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SEMIOPEN SETS IN IDEAL MINIMAL SPACES

S. JAFARI, N. RAJESH AND R. SARANYA

Abstract. In this paper, we present and study the concepts of
semiopen sets and their related notions in ideal minimal spaces.

1. Introduction

In 2001, Popa and Noiri [8] introduced the notion of minimal struc-
ture which is a generalization of a topology on a given nonempty set.
Among others, they introduced the notion of m-continuous function
as a function defined between a minimal structure and a topological
space. They showed that the m-continuous functions have properties
similar to those of continuous functions between topological spaces.
Let X be a topological space and A ⊂ X. The closure of A and the
interior of A are denoted by Cl(A) and Int(A), respectively. A subfam-
ily m of the power set P (X) of a nonempty set X is called a minimal
structure [8] on X if ∅ and X belong to m. By (X,m), we denote
a nonempty set X with a minimal structure m on X. The members
of the minimal structure m are called m-open sets [8], and the pair
(X,m) is called an m-space. The complement of m-open set is said to
be m-closed [8].
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The concept of ideals in topological spaces has been introduced and
studied by Kuratowski [5] and Vaidyanathasamy [10]. An ideal I on
a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and (ii) A ∈
I and B ∈ I implies A ∪ B ∈ I. Given a minimal space (X,m)
with an ideal I on X and if P(X) is the set of all subsets of X, a
set operator (.)∗m: P(X) → P(X), called the local minimal function
[9] of A with respect to m and I, is defined as follows: for A ⊂ X,
A∗m(m, I) = {x ∈ X|U ∩ A /∈ I for every U ∈ m(x)}, where m(x)
= {U ∈ m|x ∈ U}. The set operator mCl∗(.) is called a minimal
∗-closure and is defined as mCl∗(A) = A ∪ A∗m for A ⊂ X. The
minimal structure m∗(m, I) called the ∗-minimal, is finer than m and
m Int∗(A) denotes the interior of A in m∗(m, I).

2. Preliminaries

Definition 2.1. [8] Given A ⊂ X, the m-interior of A and the m-
closure of A are defined by m Int(A)= ∪{W/W ∈ m,W ⊆ A} and
mCl(A) = ∩{F/A ⊆ F,X \ F ∈ m}, respectively.

Theorem 2.2. Let (X,m) be an m-space, and A, B subsets of X.
Then x ∈ mCl(A) if and only if U∩A 66= ∅ for every U ∈ m containing
x. And satisfying the following properties:

(i) mCl(mCl(A)) = mCl(A).
(ii) m Int(m Int(A)) = m Int(A).

(iii) m Int(X \ A) = X \mCl(A).
(iv) mCl(X \ A) = X \m Int(A).
(v) If A ⊂ B then mCl(A) ⊂ mCl(B).

(vi) mCl(A ∪B) ⊂ mCl(A) ∪mCl(B).
(vii) A ⊂ mCl(A) and m Int(A) ⊂ A.

Definition 2.3. A subset A of a minimal space (X,m) is said to be
m-semiopen [6] if A ⊂ mCl(m Int(A)).

Definition 2.4. A function f : (X,m) → (Y, τ) is said to be m-
semicontinuous [6] if the inverse image of every open set of Y is m-
semiopen in (X,m).

Definition 2.5. A subset S of an ideal topological space (X, τ, I) is
said to be semi-I-open [4] if S ⊂ Int(Cl∗(S)).

Definition 2.6. A subset A of an ideal minimal space (X,m, I) is
said to be

(i) m-α-I-open [3] if A ⊂ m Int(mCl∗(m Int(A))).
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(ii) m-pre-I-open [2] if A ⊂ m Int(mCl∗(A)).
(iii) m-δ-I-open [1] if m Int(mCl∗(A)) ⊂ mCl∗(m Int(A)).
(iv) strongly m-β-I-open [1] if A ⊂ mCl∗(m Int(mCl∗(A))).

Definition 2.7. A function f : (X,m)→ (Y, τ) is said to be:

(i) m-pre-I-continuous [2] if the inverse image of every open set
of Y is m-pre-I-open in X.

(ii) m-α-I-continuous [3] if the inverse image of every open set of
Y is m-α-I-open in X.

(iii) m-δ-I-continuous [3] if the inverse image of every open set of
Y is m-δ-I-open in X.

3. m-semi-I-open sets

Definition 3.1. A subset A of an ideal minimal space (X,m, I) is
said to be m-semi-I-open if and only if A ⊂ mCl∗(m Int(A)).
The family of all m-semi-I-open sets of (X,m, I) is denoted by
SIO(X,m). Moreover, the family of all m-semi-I-open sets of
(X,m, I) containing x is denoted by msIO(X, x).

Remark 3.2. Let I and J be two ideals on X. If I ⊂ J , then
SIO(X,m) ⊂ SJO(X,m).

Proposition 3.3. (i) Every m-α-I-open set is m-semi-I-open.
(ii) Every m-semi-I-open set is m-semiopen.

(iii) Every m-semi-I-open set is m-δ-I-open.

Proof. The proof follows from the definitions. �

The following examples show that the converses of Proposition 3.3 is
not true in general.

Example 3.4. Let X = {a, b, c} m = {∅, {a}, {b}, X} and I =
{∅, {a}}. Then the set {b, c} is m-semi-I-open but it is not m-α-
I-open; the set {a, c} is m-semiopen but it is not m-semi-I-open and
the set {c} is m-δ-I-open but not m-semi-I-open.

Example 3.5. Let X = {a, b, c} m = {∅, {a}, X} and I = {∅, {a}}.
Then the set {b} is m-δ-I-open but it is not m-semi-I-open.

Remark 3.6. It is clear that m-semi-I-openness and m-pre-I-
openness are independent notions as it is shown in the following ex-
ample.
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Example 3.7. Let X = {a, b, c} m = {∅, {a, b}, {a, c}, X} and I =
{∅, {a}}. Then the set {b, c} is m-pre-I-open but it is not m-semi-I-
open. Let (X,m) be as in Example 3.4, the set {b, c} is m-semi-I-open
but it is not m-pre-I-open

Proposition 3.8. Let (X,m, {∅}) be an ideal minimal space and A ⊂
X. The subset A is m-semi-I-open if and only if A is m-semiopen.

Proof. The proof follows from the fact that if I = {∅}, then A∗m =
mCl(A) [9]. �

Proposition 3.9. A subset A of an ideal minimal space (X,m, I) is
m-semi-I-open if and only if mCl∗(A) = mCl∗(m Int(A)).

Proof. Let A ∈ SIO(X,m). Then we have A ⊂ mCl∗(m Int(A)).
Then mCl∗(A) ⊂ mCl∗(m Int(A)) and hence mCl∗(A) =
mCl∗(m Int(A)). The converse is obvious. �

Remark 3.10. The intersection of two m-semi-I-open sets need not
be m-semi-I-open as it can be seen from the following example.

Example 3.11. Let X = {a, b, c, d}, m = {∅, {a, b}, {a, c}, X} and
I = {∅, {a}}. Then the sets {a, b} and {a, c} are m-semi-I-open sets
of (X,m, I) but their intersection {a} is not an m-semi-I-open set of
(X,m, I).

However, we have the following

Theorem 3.12. If {Aα}α∈Ω is a family of m-semi-I-open sets in
(X,m, I), then

⋃
α∈Ω

Aα is m-semi-I-open in (X,m, I).

Proof. Since {Aα : α ∈ Ω} ⊂ SIO(X,m), then
Aα ⊂ mCl∗(m Int(Aα)) for every α ∈ Ω. Thus,
∪
α∈Ω

Aα ⊂ ∪
α∈Ω

mCl∗(m Int(Aα)) ⊂ mCl∗( ∪
α∈Ω

m Int(Aα)) =

mCl∗(m Int( ∪
α∈Ω

Aα)). Therefore, we obtain ∪
α∈Ω

Aα ⊂
mCl∗(m Int( ∪

α∈Ω
Aα)). Hence any union of m-semi-I-open sets

is m-semi-I-open. �

Theorem 3.13. Let (X,m, I) be an ideal minimal space. Then a
subset A of X is m-semi-I-open if and only if it is both m-δ-I-open
and strong m-β-I-open.

Proof. Let A be an m-semi-I-open set, then we have A ⊂
mCl∗(m Int(A)) ⊂ mCl∗(m Int(mCl∗(A))). This shows that A
is strong m-β-I-open. Moreover, m Int(mCl∗(A)) ⊂ mCl∗(A) ⊂
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mCl∗(m Int(A)). Therefore, A is m-δ-I-open. Conversely, let A be m-
δ-I-open and strong m-β-I-open set, then we have m Int(mCl∗(A)) ⊂
mCl∗(m Int(A)). Thus we obtain that mCl∗(m Int(mCl∗(A))) ⊂
mCl∗(m Int(A)). Since A is strong m-β-I-open, we have A ⊂
mCl∗(m Int(mCl∗(A))) ⊂ mCl∗(m Int(A)) and A ⊂ mCl∗(m Int(A)).
Hence A is an m-semi-I-open set. �

Definition 3.14. In an ideal minimal space (X,m, I), A ⊂ X is said
to be m-semi-I-closed if X\A is m-semi-I-open in X.

Theorem 3.15. A subset A is an m-semi-I-closed set in an ideal
minimal space (X,m, I) if and only if mCl(m Int∗(A)) ⊂ A.

Proof. Straightforward. �

Theorem 3.16. If A is an m-semi-I-closed set in an ideal minimal
space (X,m, I), then m Int(mCl∗(A)) ⊂ A.

Proof. Since A ∈ SIC(X,m), X\A ∈ SIO(X,m). Hence, X\A ⊂
mCl∗(m Int(X\A)) ⊂ mCl(m Int(X\A)) = X\(m Int(mCl(A))) ⊂
X\(m Int(mCl∗(A))). Therefore, we obtainm Int(mCl∗(A)) ⊂ A. �

Proposition 3.17. Let (X,m, I) be an ideal minimal space. If a
subset A of X is m-β-I-closed and m-δ-I-open, then it is m-semi-I-
closed.

Proof. The proof follows from the definitions. �

Proposition 3.18. A subset A of an ideal minimal space (X,m, I) is
m-semi-I-closed if and only if m Int(mCl∗(A)) = m Int(A).

Proof. Obvious. �

Theorem 3.19. An arbitrary intersection of m-semi-I-closed sets is
always m-semi-I-closed.

Proof. It follows from Theorems 3.12 and 3.16. �

Definition 3.20. Let (X,m, I) be an ideal minimal space, S a subset
of X and x be a point of X. Then

(i) x is called an m-semi-I-interior point of S if there exists V ∈
SIO(X,m) such that x ∈ V ⊂ S.

ii) the set of all m-semi-I-interior points of S is called m-semi-
I-interior of S and is denoted by msI Int(S).

Theorem 3.21. Let A and B be subsets of (X,m, I). Then the fol-
lowing properties hold:



38 S. JAFARI, N. RAJESH AND R. SARANYA

(i) msI Int(A) = ∪{T : T ⊂ A and A ∈ SIO(X,m)}.
(ii) msI Int(A) is the largest m-semi-I-open subset of X contained

in A.
(iii) A is m-semi-I-open if and only if A = msI Int(A).
(iv) msI Int(msI Int(A)) = msI Int(A).
(v) If A ⊂ B, then msI Int(A) ⊂ msI Int(B).

(vi) msI Int(A) ∪ msI Int(B) ⊂ msI Int(A ∪B).
(vii) msI Int(A ∩B) ⊂ msI Int(A) ∩ msI Int(B).

Proof. (i). Let x ∈ ∪{T : T ⊂ A and A ∈ SIO(X,m)}. Then,
there exists T ∈ mSIO(X, x) such that x ∈ T ⊂ A and hence
x ∈ msI Int(A). This shows that ∪{T : T ⊂ A and A ∈ SIO(X,m)}
⊂ msI Int(A). For the reverse inclusion, let x ∈ msI Int(A). Then
there exists T ∈ mSIO(X, x) such that x ∈ T ⊂ A. we obtain
x ∈ ∪{T : T ⊂ A and A ∈ mSIO(X)}. This shows thatmsI Int(A)⊂
∪{T : T ⊂ A and A ∈ SIO(X,m)}. Therefore, we obtain msI Int(A)
= ∪{T : T ⊂ A and A ∈ SIO(X,m)}.
The proof of (ii)-(v) are obvious.
(vi). Clearly, msI Int(A) ⊂ msI Int(A ∪ B) and msI Int(B) ⊂
msI Int(A ∪ B). Then we obtain msI Int(A) ∪ msI Int(B) ⊂
msI Int(A ∪B).
(vii). Since A ∩ B ⊂ A and A ∩ B ⊂ B, by (v), we have
msI Int(A ∩ B) ⊂ msI Int(A) and msI Int(A ∩ B) ⊂ msI Int(B).
Then msI Int(A ∩B) ⊂ msI Int(A) ∩ msI Int(B). �

Definition 3.22. Let (X,m, I) be an ideal minimal space, S a subset
of X and x be a point of X. Then

(i) x is called an m-semi-I-cluster point of S if V ∩ S 6= ∅ for
every V ∈ mSIO(X, x).

(ii) the set of all m-semi-I-cluster points of S is called m-semi-I-
closure of S and is denoted by msI Cl(S).

Theorem 3.23. Let A and B be subsets of (X,m, I). Then the fol-
lowing properties hold:

(i) msI Cl(A) = ∩{F : A ⊂ F and F ∈ SIC(X,m)}.
(ii) msI Cl(A) is the smallest m-semi-I-closed subset of X con-

taining A.
(iii) A is m-semi-I-closed if and only if A = msI Cl(A).
(iv) msI Cl(msI Cl(A)) = msI Cl(A).
(v) If A ⊂ B, then msI Cl(A) ⊂ msI Cl(B).

(vi) msI Cl(A ∪B) = msI Cl(A) ∪ msI Cl(B).
(vii) msI Cl(A ∩B) ⊂ msI Cl(A) ∩ msI Cl(B).
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Proof. (i). Suppose that x /∈ msI Cl(A). Then there exists V ∈
SIO(X,m) such that V ∩ A 6= ∅. Since X\V is m-semi-I-closed
set containing A and x /∈ X\V , we obtain x /∈ ∩{F : A ⊂ F and
F ∈ SIC(X,m)}. Then there exists F ∈ SIC(X,m) such that A ⊂ F
and x /∈ F . Since X\V is m-semi-I-closed set containing x, we obtain
(X\F )∩A = ∅. This shows that x /∈ msI Cl(A). Therefore, we obtain
msI Cl(A) = ∩{F : A ⊂ F and F ∈ SIC(X,m)}.
The other proofs are obvious. �

Theorem 3.24. Let (X,m, I) be an ideal minimal space and A ⊂ X.
A point x ∈ msI Cl(A) if and only if U ∩ A 6= ∅ for every U ∈
mSIO(X, x).

Proof. Suppose that x ∈ msI Cl(A). We shall show that U∩A 6= ∅ for
every U ∈ mSIO(X, x). Suppose that there exists U ∈ mSIO(X, x)
such that U ∩ A = ∅. Then A ⊂ X\U and X\U is m-semi-I-closed.
Since A ⊂ X\U , msI Cl(A) ⊂ msI Cl(X\U). Since x ∈ msI Cl(A),
we have x ∈ msI Cl(X\U). Since X\U is m-semi-I-closed, we have
x ∈ X\U ; hence x /∈ U , which is a contradicition that x ∈ U . There-
fore, U ∩ A 6= ∅. Conversely, suppose that U ∩ A 6= ∅ for every
U ∈ mSIO(X, x). We shall show that x ∈ msI Cl(A). Suppose
that x /∈ msI Cl(A). Then there exists U ∈ mSIO(X, x) such
that U ∩ A = ∅. This is a contradicition to U ∩ A 6= ∅; hence
x ∈ msI Cl(A). �

Theorem 3.25. Let (X,m, I) be an ideal minimal space and A ⊂ X.
Then the following propeties hold:

(i) msI Int(X\A) = X\msI Cl(A);
(i) msI Cl(X\A) = X\msI Int(A).

Proof. (i). Let x ∈ msI Cl(A). Since x /∈ msI Cl(A), there ex-
ists V ∈ msIO(X, x) such that V ∩ A 6= ∅; hence we obtain
x ∈ msI Int(X\A). This shows that X\msI Cl(A) ⊂ msI Int(X\A).
Let x ∈ msI Int(X\A). Since msI Int(X\A) ∩ A = ∅, we obtain
x /∈ msI Cl(A); hence x ∈ X\msI Cl(A). Therefore, we obtain
msI Int(X\A) = X\msI Cl(A).
(ii). Follows from (i). �

Definition 3.26. A subset Bx of an ideal minimal space (X,m, I) is
said to be an m-semi-I-neighbourhood of a point x ∈ X if there exists
an m-semi-I-open set U such that x ∈ U ⊂ Bx.
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Theorem 3.27. A subset of an ideal minimal space (X,m, I) is m-
semi-I-open if and only if it is an m-semi-I-neighbourhood of each of
its points.

Proof. Let G be an m-semi-I-open set of X. Then by definition, it is
clear that G is an m-semi-I-neighbourhood of each of its points, since
for every x ∈ G, x ∈ G ⊂ G and G is m-semi-I-open. Conversely,
suppose G is an m-semi-I-neighbourhood of each of its points. Then
for each x ∈ G, there exists Sx ∈ mSIO(X) such that Sx ⊂ G. Then
G =

⋃
{Sx : x ∈ G}. Since each Sx is m-semi-I-open, G is m-semi-I-

open in (X,m, I). �

4. Semi-I-continuous functions

Definition 4.1. A function f : (X,m, I) → (Y, τ) is said to be m-
semi-I-continuous if the inverse image of every open set of Y is m-
semi-I-open in X.

Proposition 4.2. (i) Every m-α-I-continuous function is m-
semi-I-continuous but not conversely.

(ii) Every m-semi-I-continuous function is m-semicontinuous but
not conversely.

(iii) Every m-semi-I-continuous function is m-δ-I-continuous but
not conversely.

(iv) m-semi-I-continuity and m-pre-I-continuity are independent.

Proof. The proof follows from Proposition 3.3, Examples 3.4 and 3.7.
�

Theorem 4.3. For a function f : (X,m, I) → (Y, τ), the following
statements are equivalent:

(i) f is m-semi-I-continuous;
(ii) For each point x in X and each open set F of Y such that

f(x) ∈ F , there is an m-semi-I-open set A in X such that
x ∈ A, f(A) ⊂ F ;

(iii) The inverse image of each closed set of Y is m-semi-I-closed
in X;

(iv) For each subset A of X, f(msI Cl(A)) ⊂ Cl(f(A));
(v) For each subset B of Y , msI Cl(f−1(B)) ⊂ f−1(Cl(B));

(vi) For each subset C of Y , f−1(Int(C)) ⊂ msI Int(f−1(C)).

Proof. (i)⇒(ii): Let x ∈ X and F be an open set of Y containing
f(x). By (i), f−1(F ) is m-semi-I-open in X. Let A = f−1(F ). Then
x ∈ A and f(A) ⊂ F .
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(ii)⇒(i): Let F be an open set in Y and let x ∈ f−1(F ). Then
f(x) ∈ F . By (ii), there is an m-semi-I-open set Ux in X such that
x ∈ Ux and f(Ux) ⊂ F . Then x ∈ Ux ⊂ f−1(F ). Hence f−1(F ) is
m-semi-I-open in X.
(i)⇔(iii): This follows due to the fact that for any subset B of Y ,
f−1(Y \B) = X\f−1(B).
(iii)⇒(iv): Let A be a subset of X. Since A ⊂ f−1(f(A)) we have A ⊂
f−1(Cl(f(A))). Since Cl(f(A)) is closed in Y , by (iii) f−1(Cl(f(A)))
is m-semi-I-closed in X. Then msI Cl(A) ⊂ f−1(Cl(f(A))). Then
f((msI Cl(A))) ⊂ Cl(f(A)).
(iv)⇒(iii): Let F be any closed subset of Y . Then f(msI Cl(f−1(F )))
⊂ Cl(f(f−1(F ))) = Cl(F ) = F . Therefore, msI Cl(f−1(F ))⊂ f−1(F ).
Consequently, f−1(F ) is m-semi-I-closed in X.
(iv)⇒(v): Let B be any subset of Y . Now, f(msI Cl(f−1(B)))
⊂ Cl(f(f−1(B))) ⊂ Cl(B). Consequently, msI Cl(f−1(B)) ⊂
f−1(Cl(B)).
(v)⇒(iv): Let B = f(A) where A is a subset of X. Then, msI Cl(A)
⊂ msI Cl(f−1(B)) ⊂ f−1(Cl(B)) = f−1(Cl(f(A))). This shows that
f(msI Cl(A)) ⊂ Cl(f(A)).
(i)⇒(vi): Let B be an open set in Y . Observe that f−1(Int(B)) is
m-semi-I-open in X and we have f−1(Int(B)) ⊂ msI Int(f−1 Int(B))
⊂ msI Int(f−1(B)).
(vi)⇒(i): Let B be an open set in Y . Then Int(B) = B and
f−1(B) ⊂ f−1(Int(B)) ⊂ msI Int(f−1(B)). Hence we have f−1(B)
= msI Int(f−1(B)). This shows that f−1(B) is m-semi-I-open in
X. �

Theorem 4.4. Let f : (X,m, I) → (Y, τ) be an m-semi-I-
continuous function. Then for each subset V of Y , f−1(Int(V )) ⊂
mCl∗(m Int(f−1(V ))).

Proof. Let V be any subset of Y . Then Int(V ) is open in Y
and so f−1(Int(V )) is m-semi-I-open in X. Hence f−1(Int(V )) ⊂
mCl∗(m Int(f−1(Int(V )))) ⊂ mCl∗(m Int(f−1(V ))). �

Corollary 4.5. Let f : (X,m, I)→ (Y, τ) be an m-semi-I-continuous
function. Then for each subset V of Y , m Int(mCl∗(f−1(V ))) ⊂
f−1(Cl(V )).

Theorem 4.6. Let f : (X,m, I) → (Y, τ) be a bijection. Then f
is m-semi-I-continuous if and only if Int(f(U)) ⊂ f(msI Int(U)) for
each subset U of X.
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Proof. Let U be any subset of X. Then by Theorem 4.3,
f−1(Int(f(U))) ⊂ msI Int(f−1(f(U))). Since f is a bijection,
Int(f(U)) = f(f−1(Int(f(U)))) ⊂ f(msI Int(U)). Conversely, let V
be any subset of Y . Then Int(f(f−1(V ))) ⊂ f(msI Int(f−1(V ))).
It follows from the bijectivity of f that Int(V ) = Int(f(f−1(V ))) ⊂
f(msI Int(f−1(V ))); hence f−1(Int(V ) ⊂ msI Int(f−1(V )). There-
fore, by Theorem 4.3, f is m-semi-I-continuous. �

Definition 4.7. The graph G(f) of a function f : (X,m, I)→ (Y, τ)
is said to be m-semi-I-closed in X × Y if for each (x, y) ∈ (X×Y ) \
G(f), there exist U ∈ mSIO(X, x) and an open set V of Y containing
y such that (U × V ) ∩ G(f) = ∅.

Lemma 4.8. The graph f : (X,m, I)→ (Y, τ) is m-semi-I-closed in
X × Y if and only if for each (x, y) ∈ (X×Y ) \ G(f), there exists U
∈ mSIO(X, x) and an open set V of Y containing y such that f(U)
∩ V = ∅.

Proof. The proof is an immediate consequence of Definition 4.7. �

Theorem 4.9. If f : (X,m, I) → (Y, τ) is an m-semi-I-continuous
function and (Y, τ) is T2, then G(f) is m-semi-I-closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x). Since Y is T2,
there exists an open set V of Y such that f(x) ∈ V and y /∈ V . Since f
is m-semi-I-continuous, there exists U ∈ mSIO(X, x) such that f(U)
⊂ V . Therefore, f(U) ∩V = ∅. Therefore, by Lemma 4.8, G(f) is
m-semi-I-closed. �

Definition 4.10. An ideal minimal space (X,m, I) is said to be an
m-semi-I-T2 space if for each pair of distinct points x, y ∈ X, there
exist U, V ∈ mSIO(X) containing x and y, respectively, such that U
∩ V = ∅.

Theorem 4.11. If f : (X,m, I)→ (Y, τ) is an m-semi-I-continuous
injection and Y is a T2 space, then (X,m, I) is a m-semi-I-T2 space.

Proof. The proof follows from the definitions. �

Theorem 4.12. If f : (X,m, I) → (Y, τ) is an injective m-semi-
I-continuous function with an m-semi-I-closed graph, then X is an
m-semi-I-T2 space.

Proof. Let x1 and x2 be any distinct points of X. Then f(x1) 6= f(x2),
so (x1, f(x2)) ∈ (X × Y )\G(f). Since the graph G(f) is m-semi-I-
closed, there exist an m-semi-I-open set U containing x1 and V ∈
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τ containing f(x2) such that f(U) ∩ V = ∅. Since f is m-semi-I-
continuous, f−1(V ) is an m-semi-I-open set containing x2 such that
U ∩ f−1(V ) = ∅. Hence X is m-semi-I-T2. �

Definition 4.13. An ideal minimal space (X,m, I) is said to be
m-semi-I-connected if X cannot be expressed as the union of two
nonempty disjoint m-semi-I-open sets.

Theorem 4.14. A m-semi-I-continuous image of an m-semi-I-
connected space is connected.

Proof. The proof is clear. �

Lemma 4.15. [7] For any function f : (X, τ, I)→ (Y, σ), f(I) is an
ideal on Y .

Definition 4.16. A subset K of an ideal minimal space (X,m, I) is
said to be m-semi-I-compact relative to X, if for every cover {Uλ :
λ ∈ Λ} of K by m-semi-I-open sets of X, there exists a finite subset
Λ0 of Λ such that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space (X,m, I) is

said to be m-semi-I-compact if X is m-semi-I-compact subset of X.

Definition 4.17. A subset K of an ideal minimal space (X,m, I) is
said to be countable m-semi-I-compact relative to X, if for every cover
{Uλ : λ ∈ Λ} of K by countable m-semi-I-open sets of X, there exists
a finite subset Λ0 of Λ such that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space

(X,m, I) is said to be countable m-semi-I-compact if X is countable
m-semi-I-compact subset of X.

Definition 4.18. A subset K of an ideal minimal space (X,m, I) is
said to be m-semi-I-Lindelöf relative to X, if for every cover {Uλ :
λ ∈ Λ} of K by m-semi-I-open sets of X, there exists a finite subset
Λ0 of Λ such that K\

⋃
{Uλ : λ ∈ Λ0} ∈ I. The space (X,m, I) is

said to be m-semi-I-Lindelöf if X is m-semi-I-Lindelöf subset of X.

Theorem 4.19. If f : (X,m, I)→ (Y, σ) is an m-semi-I-continuous
surjection and (X,m, I) is m-semi-I-compact, then (Y, σ, f(I)) is
f(I)-compact.

Proof. Let {Vλ : λ ∈ Λ} be an open cover of Y . Then {f−1(Vλ) :
λ ∈ Λ} is an m-semi-I-open cover of X and hence, there exist a finite
subset Λ0 of λ such that X\

⋃
{f−1(Vλ) : λ ∈ Λ0} ∈ I. Since f is

surjective, Y \
⋃
{Vλ : λ ∈ Λ0} = f(X\

⋃
{f−1(Vλ) : λ ∈ Λ0}) ∈ I.

Therefore, (Y, σ, f(I)) is f(I)-compact. �
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Theorem 4.20. If f : (X,m, I)→ (Y, σ) is an m-semi-I-continuous
surjection and (X,m, I) is m-semi-I-Lindelöf, then (Y, σ, f(I)) is
f(I)-Lindelöf.

Proof. The proof is similar to previous theorem. �

Theorem 4.21. If f : (X,m, I) → (Y, σ) is an m-semi-I-
continuous surjection and (X,m, I) is countable m-semi-I-compact,
then (Y, σ, f(I)) is countable f(I)-compact.

Proof. The proof is similar to previous theorem. �

Definition 4.22. A function f : (X, τ)→ (Y,m, I) is said to be:

(i) m-semi-I-open if f(U) is an m-semi-I-open set of Y for every
open set U of X.

(ii) m-semi-I-closed if f(U) is an m-semi-I-closed set of Y for
every closed set U of X.

Theorem 4.23. For a function f : (X, τ) → (Y,m, I), the following
statements are equivalent:

(i) f is m-semi-I-open;
(ii) f(Int(U)) ⊂ msI Int(f(U)) for each subset U of X;

(iii) Int(f−1(V )) ⊂ f−1(msI Int(V )) for each subset V of Y .

Proof. (i) ⇒ (ii): Let U be any subset of X. Then Int(U) is an
open set of X. Then f(Int(U)) is an m-semi-I-open set of Y . Since
f(Int(U)) ⊂ f(U), f(Int(U)) = msI Int(f(Int(U))) ⊂ msI Int(f(U)).
(ii)⇒ (iii): Let V be any subset of Y . Then f−1(V ) is a subset of X.
Hence f(Int(f−1(V ))) ⊂ msI Int(f(f−1(V ))) ⊂ msI Int(V )). Then
Int(f−1(V )) ⊂ f−1(f(Int(f−1(V )))) ⊂ f−1(msI Int(V )).
(iii) ⇒ (i): Let U be any open set of X. Then Int(U) = U and
f(U) is a subset of Y . Now, V = m Int(V ) ⊂ Int(f−1(f(V ))) ⊂
f−1(msI Int(f(V ))). Then f(V ) ⊂ f(f−1(msI Int(f(V )))) ⊂
msI Int(f(V )) and msI Int(f(V )) ⊂ f(V ). Hence f(V ) is a m-semi-
I-open set of Y ; hence f is m-semi-I-open. �

Theorem 4.24. Let f : (X, τ) → (Y,m, I) be a function. Then f
is an m-semi-I-closed function if and only if for each subset V of X,
msI Cl(f(V )) ⊂ f(Cl(V )).

Proof. Let f be an m-semi-I-closed function and V any subset of X.
Then f(V ) ⊂ f(Cl(V )) and f(Cl(V )) is an m-semi-I-closed set of Y .
We have msI Cl(f(V )) ⊂ msI Cl(f(Cl(V ))) = f(Cl(V )). Conversely,
let V be an open set of X. Then f(V ) ⊂ msI Cl(f(V )) ⊂ f(Cl(V )) =
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f(V ); hence f(V ) is an m-semi-J -closed subset of Y . Therefore, f is
an m-semi-I-closed function. �

Theorem 4.25. Let f : (X, τ) → (Y,m, I) be a function. Then f
is an m-semi-I-closed function if and only if for each subset V of Y ,
f−1(msI Cl(V )) ⊂ Cl(f−1(V )).

Proof. Let V be any subset of Y . Then by Theorem 4.24,
msI Cl(V ) ⊂ f(Cl(f−1(V ))). Since f is bijection, f−1(msI Cl(V )) =
f−1(msI Cl(f(f−1(V )))) ⊂ f−1(f(Cl(f−1(V )))) = Cl(f−1(V )). Con-
versely, let U be any subset of X. Since f is bijection, msI Cl(f(U)) =
f(f−1(msI Cl(f(U))) ⊂ f(Cl(f−1(f(U)))) = f(Cl(U)). Therefore, by
Theorem 4.24, f is an m-semi-I-closed function. �

Theorem 4.26. Let f : (X, τ) → (Y,m, I) be an m-semi-I-open
function. If V is a subset of Y and U is a closed subset of X containing
f−1(V ), then there exists an m-semi-I-closed set F of Y containing
V such that f−1(F ) ⊂ U .

Proof. Let V be any subset of Y and U a closed subset of X containing
f−1(V ), and let F = Y \(f(X\V )). Then f(X\V ) ⊂ f(f−1(X\V )) ⊂
X\V and X\U is an open set of X. Since f is m-semi-I-open, f(X\U)
is an m-semi-I-open set of Y . Hence F is an m-semi-I-closed set of
Y and f−1(F ) = f−1(Y \(f(X\U)) ⊂ U . �

Theorem 4.27. Let f : (X, τ) → (Y,m, I) be an m-semi-I-closed
function. If V is a subset of Y and U is an open subset of X containing
f−1(V ), then there exists m-semi-I-open set F of Y containing V such
that f−1(F ) ⊂ U .

Proof. The proof is similar to the Theorem 4.26. �

Theorem 4.28. Let f : (X, τ)→ (Y,m, I) be an m-semi-I-open func-
tion. Then for each subset V of Y , f−1(m Int(mCl∗(V )) ⊂ Cl(f−1(V ).

Proof. Let V be any subset of Y . Then Cl(f−1(V ) is a closed
set of X containing f−1(V ). Since f is m-semi-I-open, by The-
orem 4.26, there is an m-semi-I-open set F of Y containing V
such that f−1(m Int(mCl∗(V )) ⊂ m Int(mCl∗(F )) ⊂ f−1(F ) ⊂
Cl(f−1(V )). �

Theorem 4.29. Let f : (X, τ) → (Y,m, I) be a bijection such that
for each subset V of Y , f−1(m Int(mCl∗(V )) ⊂ Cl(f−1(V )). Then f
is an m-semi-I-open function.
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Proof. Let U be an open subset of X. Then f(X\U) is a subset of Y
and f−1(m Int(mCl∗(f(X\U)))) ⊂ Cl(f−1(f(X\U))) = Cl(X\U) =
X\U , and so m Int(mCl∗(f(X\U))) ⊂ f(X\U). Hence f(X\U) is
an m-semi-I-closed set of Y and f(U) = X\(f(X\U)) is a m-semi-I-
open set of Y . Therefore, f is an m-semi-I-open function. �

5. (m1,m2)-semi-I-irresolute functions

Definition 5.1. A function f : (X,m1, I)→ (Y,m2,J ) is said to be
(m1,m2)-semi-I-irresolute if the inverse image of every m2-semi-J -
open set of Y is m1-semi-I-open in X.

Theorem 5.2. Let f : (X,m1, I)→ (Y,m2,J ) be a function, then

(1) f is (m1,m2)-semi-I-irresolute;
(2) the inverse image of each m2-semi-J -closed subset of Y is m1-

semi-I-closed in X;
(3) for each x ∈ X and each V ∈ SJO(Y,m2) containing f(x),

there exists U ∈ SIO(X,m1) containing x such that f(U) ⊂
V .

Proof. The proof is obvious from that fact that the arbitrary union of
m-semi-I-open subsets is m-semi-I-open. �

Theorem 5.3. Let f : (X,m1, I)→ (Y,m2,J ) be a function, then

(1) f is (m1,m2)-semi-I-irresolute;
(2) m1sI Cl(f−1(V )) ⊂ f−1(m2sJ Cl(V )) for each subset V of Y ;
(3) f(m1sI Cl(U) ⊂ m2sJ Cl(f(U)) for each subset U of X.

Proof. (1) ⇒ (2): Let V be any subset of Y . Then V ⊂
m2sJ Cl(V ) and f−1(V ) ⊂ f−1(m2sI Cl(V )). Since f is (m1,m2)-
semi-I-irresolute, f−1(m2sJ Cl(V )) is an m1-semi-I-closed subset
of X. Hence m1sI Cl(f−1(V )) ⊂ m1sI Cl(f−1(m2sJ Cl(V ))) =
f−1(m2sJ Cl(V )).
(2) ⇒ (3): Let U be any subset of X. Then f(U) ⊂ m2sJ Cl(f(U))
and m1sI Cl(U) ⊂ m1sI Cl(f−1(f(U))) ⊂ f−1(m2sJ Cl(f(U))).
This implies that f(m1sI Cl(U)) ⊂ f(f−1(m2sJ Cl(f(U)))) ⊂
m2sJ Cl(f(U)).
(3) ⇒ (1): Let V be an m2-semi-J -closed subset of Y . Then
f(m1sI Cl(f−1(V )) ⊂ m1sI Cl(f−1(f(V ))) ⊂ m1sI Cl(V ) = V . This
implies that m1sI Cl(f−1(V )) ⊂ f−1(f(m1sI Cl(f−1(V )))) ⊂ f−1(V ).
Therefore, f−1(V ) is an m-semi-I-closed subset of X and consequently
f is an (m1,m2)-semi-I-irresolute function. �
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Theorem 5.4. A function f : (X,m1, I) → (Y,m2,J ) is
an (m1,m2)-semi-I-irresolute if and only if f−1(m2sJ Int(V )) ⊂
m1sI Int(f−1(V )) for each subset V of Y .

Proof. Let V be any subset of Y . Then msJ Int(V ) ⊂
V . Since f is (m1,m2)-semi-I-irresolute, f−1(m2sJ Int(V )) is
an m-semi-I-open subset of X. Hence f−1(m2sJ Int(V )) =
m1sI Int(f−1(m2sJ Int(V ))) ⊂ m1Is Int(f−1(V )). Conversely,
let V be an m2-semi-J -open subset of Y . Then f−1(V ) =
f−1(m2sJ Int(V )) ⊂ m1sI Int(f−1(V )). Therefore, f−1(V ) is an m1-
semi-I-open subset of X and consequently f is an (m1,m2)-semi-I-
irresolute function. �
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