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ON qI-OPEN SETS IN IDEAL BITOPOLOGICAL
SPACES

S. JAFARI AND N. RAJESH

Abstract. In this paper, we introduce and study the concept of
qI-open set. Based on this new concept, we define new classes of
functions, namely qI-continuous functions, qI-open functions and qI-
closed functions, for which we prove characterization theorems.

1. Introduction and Preliminaries

A bitopological space (X, τ1, τ2) is a nonempty set X equipped with
two topologies τ1 and τ2 [5]. In a bitopological space (X, τ1, τ2), a set
A ⊂ X is said to be quasi-open [7] if A = U ∪ V for some U ∈ τ1 and
V ∈ τ2. Clearly, every τ1-open set as well as τ2-open set is quasi-open,
but not conversely. Any union of quasi-open sets is quasi-open. A set
is said to be quasi-closed [7] if its complement is quasi-open. Every τ1-
closed set as well as τ2-closed set is quasi-closed, but not conversely.
Any intersection of quasi-closed sets is quasi-closed [7]. The quasi-
closure [7] of a set A, denoted by qCl(A), is the intersection of all
quasi-closed sets containing A. In fact, a set A is quasi-closed if and
only if A = qCl(A). The concept of ideal in topological spaces has
been introduced and studied by Kuratowski [4] and Vaidyanathasamy
[8]. An ideal I on a topological space (X, τ) is a nonempty collection
of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I
and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I.
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Given a topological space (X, τ) with an ideal I on X and if P(X)
is the set of all subsets of X, a set operator (.)∗: P(X)→ P(X), called
the local function [8] of A with respect to τ and I, is defined as follows:
for A ⊂ X, A∗(τ, I) = {x ∈ X|U ∩A /∈ I for every U ∈ τ(x)}, where
τ(x) = {U ∈ τ |x ∈ U}. In this paper, we introduce and study the con-
cept of qI-open set. Based on this new concept, we define new classes
of functions, namely qI-continuous functions, qI-open functions and
qI-closed functions, for which we prove characterization theorems.

2. Quasi-local functions

Definition 2.1. Given a bitopological space (X, τ1, τ2) with an ideal I
on X, the quasi-local function of A with respect to τ1, τ2 and I, denoted
by A∗q(τ1, τ2, I) is defined as follows A∗q(τ1, τ2, I) = {x ∈ X : A∩U /∈ I
for every quasi-open set containing x}. When there is no ambiguity,
we will write A∗q for A∗q(τ1, τ2, I).

Remark 2.2. Let (X, τ1, τ2, I) be an ideal bitopological space and A
a subset of X. Then we have the following:

(1) A∗q ⊂ A∗(τ1, I) and A∗q ⊂ A∗(τ2, I) for every subset A of X.
(2) A∗q(τ1, τ2, {∅}) = qCl(A).
(3) A∗q(τ1, τ2,P(X)) = ∅.
(4) If A ∈ I, then A∗q = ∅.
(5) Neither A ⊂ A∗q nor A∗q ⊂ A.

Theorem 2.3. Let (X, τ1, τ2, I) be an ideal bitopological space and A,
B subsets of X. Then we have the following:

(1) If A ⊂ B, then A∗q ⊂ B∗q .
(2) A∗q = qCl(A∗q) ⊂ qCl(A) and A∗q is a quasi-closed set in

(X, τ1, τ2).
(3) (A∗q)

∗
q ⊂ A∗q.

(4) (A ∪B)∗q = A∗q∪ B∗q .
(5) A∗q\ B∗q = (A\B)∗q\B∗q ⊂ (A\B)∗q
(6) If C ∈ I, then (A\C)∗q ⊂ A∗q = (A ∪ C)∗q.

Proof. (1). Suppose that A ⊂ B and x /∈ B∗q . Then there exists a
quasi-open set U containing x such that U ∩ B ∈ I. Since A ⊂ B,
U ∩ A ∈ I and x /∈ A∗q. This shows that A∗q ⊂ B∗q .
(2). We have A∗q ⊂ qCl(A∗q) in general. Let x ∈ qCl(A∗q). Then
A∗q ∩ U 6= ∅ for every quasi-open set U containing x. Therefore, there
exists y ∈ A∗q ∩ U and quasi-open set U containing y. Since y ∈ A∗q,
U ∩ A /∈ I and hence x ∈ A∗q. Therefore, we have qCl(A∗q) ⊂ A∗q.
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Again, let x ∈ qCl(A∗q) = A∗q, then U ∩ A /∈ I for every quasi-open
set U containing x. This implies U ∩ A 6= ∅ for every quasi-open set
U containing x. Therefore, x ∈ qCl(A). This proves A∗q = qCl(A∗q) ⊂
qCl(A).
(3). Let x ∈ (A∗q)

∗
q. Then for every quasi-open set U containing x,

U ∩A∗q /∈ I and hence U ∩A∗q 6= ∅. Let y ∈ U ∩A∗q. Then there exists
a quasi-open set U containing y and y ∈ A∗q. Hence we have U ∩A /∈ I
and x ∈ A∗q. This shows that (A∗q)

∗
q ⊂ A∗q.

(4). By (1), we have A∗q∪ B∗q ⊂ (A ∪ B)∗q. For the reverse inclusion,
let x ∈ (A ∪ B)∗q. Then for every quasi-open set U containing x,
(U ∩ A) ∪ (U ∩ B) = U ∩ (A ∪ B) /∈ I. Therefore, U ∩ A /∈ I or
U ∩B /∈ I. This implies that x ∈ A∗q or x ∈ B∗q . Hence x ∈ A∗q∪ B∗q .
(5). We have A∗q = (A\B)∗q ∪ (B ∩A)∗q; thus A∗q\B∗q = A∗q ∩ (X\B∗q ) =
(A\B)∗q ∪ (B ∩ A)∗q ∩ (X\B∗q ) = ((A\B)∗q ∩ (X\B∗q )) ∪ ((B ∩ A)∗q ∩
(X\B∗q )) = ((A\B)∗q\B∗q ) ∪ ∅ ⊂ (A\B)∗q.
(6). Since A\C ⊂ A, by (1), (A\C)∗q ⊂ A∗q. By (4) and Remark
2.2 (4), (A ∪ C)∗q = A∗q ∪ C∗q = A∗q ∪ ∅ = A∗q. Therefore, we obtain
(A\C)∗q ⊂ A∗q. Therefore, (A\C)∗q ⊂ A∗q = (A ∪ C)∗q. �

Remark 2.4. Let τ = τ1 = τ2. Then by Theorem 2.3 we obtain the
results for a topological space (X, τ, I) established in Theorem 2.3 of
[3].

Theorem 2.5. Let (X, τ1, τ2) be a bitopological space with ideals I1

and I2 on X and A a subset of X. Then we have the following:

(1) If I1 ⊂ I2, then A∗q(I2) ⊂ A∗q(I1).
(2) A∗q(I1 ∩ I2) = A∗q(I1) ∪ A∗q(I2).

Proof. (1). Let I1 ⊂ I2 and x ∈ A∗q(I2). Then A ∩ U /∈ I2 for every
quasi-open set U containing x. By hypothesis, A ∩ U /∈ I1; hence
x ∈ A∗q(I1). Therefore, we have A∗q(I2) ⊂ A∗q(I1).
(2). Let x ∈ A∗q(I1 ∩I2). Then, for every quasi-open set U containing
x, A∩U /∈ (I1∩I2); hence A∩U /∈ I1 or A∩U /∈ I2. This shows that
x ∈ A∗q(I1) or x ∈ A∗q(I2). Therefore, we have x ∈ A∗q(I1) ∪ A∗q(I2);
hence A∗q(I1 ∩ I2) ⊂ A∗q(I1) ∪ A∗q(I2). By Theorem 2.3 (1), we have
A∗q(I1)∪A∗q(I2) ⊂ A∗q(I1∩I2). Thus, A∗q(I1∩I2) = A∗q(I1)∪A∗q(I2). �

Definition 2.6. The quasi-∗-closure of A ⊂ X, denoted by qCl∗(A),
is defined by qCl∗(A) = A ∪ A∗q.

Proposition 2.7. The set operator qCl∗ satisfies the following:

(1) A ⊂ qCl∗(A).
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(2) qCl∗(∅) = ∅ and qCl∗(X) = X.
(3) If A ⊂ B, then qCl∗(A) ⊂ qCl∗(B).
(4) qCl∗(A) ∪ qCl∗(B) ⊂ qCl∗(A ∪B).

Proof. The proof follows from the Definition 2.6. �

Remark 2.8. If I = {∅}, then qCl∗(A) = qCl(A) for A ⊂ X.

Definition 2.9. A subset A of an ideal bitopological space (X, τ1, τ2, I)
is said to be qI-open if A ⊂ q Int(A∗q).The complement of a qI-open
set is called a qI-closed set. The family of all qI-open (resp. qI-
closed) sets of (X, τ1, τ2, I) is denoted by QIO(X) (resp. QIC(X)).
The family of all qI-open sets of (X, τ1, τ2, I) containing the point x
is denoted by QIO(X, x).

Definition 2.10. A subset A of an ideal bitopological space
(X, τ1, τ2, I) is said to be:

(1) (1, 2)-preopen if A ⊂ q Int(qCl(A)).
(2) (1, 2)-semiclosed if q Int(qCl(A)) ⊂ A.

Proposition 2.11. Every qI-open set is (1, 2)-preopen.

Proof. Let A ∈ QIO(X). Then A ⊂ q Int(A∗q). By Theorem 2.3 (2),
A ⊂ q Int(qCl(A)). This shows that A is an (1, 2)-preopen set. �

The following example shows that the converse of Proposition 2.11
is not true in general.

Example 2.12. Let X = {a, b, c}, τ1 = {∅, {c}, X}, τ2 = {∅, {a, b},
X} and I = {∅, {a}}. Then the set {d} is (1, 2)-preopen but not
qI-open.

Remark 2.13. For an ideal bitopological space (X, τ1, τ2, I), we have
the following:

(1) X needs not be a qI-open set.
(2) If I = P(X), then only the empty set is qI-open.
(3) qI-openness and quasi-openness are independent concepts.
(4) If I = {∅}, qI-openness and quasi-openness are equivalent.

Proposition 2.14. If A is qI-open, then A∗q = (q Int(A∗q))
∗
q.

Proof. Since A is qI-open, A ⊂ q Int(A∗q). Then A∗q ⊂ (q Int(A∗q))
∗
q.

Also we have q Int(A∗q) ⊂ A∗q, (q Int(A∗q))
∗ ⊂ (A∗q)

∗
q ⊂ A∗q. Hence we

have, A∗q = (q Int(A∗q))
∗
q. �

Proposition 2.15. Any union of qI-open sets is qI-open.
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Proof. Let {Uα : α ∈ ∆} be a family of qI-open sets of an ideal
bitopological space (X, τ1, τ2, I). Then Uα ⊂ q Int((Uα)∗q), for ev-
ery α ∈ ∆. Thus, ∪

α∈∆
Uα ⊂ ∪

α∈∆
(q Int((Uα)∗q))) ⊂ q Int( ∪

α∈∆
(Uα)∗q) ⊂

q Int( ∪
α∈∆

(Uα)∗q). �

Proposition 2.16. If A is qI-open and (1, 2)-semiclosed, then A =
q Int(A∗q).

Proof. Let A be qI-open. Then A ⊂ q Int(A∗q). Since A is (1, 2)-
semiclosed, q Int(A∗q) ⊂ q Int(qCl(A)) ⊂ A. Thus q Int(A∗q) ⊂ A.
Hence we have, A = q Int(A∗q). �

Definition 2.17. Let (X, τ1, τ2, I) be an ideal bitopological space, S a
subset of X and x a point of X. Then

(i) x is called a qI-interior point of S if there exists V ∈ QIO(X)
such that x ∈ V ⊂ S.

ii) the set of all qI-interior points of S is called the qI-interior of
S and is denoted by qI Int(S).

Theorem 2.18. Let A and B be subsets of (X, τ1, τ2, I). Then the
following properties hold:

(1) qI Int(A) = ∪{T : T ⊂ A and A ∈ QIO(X)}.
(2) qI Int(A) is the largest qI-open subset of X contained in A.
(3) A is qI-open if and only if A = qI Int(A).
(4) qI Int(qI Int(A)) = qI Int(A).
(5) If A ⊂ B, then qI Int(A) ⊂ qI Int(B).
(6) qI Int(A) ∪ qI Int(B) ⊂ qI Int(A ∪B).
(7) qI Int(A ∩B) ⊂ qI Int(A) ∩qI Int(B).

Proof. (1). Let x ∈ ∪{T : T ⊂ A and A ∈ QIO(X)}. Then, there
exists T ∈ QIO(X, x) such that x ∈ T ⊂ A and hence x ∈ qI Int(A).
This shows that ∪{T : T ⊂ A and A ∈ QIO(X)} ⊂ qI Int(A). For the
reverse inclusion, let x ∈ qI Int(A). Then there exists T ∈ QIO(X, x)
such that x ∈ T ⊂ A. We obtain x ∈ ∪{T : T ⊂ A and A ∈
QIO(X)}. This shows that qI Int(A) ⊂ ∪{T : T ⊂ A and A ∈
QIO(X)}. Therefore, we obtain qI Int(A) = ∪{T : T ⊂ A and A ∈
QIO(X)}.
The proof of (2)-(5) are obvious.
(6). Clearly, qI Int(A) ⊂ qI Int(A∪B) and qI Int(B) ⊂ qI Int(A∪B).
Then we obtain qI Int(A) ∪ qI Int(B) ⊂ qI Int(A ∪B).
(7). Since A ∩ B ⊂ A and A ∩ B ⊂ B, by (5), we have qI Int(A ∩ B)
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⊂ qI Int(A) and qI Int(A ∩ B) ⊂ qI Int(B). Then qI Int(A ∩ B) ⊂
qI Int(A) ∩ qI Int(B). �

Definition 2.19. Let (X, τ1, τ2, I) be an ideal bitopological space, S a
subset of X and x be a point of X. Then

(1) x is called a qI-cluster point of S if V ∩ S 6= ∅ for every
V ∈ QIO(X, x).

(2) the set of all qI-cluster points of S is called the qI-closure of
S and is denoted by qI Cl(S).

Theorem 2.20. Let A and B be subsets of (X, τ1, τ2, I). Then the
following properties hold:

(1) qI Cl(A) = ∩{F : A ⊂ F and F ∈ QIC(X)}.
(2) qI Cl(A) is the smallest qI-closed subset of X containing A.
(3) A is qI-closed if and only if A = qI Cl(A).
(4) qI Cl(qI Cl(A) = qI Cl(A).
(5) If A ⊂ B, then qI Cl(A) ⊂ qI Cl(B).
(6) qI Cl(A ∪B) = qI Cl(A) ∪ qI Cl(B).
(7) qI Cl(A ∩B) ⊂ qI Cl(A) ∩ qI Cl(B).

Proof. (1). Suppose that x /∈ qI Cl(A). Then there exists F ∈
QIO(X) such that F∩A = ∅. Since X\F is qI-closed set containing A
and x /∈ X\F , we obtain x /∈ ∩{F : A ⊂ F and F ∈ QIC(X)}. Then
there exists F ∈ QIC(X) such that A ⊂ F and x /∈ F . Since X\V
is qI-closed set containing x, we obtain (X\F ) ∩ A = ∅. This shows
that x /∈ qI Cl(A). Therefore, we obtain qI Cl(A) = ∩{F : A ⊂ F
and F ∈ QIC(X).
Proofs of the rest of statements are obvious. �

Theorem 2.21. Let (X, τ1, τ2, I) be an ideal bitopological space and
A ⊂ X. Then the following properties hold:

(1) qI Cl(X\A) = X\qI Int(A);
(2) qI Int(X\A) = X\qI Cl(A).

Proof. (1). Since W ⊂ A if and only if X\A ⊂ X\W , W is qI-open
if and only if qI-closed. Thus, qI Cl(A) = ∩{X\W : W ∈ QIO(X)
and W ⊂ A} = X\ ∪ {W ∈ QIO(X) and W ⊂ A} = X\qI Int(A).
(2). Follows from (1). �

Definition 2.22. A subset Bx of an ideal bitopological space
(X, τ1, τ2, I) is said to be a qI-neighbourhood of a point x ∈ X if
there exists a qI-open set U such that x ∈ U ⊂ Bx.
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Theorem 2.23. A subset of an ideal bitopological space (X, τ1, τ2, I)
is qI-open if and only if it is a qI-neighbourhood of each of its points.

Proof. Let G be a qI-open set of X. Then by definition, it is clear
that G is a qI-neighbourhood of each of its points, since for every
x ∈ G, x ∈ G ⊂ G and G is qI-open. Conversely, suppose G is a qI-
neighbourhood of each of its points. Then for each x ∈ G, there exists
Sx ∈ QIO(X) such that Sx ⊂ G. Then G =

⋃
{Sx : x ∈ G}. Since

each Sx is qI-open and arbitrary union of qI-open sets is qI-open, G
is qI-open in (X, τ1, τ2, I). �

3. qI-continuous functions

Definition 3.1. A function f : (X, τ1, τ2, I) → (Y, σ1, σ2) is called
qI-continuous if f−1(V ) is qI-open in X for every quasi-open set V
of Y or eqivalently, f−1(V ) is qI-closed in X for every quasi-closed
set V of Y .

Definition 3.2. A function f : (X, τ1, τ2)→ (Y, σ1, σ2) is called (1, 2)-
I-continuous if f−1(V ) is (1, 2)-preopen in X for every quasi-open set
V of Y or eqivalently, f−1(V ) is (1, 2)-preclosed in X for every quasi-
closed set V of Y .

It is clear that every qI-continuous function is (1, 2)-precontinuous.
But the converse is not true in general.

Example 3.3. Let (X, τ1, τ2, I) be as in Example 2.12, σ1 = {∅,
{d}, X} and σ2 = {∅, {a, d}, X}. Then the identity function
f : (X, τ1, τ2, I) → (Y, σ1, σ2) is (1, 2)-precontinuous but not qI-
continuous.

Theorem 3.4. For a function f : (X, τ1, τ2, I) → (Y, σ1, σ2), the
following statement are equivalent:

(1) f is qI-continuous.
(2) For each x ∈ X and every quasi-open set V containing f(x),

there exists W ∈ QIO(X, x) such that f(W ) ⊂ V .
(3) For each x ∈ X and each quasi-open set V containing f(x),

f−1(V )∗q is a qI-neighborhood of x.

Proof. (1)⇒ (2) Let x ∈ X and V be a quasi-open set of Y containing
f(x). Since f is qI-continuous, f−1(V ) is a qI-open set. Putting
W = f−1(V ), we have f(W ) ⊂ V.
(2)⇒ (1) Let A be a quasi-open set in Y . If f−1(A) = ∅, then f−1(A) is
clearly a qI-open set. Assume that f−1(A) 6= ∅. Let x ∈ f−1(A). Then
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f(x) ∈ A, which implies that there exists a qI-open W containing x
such that f(W ) ⊂ A. Thus W ⊂ f−1(A). Since W is a qI-open, x ∈
W ⊂ q Int(W ∗

q ) ⊂ q Int((f−1(A)∗q)) and so f−1(A) ⊂ q Int(f−1(A)∗q).

Hence f−1(A) is a qI-open set and so f is qI-continuous.
(2) ⇒ (3) Let x ∈ X and V be a quasi-open set of Y containing f(x).
Then there exist a qI-open set W containing x such that f(W ) ⊂ V.
It follows that W ⊂ f−1(f(W )) ⊂ f−1(V ). Since W is a qI-open set,
x ∈ W ⊂ q Int(W ∗) ⊂ q Int(f−1(V )∗q) ⊂ f−1(V )∗. Hence f−1(V )∗q is a
qI-neighborhood of x.
(3) ⇒ (1) Obvious. �

Remark 3.5. Let τ = τ1 = τ2 and σ = σ1 = σ2. Then by Theorem 3.4
we obtain the results for a function f : (X, τ, I) → (Y, σ) established
in Theorem 3.1 of [1].

Definition 3.6. A function f : (X, τ1, τ2) → (Y, σ1, σ2, I) is said to
be:

(1) qI-open if f(U) is a qI-open set of Y for every quasi-open set
U of X.

(2) qI-closed if f(U) is a qI-closed set of Y for every quasi-closed
set U of X.

Theorem 3.7. For a function f : (X, τ1, τ2) → (Y, σ1, σ2, I), the
following statements are equivalent:

(1) f is qI-open;
(2) f(q Int(U)) ⊂ qI Int(f(U)) for each subset U of X;
(3) q Int(f−1(V )) ⊂ f−1(qI Int(V )) for each subset V of Y .

Proof. (1) ⇒ (2): Let U be any subset of X. Then q Int(U)
is a quasi-open set of X. Then f(q Int(U)) is a qI-open set of
Y . Since f(q Int(U)) ⊂ f(U), f(q Int(U)) = qI Int(f(q Int(U))) ⊂
qI Int(f(U)).
(2) ⇒ (3): Let V be any subset of Y . Then f−1(V ) is a subset of
X. Hence f(q Int(f−1(V ))) ⊂ qI Int(f(f−1(V ))) ⊂ qI Int(V )). Then
q Int(f−1(V )) ⊂ f−1(f(q Int(f−1(V )))) ⊂ f−1(I Int(V )).
(3) ⇒ (1): Let V be any quasi-open set of X. Then
q Int(V ) = V and f(U) is a subset of Y . Now, V =
q Int(V ) ⊂ q Int(f−1(f(V ))) ⊂ f−1(qI Int(f(V ))). Then f(V ) ⊂
f(f−1(qI Int(f(V )))) ⊂ qI Int(f(V )) and qI Int(f(V )) ⊂ f(V ).
Hence f(V ) is a qI-open set of Y ; hence f is qI-open. �
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Theorem 3.8. Let f : (X, τ1, τ2) → (Y, σ1, σ2, I) be a qI-open func-
tion. If V is a subset of Y and U is a quasi-closed subset of X con-
taining f−1(V ), then there exists a qI-closed set F of Y containing V
such that f−1(F ) ⊂ U .

Proof. Let V be any subset of Y and U a quasi-closed subset of X
containing f−1(V ), and let F = Y \(f(X\V )). Then f(X\V ) ⊂
f(f−1(X\V )) ⊂ X\V and X\U is a quasi-open set of X. Since f
is qI-open, f(X\U) is a qI-open set of Y . Hence F is a qI-closed set
of Y and f−1(F ) = f−1(Y \(f(X\U)) ⊂ U . �

Remark 3.9. Let τ = τ1 = τ2 and σ = σ1 = σ2. Then by Theorem 3.8
we obtain the results for a function f : (X, τ) → (Y, σ, I) established
in Theorem 4.2 of [1].

Theorem 3.10. Let f : (X, τ1, τ2) → (Y, σ1, σ2, I) be a function.
Then f is a qI-closed function if and only if for each subset V of
X, qI Cl(f(V )) ⊂ f(qCl(V )).

Proof. Let f be an qI-closed function and V any subset of X. Then
f(V ) ⊂ f(qCl(V )) and f(qCl(V )) is a qI-closed set of Y . We have
qI Cl(f(V )) ⊂ qI Cl(f(qCl(V ))) = f(qCl(V )). Conversely, let V be
a quasi-closed set of X. Then f(V ) ⊂ qI Cl(f(V )) ⊂ f(qCl(V )) =
f(V ); hence f(V ) is a qI-closed subset of Y . Therefore, f is a qI-
closed function. �

Theorem 3.11. Let f : (X, τ1, τ2) → (Y, σ1, σ2, I) be a function.
Then f is a qI-closed function if and only if for each subset V of
Y , f−1(qI Cl(V )) ⊂ qCl(f−1(V )).

Proof. Let V be any subset of Y . Then by Theorem 3.10, qI Cl(V ) ⊂
f(qCl(f−1(V ))). Since f is bijection,
f−1(qI Cl(V )) = f−1(qI Cl(f(f−1(V )))) ⊂ f−1(f(qCl(f−1(V )))) =
qCl(f−1(V )).
Conversely, let U be any subset of X. Since f is bijec-
tion, qI Cl(f(U)) = f(f−1(qI Cl(f(U))) ⊂ f(qCl(f−1(f(U)))) =
f(qCl(U)). Therefore, by Theorem 3.10, f is an qI-closed func-
tion. �

Theorem 3.12. Let f : (X, τ1, τ2) → (Y, σ1, σ2, I) be a qI-closed
function. If V is a subset of Y and U is a quasi-open subset of X
containing f−1(V ), then there exists a qI-open set F of Y containing
V such that f−1(F ) ⊂ U .

Proof. The proof is similar to Theorem 3.8. �
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Remark 3.13. Let τ = τ1 = τ2 and σ = σ1 = σ2. Then by Theo-
rem 3.12 we obtain the results for a function f : (X, τ) → (Y, σ, I)
established in Theorem 4.2 of [1].
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