will always denote topological
spaces on which no separation axioms are assumed,unless otherwise mentioned.
when A is a subset of (X; �), cl(A) and int(A) denote the closure and the interior
of the set A, respectively.

we recall the following de�nitions and some results, which are used in the
sequel.

De�nition 2.1. Let (X; �) be a topological space. A subset A of a space (X; �)
is called:
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1. preopen[20] if A�int(cl(A)) and preclosed if cl(int(A))�A.

2. semiopen[18] if A�cl(int(A)) and semiclosed if int(cl(A))�A.

3. semipreopen[1] if A�cl(int(cl(A))) and semipreclosed if int(cl(int(A)))�A.

De�nition 2.2. Let (X; �) be a topological space. A subset A of a space (X; �)
is called:

1. generalized closed(brie�y g-closed)[19] if cl(A)�U whenever A�U and U
is open in (X; �).

2. generalized preclosed(brie�y gp-closed)[25] if pcl(A)�U whenever A�U
and U is open in (X; �).

3. generalized preregular closed(brie�y gpr-closed)[11] if pcl(A)�U whenever
A�U and U is regularopen in (X; �).

4. gp-closed [ 27 ] if pcl (A)� U whenever A� U and U is -open in X.

5. -closed [32] if cl(A) �U whenever A� U and U is semi open in X.

6. �g-closed [ 33 ] if cl(A) �U whenever A� U and U is semi open in X.

7. *g-closed [ 36] if cl(A)� U whenever A� U and U is �g-open in X.

8. #g- semi closed (brie�y #gs-closed)[ 35 ] if scl(A) �U whenever A �U
and U is *g-open in X.

9. �g-closed set [ 15 ] if cl(A) �U whenever A �U and U is #gs-open in X.

10. �-closed set [ 16 ] if pcl (A) �Int(U) whenever A �U and U is �g-open in
(X, �).

11. �-open [37] if it is a �nite union of regular open sets. The complement of
a �-open set is said to be �-closed.

The complements of the above mentioned sets are called their respective open
set.

De�nition 2.3. A function f: (X; �)� (Y,�) is called

1. Semi-continuous [ 18 ] if f�1(V) is semiopen in (X; �) for every open set
V in (Y,�).

2. Pre-continuous [ 20 ] if f�1(V) is Preclosed in (X; �) for every closed set
V in (Y; �).

3. g-continuous [ 4 ] if f�1(V) is g-closed in (X; �) for every closed set V in
(Y; �).

4. !-continuous [ 32 ] if f�1(V) is !-closed in (X; �) for every closed set V in
(Y; �).
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5. gp-continuous [ 2 ] if f�1(V) is gp-closed in (X; �) for every closed set V
in (Y; �).

6. gpr-continuous [ 12 ] if f�1(V) is gpr-closed in (X; �) for every closed set
V in (Y; �).

7. gp-continuous [ 28 ] if f�1(V) is gp-closed in (X; �) for every closed set V
in (Y; �).

8. #g-semicontinuous [35 ] if f�1(V) is #gs-closed in (X; �) for every closed
set V in (Y; �).

9. �g-continuous [ 30 ] if f�1(V) is �g-closed in (X; �) for every closed set V in
(Y; �).

10. Contra-continuous [ 9 ] if f�1(V) is closed in (X; �) for every open set V
in (Y; �).

11. �g-irresolute [ 30 ] if f�1(V) is �g-closed in (X; �) for every �g-closed set V in
(Y; �).

12. M-Preclosed [ 22 ] if f(V) is Preclosed in (Y; �) for every preclosed set V
in (X; �).

13. M-precontinuous[20] if f�1(V) is Preclosed in (X; �) for every preclosed
set V in (Y; �).

14. RC-continuous [ 10 ] if f�1(V) is regular closed in (X; �) for every open
set V in (Y; �).

15. �-continuous [17] if f�1(V) is �-closed in (X; �) for every closed set V in
(Y; �).

16. �-irresolute [17] if f�1(V) is �-closed in (X; �) for every �-closed set V in
(Y; �).

17. contra-open [5] if f(V) is closed in (Y; �) for every open set V in (X; �).

18. preclosed [25] if f(V) is preclosed in (Y; �) for every closed set V in (X; �).

19. !-closed [32] if f(V) is !-closed in (Y; �) for every closed set V in (X; �).

20. g-closed [21] if f(V) is g-closed in (Y; �) for every closed set V in (X; �).

21. gp-closed [25] if f(V) is gp-closed in (Y; �) for every closed set V in (X; �).

22. gpr-closed [26] if f(V) is gpr-closed in (Y; �) for every closed set V in (X; �).

23. �gp-closed if f(V) is �gp-closed in (Y; �) for every closed set V in (X; �).

24. gs-closed if f(V) is gs-closed in (Y; �) for every closed set V in (X; �).

25. �g-closed [14] if f(V) is �g-closed in (Y; �) for every closed set V in (X; �).
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De�nition 2.4. A space (X; �) is called

1. a T1=2 space [19 ] if every g-closed set is closed.

2. a T! space [ 32 ] if every !-closed set is closed.

3. a gsT#1/2 space [ 35 ] if every #g-semi-closed set is closed.

4. a T�g -space [ 30 ] if every �g -closed set is closed.

5. a �-Tsspace [16] if every �s-closed set is closed.

De�nition 2.5. A bijective function f: (X; �)� (Y; �) is called a

1. homeomorphism if f is both open and continuous.

2. generalized homeomorphism (brie�y g-homeomorphism) [24] if f is both
g-open and g-continuous.

3. semi-homeomorphism [6] if f is both continuous and semi-open.

4. pre-homeomorphism [23] if f is both M-precontinuous and M-preopen.

5. gp-homeomorphism if f is both gp-continuous and gp-open.

6. gpr-homeomorphism if f is both gpr-continuous and gpr-open.

7. �gp-homeomorphism if f is both �gp-continuous and �gp-open.

De�nition 2.6. (i) Let (X; �) be a topological space and A �X. We de�ne the
�-closure of A [16] (brie�y �-cl(A)) to be the intersection of all �-closed sets
containing A.

(ii) Let (X; �) be a topological space and A �X. We de�ne the �-interiorof
A [16] (brie�y �-int(A)) to be the union of all �-open sets contained in A.

(iii) A topological space (X; �) is �-compact [17] if every �-open cover of X
has a �nite subcover.

(iv) Let (X; �) be a topological space. Let x be a point of (X; �) and V be a
subset of X. Then V is called a �-open neighbourhood(simply �-neighbourhood)
[17] of x in (X; �) if there exists a �-open set U of (X; �) such that x2U �V.

Proposition 2.7. [16] Let (X; �) be a topological space and A �X. The follow-
ing properties are hold:

(i) �-cl(A) is the smallest �-closed set containing A.
(ii) If A is �-closed then �-cl(A) = A. Converse not true.
(iii) �-int(A) is the largest �-open set contained in A.
(iv) If A �B then �-cl(A)��-cl(B).
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3 �-closed maps

De�nition 3.1. A map f: (X; �)�(Y; �) is said to be �-closed if the image of
every closed set in (X; �) is �-closed in (Y; �).

Example 3.2. (i) Let X = Y= fa; b; c; d; eg,� =
�
=O; fa; bg ; fc; dg ; fa; b; c; dg ; X

	
,

� =
�
=O; fbg ; fd; eg fb; d; eg ; fa; c; d; eg ; Y

	
De�ne a map f:(X; �)�(Y; �) by f(a)

= d, f(b) = e, f(c)=b, f(d)=c, f(e)=a. Then f is a �-closed map.
(ii) Let X = Y = fa; b; c; d; eg, � =

�
=O; fa; bg ; fc; dg ; fa; b; c; dg ; X

	
, � =�

=O; fbg ; fd; eg fb; d; eg ; fa; c; d; eg ; Y
	
Let f: (X; �)�(Y; �) be the identity map.

Then f is not a �-closed map. Since for the closed set V = fegin (X; �), f(V) =
feg ;Which is not a �-closed set in (Y; �).

Theorem 3.3. Every Contra-closed map and Preclosed map f:(X; �)�(Y; �) is
�-closed map.

Proof. :Let V be a closed set in (X; �). Then f(V) is open and preclosed in
(Y; �). Hence by Theorem 3.2[16], f(V) is �-closed in (Y; �). Therefore f is a
�-closed map.

Converse of this theorem need not be true as seen from the following example.

Example 3.4. As in Example 3.2(i), f is a �-closed map but neither contra-
closed map nor preclosed map. Since for the closed set V = fa; b; egin (X; �),
f(V) = fa; d; eg is neither preclosed nor open in (Y; �).

Theorem 3.5. Every �-closed map f:(X; �)�(Y; �) is a gp-closed (resp.gpr-
closed, �gp-closed) map.

Proof. : Let V be a closed set in (X; �). Then f(V) is a �-closed set in (Y; �).
By Theorem 3.4[16], f(V) is gp-closed in (Y; �) (resp. By Theorem 3.6[16], f(V)
is gpr-closed in (Y; �), By Theorem 3.10[16], f(V) is �gp-closed in (Y; �)). Hence
f is a gp-closed (resp.gpr-closed, �gp-closed) map.

Converse of this theorem need not be true as seen from the following exam-
ples.

Example 3.6. (i)Let X = Y = fa; b; c; d; eg ;� ={�,{a,b},{a,b,d},{a,b,c,d},
{a,b,d,e},X}, � =

�
=O; fb; c; dg ; fa; b; c; dg ; fb; c; d; eg ; Y

	
:De�ne f :(X; �)�(Y; �)

by f(a) = c; f(b) = e; f(c) = a; f(d) = b; f(e) = d. Then the function f is a
gp-closed map but not �-closed map. Since for the closed set V = fegin (X; �),
f(V) = fdg, is a gp-closed set but not a �-closed set in (Y; �).

(ii) Let X = Y = fa; b; c; d; eg ;� = {�,{a,b},{a,b,d},{a,b,c,d},{a,b,d,e},X},
� =

�
=O; fa; bg ; fc; dg ; fa; b; c; dg ; Y

	
:De�ne f as in Example3.6(i), the function

f is gpr-closed map but not �-closed map. Since for all the closed sets in (X; �),
its images are all gpr-closed sets in (X,�) but no one is �-closed set in (Y; �).

(iii)As in Example 3.6(i), De�ne f :(X; �)�(Y; �) by f(a) = c; f(b) = b; f(c)
= a; f(d) = e; f(e) = d. Then the function f is a�gp-closed map but not �-closed
map. Since for the closed set V =fa; dgis �gp-closed set but not a �-closed set
in (Y; �).
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Remark 3.7. The following examples show that closed map is independent of
�-closed map.

Example 3.8. (i)As in Example 3.2(i), f is a �-closed map but not a closed
map. since for the closed set v = feg in (X; �), f(V) = fagis �-closed but not
closed in (Y; �).

(ii)As in Example 2.30[17], [0,¼] is closed in [0; 1], f([0,¼])= [0,½] is closed in
[0; 2]but it is not �-closed in [0; 2]. since [0,½]�[0,1), open in [0,2] and hence �g
-open in [0,2] but [0,½] is not contained in (0,1).

Remark 3.9. The following examples show that g-closed map is independent of
�-closed map.

Example 3.10. (i)Let X = Y = fa; b; cg ;� =
�
=O; fa; cg ; X

	
, � = {�,{a},{a,b},

Y}. De�ne a map f :(X; �)�(Y; �) by f(a) = c; f(b) = b; f(c) = a. Then f is a
�-closed map but not g-closed map. since for the closed set V = fbgin (X; �),
f(V) = fbg is �-closed but not g-closed in (Y; �).

(ii) consider [0,1] and [0,2] with usual topology. De�ne f :[0,1]�[0,2] by f(x)
= 2x. Let [0,¼] be closed in [0,1]. Then f([0,¼])= [0,½] is g-closed in [0,2] but not
�-closed in [0,2]. Hence f is g-closed but not �-closed.

Remark 3.11. The following example shows that the composition of two �-closed
maps need not be �-closed.

Example 3.12. Let X = Y = Z = fa; b; cg ;� =
�
=O; fag ; fb; cg ; X

	
, � =�

=O; fa; cg ; Y
	
, �=

�
=O; fag ; fa; bg ; Z

	
. De�ne f :(X; �)�(Y; �) by f(a) = f(b)

= b; f(c) = a and de�ne g: (Y; �)�(Z,�) by g(a) = c; g(b) = b ; g(c) = a.
Then both f and g are �-closed maps but their composition gf: (X; �)�(Z,�)is
not a �-closed map. since for the closed set V = fb; cg in (X; �), gf(V) = fa; bg,
Which is not a �-closed set in (Z,�).

Theorem 3.13. If f: (X; �)�(Y; �) is �-closed, g: (Y; �)�(Z,�) is �-closed and
(Y; �) is �-T1=2 space then their composition gf : (X; �)�(Z,�)is �-closed.

Proof. :Let V be a closed set in (X; �). Then f(V) is a �-closed set in (Y; �).
Since (Y; �) is �-T1=2, then f(V) is a closed set in (Y; �).Hence g(f(V))=(gf)(V)
is a �-closed in (Z,�). Therefore gf is a �-closed map.

Theorem 3.14. If f :(X; �)�(Y; �) is a �g-closed (resp.g-closed, !-closed, gs-
closed) map, g:(Y; �)�(Z,�) is a �-closed map and Y is T�g -space(resp.T1=2space,

T!space ,gsT#1=2space ) then their composition gf: (X; �)�(Z,�) is a �-closed
map.

Proof. :Let V be a closed set in (X; �).Then f(V) is a �g-closed (resp. g-closed,!-
closed, gs-closed) set in(Y; �). Since (Y; �) is a T�g -space (resp.T1=2space,

T!space, gsT
#
1=2space), therefore f(V) is a closed set in (Y; �). Since g is �-

closed, g(f(V ))= (gf)(V )is �-closed in (Z,�).Therefore gf is a �-closed map.
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Theorem 3.15. If f : (X; �)�(Y; �) is a �g-closed and Contra-closed map,
g:(Y; �)�(Z,�) is a M-Preclosed and open map then their composition gf :
(X; �)�(Z,�) is �-closed map.

Proof. Let V be a closed set in (X; �). Then f(V) is �g-closed and open in (Y; �).
Since every �g-closed is Preclosed and g is M-preclosed and open, hence g(f(V ))
= (gf)(V )is preclosed and open in (Z,�). By Theorem 3.2 [16], (gf)(V )is �-
closed in (Z,�). Therefore gf is a �-closed map.

Theorem 3.16. Let f : (X; �)�(Y; �) be a closed map and g:(Y; �)�(Z,�) be
a �-closed map then their composition gf : (X; �)�(Z,�) is �-closed.

Proof. Let V be a closed set in (X; �). Then f(V )is a closed set in (Y; �). Hence
g(f(V ))= (gf)(V )is �-closed set in (Z,�). Therefore gf is a �-closed map.

Remark 3.17. If f is �-closed map and g is closed, then their composition need
not be a �-closed map as seen from the following example.

Example 3.18. Let X = Y = Z = fa; b; cg ;� =
�
=O; fag ; fb; cg ; X

	
, � =�

=O; fa; cg ; Y
	
, �=

�
=O; fcg ; fa; cg ; Z

	
. De�ne f :(X; �)�(Y; �) be f(a) = f(b) =

c; f(c) = b and de�ne g: (Y; �)�(Z,�) be the identity map. Then f is a �-closed
map and g is a closed map. But their composition gf: (X; �)�(Z,�) is not a
�-closed map. Since for the closed set V = fagin (X; �),(gf)(V )= g(f(V )) =
g(c)= fcg, which is not is �-closed set in (Z,�).

Theorem 3.19. If f :(X; �)�(Y; �) is a �-closed, g:(Y; �)�(Z,�) is M-Preclosed
and �g-irresolute map then gf : (X; �)�(Z,�) is �-closed.

Proof. Let V be a closed set in (X; �). Then f(V) is a �-closed set in (Y; �).
Hence by Theorem 3.16[17], g(f(V ))= (gf)(V )�-closed in (Z,�). Therefore gf is
a �-closed map.

Theorem 3.20. Let f : (X; �)�(Y; �) and g:(Y; �)�(Z,�) be two mappings
such that their composition gf : (X; �)�(Z,�) be a �-closed mapping. Then the
following statements are true if:

1. f is continuous and surjeetive then g is �-closed.

2. g is �-irresolute, injeetive then f is �-closed

3. f is �g -continuous, surjeetive and (X; �) is a T�g -space, then g is �-closed.

4. f is g-continuous, surjeetive and (X; �) is a T1=2 space then g is �-closed.

5. f is �-continuous, surjetive and (X; �) is a �-Ts space then g is �-closed.

Proof. 1. Let A be a closed set in (Y; �). Since f is continuous, f�1(A)is closed
in (X; �) and since gf is �-closed, (gf)

�
f�1(A)

�
= g(A)is a �-closed in (Z,�),

since f is surjeetive. Therefore, g is a �-closed map.
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2. Let A be a closed set in (X; �). Since gf is �-closed, then (gf)(A)is �-
closed in (Z,�). Since g is �-irresolute, then g�1(gf)(A) is �-closed in (Y; �),
since g is injeetive. Thus, f is a �-closed map.

3. Let A be a closed set of (Y; �). Since f is �g-continuous, f�1(A) is �g-closed
in (X; �). Since (X; �) is a T�g -space, f�1(A) is closed in (X; �), since gf is
�-closed, (gf)

�
f�1(A)

�
= g(A)is �-closed in (Z,�), since f is surjeetive. Thus g

is a �-closed map.
4. Let A be a closed set of (Y; �). Since f is g-continuous, f�1(A) is g-closed

in (X; �). Since (X; �) is a T1=2-space, f
�1(A) is closed in (X; �), since gf is

�-closed, (gf)
�
f�1(A)

�
= g(A)is �-closed in (Z,�), since f is surjeetive. Thus g

is a �-closed map.
5. Let A be a closed set (Y; �). Since f is �-continuous, f�1(A) is �-closed in

(X; �). Since (X; �) is a �-Tsspace and by Theorem 3.33 [15], f�1(A) is closed
in (X; �). Since gf is �-closed,(gf)f�1 (A)= g(A) is �-closed in (Z,�). Since f is
surjeetive. Thus, g is a �-closed map.

As for the restriction fA of a map f :(X; �)�(Y; �) to a subset A of (X; �), we
have the following.

Theorem 3.21. Let (X; �) and (Y; �) be any topological spaces, Then if :

1. f :(X; �)�(Y; �) is �-closed and A is a closed subset of (X; �) then fA:
(A; �A)� (Y; �) is �-closed.

2. f :(X; �)�(Y; �) is �-closed and A = f�1(B),for some closed set B of (Y; �),
then fA: (A; �A)� (Y; �) is �-closed.

Proof. 1. Let B be a closed set of (A; �A). Then B = A
T
F for some closed set

F of (X; �) and so B is closed in (X; �). Since f is �-closed, then f(B) is �-closed
in (Y; �). But f(B)= fA(B)and therefore fAis a �-closed map.

2. Let F be a closed set of (A; �A). Then F = A
T
H for some closed set H

of (X; �). Now fA (F )= f(F )= f(A
T
H) = f

�
f�1(B)

T
H
�
= B

T
f(H).Since f is

�-closed, f(H) is �-closed in (Y; �) and so B\f(H) is �-closed in (Y; �). Therefore
fAis a �-closed map.

Theorem 3.22. A map f :(X; �)�(Y; �) is �-closed if and only if for each
subset S of (Y; �) and for each open set U containing f�1(S) there is a �-open
set V of (Y; �) such that S�V and f�1(V)�U.

Proof. Suppose that f is a �-closed map. Let S�Y and U be an open subset
of (X; �) such that f�1(S)�U. Then V = (f(U c))

c
is a �-open set containing S

such that f�1(V)�U. For the converse, Let S be a closed set of (X; �). Then
f�1 ((f(s))

c
) �Sc and Scis open. By assumption, there exists a �-open set V

of (Y; �) such that(f(S)c)�V and f�1(V )�Sc and so S �
�
f�1(V )

�c
. Hence

Vc �f(S)�f
�
f�1(V )c

�
�Vcwhich implies f(S)= Vc. since Vcis �-closed in (Y; �),

f(S)is �-closed in (Y; �) and therefore f is �-closed.

Theorem 3.23. If a mapping f :(X; �)�(Y; �) is �-closed then �-cl(f(A))�f(cl(A))
for every subset A of (X; �).
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Proof. Suppose that f is �-closed and A� X, Then f(cl(A)) is �-closed in (Y; �).
Hence by Theorem4.22[16],�-cl(f(cl(A))= f(cl(A)) :Also f(A)�f(cl(A)), and by
Proposition2.7(iv), we have, �-cl(f(A))��-cl(f(cl(A)) = f(cl(A)) :

Converse of this theorem need not be true as seen from the following example.

Example 3.24. Let X = fa; b; cg= Y, � =
�
=O; fag ; fb; cgX

	
, � = {�,{a},{a,b},

Y}. De�ne f :(X; �)�(Y; �) by f(a) = c; f(b) = a; f(c) = b. For every subset
A of X,we have �-cl(f(A))�f(cl(A)). But f is not a �-closed map.Since for the
closed set V = fb; cgin (X; �), f(V) =fa; bg is not a �-closed set in (Y; �).

4 �-Open maps

De�nition 4.1. A map f :(X; �)�(Y; �) is said to �-open map if the image
f(A) is �-open in (Y; �) for every open set A in (X; �).

Theorem 4.2. For any bijection f :(X; �)�(Y; �), the following statements are
equivalent.

1. f�1: (Y; �)�(X; �) is �-continuous

2. f is a �-open map and

3. f is a �-closed map.

Proof. (1)�(2) Let U be an open set of (X; �). By assumption,
�
f�1

�
�1

(U)=
f(U)is �-open in (Y; �) and so f is a �-open map.

(2)�(3)Let V be a closed set of (X; �). Then Vc is open in (X; �). BY
assumption f(V c)= (f(V ))

c
is �-open in (Y; �) and therefore f(V )is �-closed in

(Y; �). Hence f is a �-closed map.
(3)�(1) Let V be a closed set of (X; �). By assumption f(V) is �-closed in

(Y; �). But f(V )=
�
f�1

�
�1

(V )and therefore f�1 is �-continuous on (Y; �).

Theorem 4.3. Let f :(X; �)�(Y; �) be mapping. If f is a �-open mapping then
for a subset A of (X; �), f(int(A))� �-int(f(A))

Proof. Suppose f is �-open. Let A� X. since int(A)is open in (X; �) and
f is �-open, then f(int(A))is �-open in (Y; �). Now f(int(A))� f (A)and by
Proposition 2.7(iii), we have, f(int(A))� �� int(f (A)).

Converse of this theorem need not be true as seen from the following example.

Example 4.4. Let X = fa; b; c; d; eg= Y, � = {�,{b,c,d},{a,b,c,d},{b,c,d,e},X},
� =

�
=O; fa; bg ; fa; b; dg ; fa; b; c; dg ; fa; b; d; eg ; Y

	
. De�ne f :(X; �)�(Y; �) by

f(a) = a; f(b) = c; f(c) = d; f(d) = e; f(e) = b. For a subset A of X, f(int(A))��-
int(f(A))but f is not a �-open map. Since for a subset A = fa; b; c; dgof X,
f (int(A)) = fa; c; d; eg, f(A)= fa; c; d; eg ; clearly f(int(A))��-int(f(A)) but
f(A) is not �-open in (Y; �).
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Theorem 4.5. Let f :(X; �)�(Y; �) be mapping. If f is a �-open mapping,
then for each x�X and for each neighbourhood U of x in (X; �), there exists a
�-neighbourhood W of f(x) in (Y; �) such that W �f(U) :

Proof. Let x�X and U be an arbitrary neighbourhood of x. Then there exists
an open set V in (X; �) such that x�V�U. By assumption, f(V )is a �-open set
in (Y; �). Further, f(x) �f(V) �f(U), clearly f(U) is a �-neighbourhood of f(x) in
(Y; �) and so the theorem holds, by taking W = f(V).

Converse of this theorem need not be true as seen from the following example.

Example 4.6. As in example 4.4, Let U = fa; b; c; dgbe an open set in (X; �)
and f(a) = a. Then a�U and for each a = f(a) � f(U) = fa; c; d; eg, by assumption,
there exists a �-neighbourhood Wa= fa; c; d; egof a in (Y; �) such that Wa�f(U).
But f(U) is not a �-open set in (Y; �).

Theorem 4.7. A function f :(X; �)�(Y; �) is �-open if and only if for any subet
B of (Y; �) and for any closed set S containing f�1(B), there exsts a �-closed set
A of (Y; �) containing B such that f�1(A)�S.

Proof. Similar to theorem 3.22.

5 �-Homeomorphisms

De�nition 5.1. A bijection f :(X; �)�(Y; �) is called �-homeomorphism if f is
both �-continuous and �-open.

Example 5.2. Let X=Y=fa; b; cg ;� =
�
=O; fag ; fa; bg ; X

	
, � = {�,{b},{b,c},

Y}. De�ne a map f :(X; �)�(Y; �) by f(a) = c, f(b) = b, f(c) = a. Then f is a
�-homeomorphism

Theorem 5.3. Every �-homeomorphism is a gp-homeomorphism(resp.gpr �
homeomorphism; �gp� homeomorphism):

Proof. By Theorem 2.5[17], every �-continuous map is gp-continuous (resp.by
Theorem2.7[17], gpr-continuous,by Theorem2.11[17] �gp-continuous) and also
by Theorem3.4[16],every �-open map is gp-open(resp.by Theorem3.4[16], gpr-
open,by theorem3.10[16],�gp-open),the proof follows.

Converse of the above theorem need not be true as seen from the following
example.

Example 5.4. (i) Let X=Y=fa; b; cg, � =
�
=O; fa; bg ; X

	
, � = {�,{a},{a,b},

Y}. De�ne f :(X; �)�(Y; �) by f(a) = c, f(b) = a, f(c) = b.Then f is gp-
homeomorphism but not �-homeomorphism. Since for the closed set V = fcgin
(Y; �), f�1(V ) = fagis not �-closed in (X; �), that is f is not �-continuous.

(ii) Let X=Y=fa; b; cg, � =
�
=O; fag ; fa; bg ; fc; ag ; X

	
, � = {�,{b},{c,a},

Y}. Let f :(X; �)�(Y; �) be an identity map.Then f is �gp-homeomorphism but
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not �-homeomorphism. Since for the closed set V = fc:agin (Y; �), f�1(V ) =
fc; agis not �-closed in (X; �), that is f is not �-continuous.

(iii) Let X=Y=fa; b; cg, � =
�
=O; fag ; fb; cg ; X

	
, � =

�
=O; fcg ; fa; bg ; Y

	
.

De�ne f :(X; �)�(Y; �) by f(a) = c, f(b) = a, f(c) = b.Then f is gpr-homeomorphism
but not �-homeomorphism. Since for the closed set V = fcgin (Y; �), f�1(V ) =
fagis not �-closed in (X; �), that is f is not �-continuous.

Theorem 5.5. Let f :(X; �)�(Y; �) be both contra-open and contra-continuous
functions. If f is a gp-homeomorphism ,then f is a �-homeomorphism.

Proof. Let U be open in (X; �). Then f(U) is gp-open in (Y; �). Hence Y-f(U)
is gp-closed in (Y; �). Since f is contra-open ,then f(U) is closed in (Y; �) and so
Y-f(U) is open in (Y; �). By Theorem 2.2[29],Y-f(U) is preclosed in (Y; �) and
by Theorem 3.2[16], Y-f(U) is �-closed in (Y; �), that is f(U) is �-open in (Y; �).
Hence f is �-open. Let V be closed in (Y; �). Then f�1(V ) is gp-closed in (X; �).
Since f is contra-continuous, then f�1(V ) is open in (X; �).By Theorem2.2[29]
and by Theorem 3.2[16], f�1(V )is �-closed in (X; �). Hence f is �-continuous.
Since f is �-continuous and �-open, therefore f is �-homeomorphism.

De�nition 5.6. A function f :(X; �)�(Y; �) is called

1. contra-�-open(resp.regular-contra-open), if f(U) is �-closed(resp.regular
closed) in (Y; �) for every open set U in (X; �).

2. contra-�-continuous, if f�1( V) is �-open in (X; �) for every closed set V
in (Y; �).

Theorem 5.7. Let f :(X; �)�(Y; �) be both contra-�-open and contra-�-contin-
uous functions. If f is a �gp-homeomorphism ,then f is a �-homeomorphism.

Proof. Let U be open in (X; �). Then f(U) is �gp-open in (Y; �). Hence Y-f(U)
is �gp-closed in (Y; �). Since f is contra-�-open ,then f(U) is �-closed in (Y; �)
and so Y-f(U) is �-open in (Y; �). By Theorem 2.4[27],Y-f(U) is preclosed in
(Y; �) and since every �-open is open and by Theorem 3.2[16], Y-f(U) is �-closed
in (Y; �), that is f(U) is �-open in (Y; �). Hence f is �-open. Let V be closed in
(Y; �). Then f�1(V ) is �gp-closed in (X; �). Since f is contra-�-continuous, then
f�1(V ) is �-open in (X; �).By Theorem2.4[27] and since every �-open is open
and by Theorem 3.2[16], f�1(V )is �-closed in (X; �). Hence f is �-continuous.
Since f is �-continuous and �-open, therefore f is �-homeomorphism.

Theorem 5.8. Let f :(X; �)�(Y; �) be both contra-regular open and RC-contin-
uous functions. If f is a gpr-homeomorphism ,then f is a �-homeomorphism.

Proof. Let U be open in (X; �). Then f(U) is gpr-open in (Y; �). Hence Y-f(U)
is gpr-closed in (Y; �). Since f is contra-regular open, then f(U) is regular closed
in (Y; �) and so Y-f(U) is regular open in (Y; �). By Theorem 3.10[11],Y-f(U)
is preclosed in (Y; �) and since every regular open is open and by Theorem
3.2[16], Y-f(U) is �-closed in (Y; �), that is f(U) is �-open in (Y; �). Hence f is
�-open. Let V be closed in (Y; �). Then f�1(V ) is gpr-closed in (X; �). Since f is
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completely contra-continuous, then f�1(V ) is regularopen in (X; �).By Theorem
3.10[11] and since every regular open is open and by Theorem 3.2[16], f�1(V )is
�-closed in (X; �). Hence f is �-continuous. Since f is �-continuous and �-open,
therefore f is �-homeomorphism.

Theorem 5.9. Let f :(X; �)�(Y; �) be both contra-open and contra-continuous
functions. If f is pre-homeomorphism, then f is a �-homeomorphism.

Proof. Let U be open in (X; �). Then f(U) is preopen in (Y; �). Hence Y-f(U)
is preclosed in (Y; �). Since f is contra-open, then f(U) is closed in (Y; �) and so
Y-f(U) is open in (Y; �). By Theorem 3.2[16], Y-f(U) is �-closed in (Y; �), that
is f(U) is �-open in (Y; �). Hence f is �-open. Let V be closed in (Y; �). Then
f�1(V ) is preclosed in (X; �). Since f is contra-continuous, then f�1(V ) is open in
(X; �).By Theorem 3.2[16], f�1(V )is �-closed in (X; �). Hence f is �-continuous.
Since f is �-continuous and �-open, therefore f is �-homeomorphism.

Remark 5.10. �-homeomorphism and homeomorphism are independent as can
be seen from the following examples.

Example 5.11. (i) Let X=fa; b; c; dg=Y, � =f�; fa; bg ; fa; b; cg ; Xg,� ={�,{a,b},
{a,b,d},Y}. If f :(X; �)�(Y; �) is an identity function, then f is a �-homeomorphism
but not homeomorphism. Since f is neither continuous nor open.

(ii) Let X=fa; b; cg=Y, � =f�; fag ; fb; cg ; Xg,� =f�; fcg ; fa; bg ; Y g. De�ne
f :(X; �)�(Y; �) by f(a)=c, f(b)=a, f(c)=b. Then f is a homeomorphism but not
�-homeomorphism.Since for the closed set V=fcg,f�1(V)=fagis not �-closed in
(X; �), that is f is not �-continuous.

Remark 5.12. �-homeomorphism and g-homeomorphism are independent as can
be seen from the following examples.

Example 5.13. (i) Let X=fa; b; cg=Y, � =f�; fag ; fa; bg ; fa; cg ; Xg,� ={�,{b},
{a,b},Y}. De�ne f :(X; �)�(Y; �) by f(a)=b, f(b)=a, f(c)=c. Then f is a �-
homeomorphism but not g-homeomorphism.Since for the open set V=fa; cgin
(X; �), f(V)=fb; cgis not g-open in (Y; �).

(ii) Consider [0; 1]and [0; 2]with usual topology. De�ne f : [0; 1]�[0; 2] by
f(x) = 2x. Also f�1(x) = x/2. Then f is a g-homeomorphism but not �-
homeomorphism. Since for the closed set V =[0; ½] in [0; 2], f�1(V) = [0; ¼]
is g-closed in [0; 1] but not �-closed in [0; 1], that is f is not �-continuous.

Remark 5.14. �-homeomorphism and semi-homeomorphism are independent as
can be seen from the following examples.

Example 5.15. (i) Let X=Y=fa; b; cg,� =f�; fa; bg ; Xg,� =f�; fag ; fa; bg ; Y g.
Let f :(X; �)�(Y; �) be an identity map. Then f is a �-homeomorphism.But
f is not a semi-homeomorphism. Since for the closed set V=fb; cgin (Y; �),
f�1(V)=fb; cg ;Which is not closed in (X; �). Therefore f is not a continuous
map.

(ii) Let X=Y=fa; b; cg,� =f�; fag ; fb; cg ; Xg,� =f�; fcg ; fa; bg ; Y g. De�ne
f :(X; �)�(Y; �) by f(a)=c, f(b)=a, f(c)=b. Then f is a semi-homeomorphism.
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But f is not a �-homeomorphism. Since for the closed set V=fcgin (Y; �),
f�1(V)=fag ;Which is not �-closed in (X; �). Therefore f is not a �-continuous
map.

Remark 5.16. �-homeomorphism and pre-homeomorphism are independent as
can be seen from the following examples.

Example 5.17. (i) Let X=Y=fa; b; cg,� =f�; fag fa; bg ; Xg,� ={�,{a},{b},
{a,b},{b,c},Y}. De�ne f :(X; �)�(Y; �) by f(a)=b, f(b)=a, f(c)=c. Then f is a
�-homeomorphism.But f is not a pre-homeomorphism. Since for the closed set
V=fb; cgin (Y; �), f�1(V)=fc; ag ;Which is not preclosed in (X; �). Therefore f
is not a pre-continuous map.

(ii) Let X=Y=fa; b; cg,� =f�; fa; bg ; Xg,� =f�; fag ; fa; bg ; Y g. De�ne f
:(X; �)�(Y; �) by f(a)=c, f(b)=a, f(c)=b. Then f is a pre-homeomorphism.
But f is not a �-homeomorphism. Since for the closed set V=fcgin (Y; �),
f�1(V)=fag ;Which is not �-closed in (X; �). Therefore f is not a �-continuous
map.

Theorem 5.18. Let f :(X; �)�(Y; �) be a bijection �-continuous map. Then
the following statements are equivalent.

1. f is a �-open map.

2. f is a �-homeomorphism.

3. f is a �-closed map.

Proof. (1)�(2) By hypothesis and by assumption, proof is obvious.
(2)�(3) Let V be a closed set in (X; �). Then Vcis open in (X; �). By

hypothesis, f(Vc) = (f(V))c is �-open in (Y; �).That is, f(V) is �-closed in (Y; �).
Therefore f is a �-closed map.

(3)�(1) Let V be a open set in (X; �). Then Vcis closed in (X; �). By
hypothesis, f(Vc) = (f(V))c is �-closed in (Y; �).That is, f(V) is �-open in (Y; �).
Therefore f is a �-open map.

Remark 5.19. The composition of two �-homeomorphism maps need not be a
�-homeomorphism as can be seen from the following example.

Example 5.20. Let X=Y=Z=fa; b; cg,� =f�; fa; bg ; Xg,� =f�; fag ; fa; bg ; Y g
, � =f�; fag ; fbg ; fa; bg ; fb; cg ; Zg. Let f :(X; �)�(Y; �) be an identity map and
de�ne g :(Y; �)�(Z,�) by g(a)=b, g(b)=a, g(c)=c. Then both f and g are �-
homeomorphisms, but their composition gf :(X; �)�(Z,�) is not a �-homeomorp
hism. Since for the closed set V=fagin (Z,�), (gf)�1(V)=fbg, Which is not a
�-closed set in (X; �). Therefore gf is not a �-continuous map and so gf is not a
�-homeomorphism.

Theorem 5.21. Let f :(X; �)�(Y; �) be a �-homeomorphism. Let A be an open
�-closed subset of X and let B be a closed subset of Y such that f(A)=B.Assume
that �C(X; �) ( the class of all �-closed sets of (X; �)) be closed under �nite
intersections. Then the restriction fA:(A,�A)�(B,�B) is a �-homeomorphism.

13



Proof. We have to show that fA is a bijection, fA is a �-open map and fA is a
�-continuous map.

(i) Since f is one-one, fA is also one-one. Also since f(A)=B we have fA(A)=B
so that fA is onto and hence fA is a bijection.

(ii) Let U be an open set of (A,�A). Then U = A
T
H, for some open set

H in (X; �).Since f is one-one ,then f(U)=f(A
T
H)=f(A)

T
f(H)=B

T
f(H).Since f

is �-open and H is an open set in (X; �), then f(H) is a �-open set in (Y; �).
Therefore f(U) is a �-open set in (B,�B), Hence fA is a �-open map.

(iii) Let V be a closed set in (B,�B). Then V=B
T
K, for some closed set

K in (Y; �).Since B is a closed set in (Y; �),then V is a closed set in (Y; �).By
hypothesis and assumption, f�1(V)

T
A=H1(say) is a �-closed set in (X; �).Since

f�1A (V)=H1, it is su�cient to show that H1is a �-closed set in (A,�A).Let G1be �g-
open in (A,�A) such that H1�G1. Then by hypothesis and by Lemma3.21[17],G1

is �g-open in X. Since H1 is a �-closed set in (X; �),we have PclX(H1)�Int(G1).
Since A is open and by Lemma 2.10[12],PclA(H1) = PclX(H1)

T
A�Int(G1)

T
A=Int(G1)T

Int(A)=Int(G1

T
A)� Int(G1) and so H1= f�1A (V) is �-closed set in (A,�A).There

fore fAis a �-continuous map. Hence fAis a �-homeomorphism.

De�nition 5.22. A topological space (X; �) is called a �-hausdor� if for each
pair x,y of distinct points of X, there exists �-open neighbourhoods U1and U2of
x and y,respectively,that are disjoint.

Theorem 5.23. Let (X; �) be a topological space and let (Y; �) be a �-hausdor�
space. Let f :(X; �)�(Y; �) be a one-one �-irresolute map. Then (X; �) is also
a �-hausdor� space.

Proof. Let x1,x2 be any two distinct points of X. Since f is one-one, x1 6=x2implies
f(x1) 6=f(x2). Let y1= f(x1), y2= f(x2) so that x1= f�1(y1) and x2= f�1(y2).
Then y1, y2 2Y such that y1 6=y2. Since (Y; �) is �-hausdor�, then there exists
�-open sets U1and U2of (Y; �) such that y12U1,y22U2and U1\U2= �. Since
f is �-irresolute, f�1(U1) and f�1(U2) are �-open sets of (X; �). Now f�1(U1)
\f�1(U2) = f�1( U1\U2) = f�1(�) = �, and y12U1implies f

�1(y1) 2f
�1(U1)

implies x12f
�1(U1), y22U2 implies f

�1(y2) 2f
�1(U2) implies x22f

�1(U2). Thus
it is shown that for every pair of distinct points x1,x2 of X, there exists dis-
joint �-open sets f�1(U1) and f�1(U2) such that x12f

�1(U1) and x22f
�1(U2).

Accordingly, the space (X; �) is a �-hausdor� space.

Theorem 5.24. Every �-compact subset A of a �-hausdor� space X is �-closed.
Assume that �O(X; �) ( the class of all �-open sets of (X; �)) be closed under
�nite intersections.

Proof. We shall show that X-A is �-open. let x2X-A,Since X is hausdor�, for
every y2A, there exists disjoint �-open neighbourhoods Uyand Vyof x and y
such that Uy

T
Vy= �. Now the collection {Vy/ y2A} is a �-open cover of

A,since A is compact ,there exists a �nite subcover {yi,i=1,...,n} such that
A�[{Vyi ,i=1,...,n}.Let U = \{Uyi , i=1,...,n} and V = [{Vyi ,i=1,...,n}. Then,
by assumption, U is an �-open neighbourhood of x. clearly U \V =�,hence U
\A = �,thus U �X-A ,which means X-A is �-open,therefore A is �-closed.
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Theorem 5.25. Let (X; �) a topological space and let (Y; �) be a �-hausdor�
space. Assume that �O(X; �) ( the class of all �-open sets of (X; �)) be closed
under �nite intersections. If f , g are �-irresolute maps of X into Y,then the set
A = fx 2 X : f(x) = g(x)gis a �-closed subset of (X; �).

Proof. We shall show that X-A is an �-open subset of (X; �).Now X-A = {x2X:
f(x) 6=g(x)}.Let p 2X-A. Set y1= f(p), y2= g(p). By the defnition of X-A,
we have y1 6=y2. Thus y1,y2 are two distinct points of Y. Since (Y; �)is a �-
hausdor� space,there exists �-open sets U1, U2 of (Y; �) such that y1= f(p)2U1,
y2= g(p) 2U2 and U1\ U2= �.Therefore p 2f�1(U1), p 2g�1(U2), so that
p 2 f�1(U1)\g

�1(U2) = W(say).Since f and g are �-irresolute maps, f�1(U1)
and g�1(U2) are �-open sets of (X; �) and by assumption W is a �-open set
containing p.We will now show that W�X-A.Let y2W, since U1\ U2= �, then
f(y) 6=g(y) and hence from the defnition of X-A, y 2X-A. Therefore W �X-A,
which means X-A is a �-open set. It follows that A is a �-closed subset of
(X; �).

We de�ne another new class of maps called �*-closed maps.

De�nition 5.26. A map f :(X; �)�(Y; �) is said to be a �*-closed map if the
image f(A) is �-closed in (Y; �) for every �-closed set A in (X; �).

Example 5.27. As in example 3.2, f is a �*-closed map.

Theorem 5.28. If f :(X; �)�(Y; �) is �g-irresolute and M-preclosed functions
then f is a �*-closed map.

Proof. By Theorem 3.16[17], the theorem follows.

Theorem 5.29. Every �-closed map is a �*-closed map if (X; �) is �-TSspace.

Proof. Let f :(X; �)�(Y; �) be a �-closed map and V be a �-closed set in (X; �).
Since (X; �) is a �-TSspace, then V is a closed set in (X; �) and since f is �-closed,
then f(V) is a �-closed set in (Y; �). Hence f is a �*-closed map.

We next introduce a new class of maps called �*-homeomorphisms. This
class of maps is closed under composition of maps.

De�nition 5.30. A bijection f :(X; �)�(Y; �) is said to be �*-homeomorphism
if both f and f�1are �-irresolute.

Example 5.31. Let X=Y=fa; b; cg, � =f�; fag ; fbg ; fa; bg ; Xg,� =f�; fa; bg ; Y g.
Let f :(X; �)�(Y; �) be an identity map. Then f is a �*-homeomorphism.

Theorem 5.32. A bijective �-irresolute map of a �-compact space X onto a
�-hausdor� space Y is a �*-homeomorphism.

Proof. Let (X; �) be a �-compact space and (Y; �) be a �-hausdor� space.Let f
:(X; �)�(Y; �) be a bijective �-irresolute map.We have to show that f is a �*-
homeomorphism.We need only to show that f�1is a �-irresolute map.Let F be a
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�-closed set in (X; �).Since (X; �) is a �-compact space, then by Theorem5.6[17],
F is a �-compact subset of (X; �).Since f is irresolute and by Theorem5.7[17],f(F)
is a �-compact subset of (Y; �).Since (Y; �) is a �-hausdor� space, then by The-
orem5.24, f(F) is a �-closed set in (Y; �).Hence f is a �*-homeomorphism.

Theorem 5.33. If f :(X; �)�(Y; �) and g :(Y; �)�(Z,�) are �*-homeomorphisms
then their composition gf :(X; �)�(Z,�) is also �*-homeomorphism.

Proof. Let V be a �-closed set in (Z,�).Now (gf)�1(V)= f�1(g�1(V)).Since g is
a �*-homeomorphism, then g�1(V) is a �-closed set in (Y; �) and Since f is a
�*-homeomorphism, then f�1(g�1(V)) is a �-closed set in (X; �). Therefore gf is
�-irresolute. Also for a �-closed set F in (X; �), we have (gf)(F)=g(f(F)). Since
f is a �*-homeomorphism, then f(F) is a �-closed set in (Y; �) and since g is a
�*-homeomorphism, then g(f(F)) is a �-closed set in (Z,�). Therefore (gf)�1is
�-irresolute. Hence gf is a �*-homeomorphism.

Theorem 5.34. �*-homeomorphism is an equivalence relation in the collection
of all topological spaces.

Proof. We have to show that f :(X; �)�(X; �) is a �*-homeomorphism(re�exive),if
f :(X; �)�(Y; �) is a �*-homeomorphism then g :(Y; �)�(X; �) is also a �*-
homeo-morphism(symmetry) and if f :(X; �)�(Y; �) and g :(Y; �)�(Z,�) are
�*-homeom-orphisms then gf :(X; �)�(Z,�) is a �*-homeomorphism(transitive).

Re�exive and symmetry are immediate and by theorem 5.33,transitive fol-
lows.

We denote the family of all �*-homeomorphism of a topological space (X; �)
onto itself by �*-h(X; �).

Theorem 5.35. The set �*-h(X; �) is a group under the composition of maps.

Proof. De�ne a binary operation �: �*-h(X; �) x �*-h(X; �) � �*-h(X; �) by
�(f; g) = gf (the composition of f and g) for all f,g2�*-h(X; �). Then by Theo-
rem 5.33, gf2�*-h(X; �) . We know that the composition of maps is associative
and the identity map I :(X; �)�(X; �) belonging to �*-h(X; �) serves as the
identity element. If f2�*-h(X; �) then f�12 �*-h(X; �) such that f f �1= f�1 f
= I and so inverse exists for each element of �*-h(X; �). Therefore (�*-h(X; �),)
is a group under the operation of composition of maps.

Theorem 5.36. Let f :(X; �)�(Y; �) be a �*-homeomorphism. Then f induces
an isomorphisms from the group �*-h(X; �) onto the group �*-h(Y; �).

Proof. We de�ne a map �f :�*-h(X; �)��*-h(Y; �) by �f (�) = f � f�1,for every
h2 �*-h(X; �).Where f is a given map. We have to show that �f is a bijective
homomorphism. Bijection of �f is clear. Further, for all �1, �22�*-h(X; �),
�f (�1 �2) = f (�1 �2) f

�1=(f �1 f�1) (f �2 f�1) = �f (�1) �f (�2). Therefore,
�f is a homomorphism and so it is an isomorphism induced by f.
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Converse of this theorem need not be true as seen from the following example.
That is,there exists a map f :(X; �)�(Y; �) which induces an isomorphism �f
:�*-h(X; �)��*-h(Y; �), but not �*-homeomorphism.

Example 5.37. As in example 5.17(ii),f is not a �*-homeomorphism. But the
induced homeomorphism �f :�*-h(X; �)��*-h(Y; �) is an isomorphism. Since
�f (�c) = f �c f

�1= �a and �f (Ix) = Iy, where �c:(X; �)�(X; �) and �a: (Y; �)�
(Y; �) are de�ned by �c(a) = b,�c(b) = a,�c(c) = c and �a(a) = c,�a(b) = b,�a(c)
= a. Then we have �*-h(X; �) = {�c, Ix} and �*-h(Y; �) = { �a, Iy}, where Ix:
(X; �)�(X; �) and Iy:(Y; �)�(Y; �) are identity maps.

De�nition 5.38. Let �f :�*-h(X; �)��*-h(Y; �) be a function de�ned by �f (�)
= f � f�1,for every �2 �*-h(X; �). Let �f be a homomorphism. Let K = { �/
�2�*-h(X; �) , �f (�) = Iy}, where Iyis an identity element of �*-h(Y; �). Then
K is called the kernel of �f and is denoted by ker�f .

Theorem 5.39. Let �f be a homomorphism. Then �f is one-one if and only
if ker�f = {Ix}.

Proof. suppose �f is one-one. Then clearly ker�f = {Ix}.Reverse part is, sup-
pose ker�f = {Ix},�f (�1) = �f (�2) implies f �1 f�1 = f �2 f�1implies (f �1
f�1) ( f �2 f�1)�1= Iy, hence �1�

�1
2 2ker�f={Ix} and so �1= �2. Therefore �f

is one-one.

Theorem 5.40. Let �f :�*-h(X; �)��*-h(Y; �) be a homomorphism. Then
ker�f is a normal subgroup of �*-h(X; �).

Proof. Since �f (Ix) = Iy, Ix2ker�f and hence ker�f 6=�. Now let �1, �22 ker�f
,then �f (�1) = �f (�2) = Iy. Therfore �f (�1�2

�1) = �f (�1) �f (�
�1
2 ) = Iy. Thus

�1�2
�12ker�f and hence ker�f is a subgroup of �*-h(X; �). Now let �12ker�f

and g 2�*-h(X; �), then �f (g �1 g�1) = Iyand so g �1 g�12ker�f , therefore
ker�f is a normal subgroup of �*-h(X; �).

Theorem 5.41. Let �f :�*-h(X; �)��*-h(Y; �) be an epimorphism. Let K be
the kernel of Kf . Then �*-h(X; �) / K �=�*-h(Y; �).[Fundamental theorem of
homomorphism]

Proof. De�ne �: �*-h(X; �) / K � �*-h(Y; �) by �(Ka)=�f (a). Clearly �is a
well de�ned bijection.Now �(KaKb)=�(Kab)=�f (ab)=�f (a) �f (b) =�(Ka)�(Kb),
therefore � is a homomorphism. Thus �f induces an isomorphism � from �*-
h(X; �) / K onto �*-h(Y; �). Hence �*-h(X; �) / K �= �*-h(Y; �).
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