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Abstract 
 

Originated by Lothar Collatz in 1937 [1], the conjecture states: given the recursive 

function, y=3x+1 if x is odd, or y=x/2 if x is even, for any positive integer x, y will equal 

1 after a finite number of steps. This analysis examines number form and uses a tree type 

graph to prove the process. 

 

1. examples 

 

An example for a random selection of 7, using the original method: 

 

  S=(7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)  

 

An example for a random selection of 12, using the original method: 

 

   S= (12, 6, 3, 10, 5, 16, 8, 4, 2, 1)     

 

2. functions 

 
The recursive function is replaced with function d for odd values (2n-1), with 

 

    d(x) = 3x+1 = u = 2
k
y    (2.0) 

 

and function e for even values, which removes all factors of 2, 

 

     e(u) = y    (2.1) 

 

The function e can be defined as a short program with a loop that repeatedly divides u by 

2 until the output is an odd integer. This eliminates the redundancy and clutter of repeated 

division by 2.  

After k divisions by 2, u = y, an odd integer. The value of y becomes the input x, and the 

cycle is repeated until y=1. The application of e(d(7)) results in S=(7 11 17 13 5 1), the 

revised format used in this analysis, with the understanding of a 2
k
 factor between each 

pair of odd integers. Notation is upper case for sets, lower case for elements of a set. 

 

3. reverse sequences 

 

If all sequences converge to the value 1, then it should be possible to form all reverse 

sequences, diverging from 1. For this purpose the odd integers are classified into 3 

subsets, 0 mod 3, 1 mod 3, and 2 mod 3, labeled as Y0, Y1, and Y2.  



 

Y0 = {3 9 15 21 27 ...} 

Y1 = {1 7 13 19 25 ...} 

Y2 = {5 11 17 23 29 ...}. 

 

Rearranging (2.0), we can find x, given y, while requiring y to be a (1 mod 3) value. 

If y ª 1 mod 3, then k is even and if y ª 2 mod 3, then k is odd. 

 

    x = (2
k
y-1)/3 = (u-1)/3.   (2.2) 

 

Varying k in (2.2) with y = 1, is shown in table 1. 

 

table 1 

k 2 4 6 8 ... 

u 4 16 64 256 ... 

x 1 5 21 85 ... 

 

Varying k in (2.2) with y = 5, is shown in table 2. 

 

table 2 

k 1 3 5 7 ... 

u 10 40 160 640 ... 

x 3 13 53 213 ... 

 

There are multiple combinations of x and k, that produce a given y. The x terms for each 

y, form an unlimited set and transform to y via the function e(d(x)). They are labeled as 

generation 1, 2, 3, ... etc. in order of increasing values. The gen-1 terms are defined as 

base terms and the remaining terms branching or b-terms which allow a horizontal 

growth for each y. They are functionally equivalent to the base term since e(2
k
y) = y for 

all k. The B notation for y=1 and y=5 is:  

B1 = {1 5 21 85 341 ...} and B5 = {3 13 53 213 ...}, with (0 mod 3) terms in bold. 

The u terms are related by a factor of 4, since that maintains the (1 mod 3) state of u. 

If y = 3x+1, and 4y = 3w+1, then w = (4y-1)/3 = 4x+1.  

Then the relation of successive b-terms is 

 

     xr+1 = 4xr+1    (2.3) 

 

The use of n in the general forms denotes the position of an odd integer within its ordered 

subset. 

Substituting the general form for y1 in (2.2) 

 

   x1 = (4(6n-5)-1)/3 = 8n-7    (2.4) 

 

as elements of X1. 

 

Substituting the general form for y2 in (2.2) 



 

   x2 = (2(6n-1)-1)/3 = 4n-1     (2.5) 

 

as elements of X2. 

 

3.1 terminating values for reverse sequences 

 

There is a corresponding x for each y, from (2.4) and (2.5), but there is still  

the remaining odd x of the form 8n-3, labeled as X3. Rearranging gives 

 

    x3 = 8n-3 = 4(2n-1)+1    (2.6) 

 

Comparing (2.3) and (2.6), reveals there is a b-term for each odd integer. 

Since the function d cannot produce (0 mod 3) output, an element from Y0 can only begin 

a descending sequence S of odd integers, which implies, a reverse sequence R will 

terminate. The one exception is (1 1). This case is the only positive solution to 3x+1 = 

4
k
x, a simple loop.  

In ascending mode, using B1 = {1 5 21 85 341 ...}, the next term is 1. R = (1 1) and 

terminates,  

 

    
      fig. 1 

 

Fig. 1 shows available options via B1. The b-terms allow bypassing the next cell by 

forming a new branch. Using the next available term from B1, R = (1 5).  

From B5 = {3 13 53 213 ...}, R = (1 5 3), the sequence R terminates.  

 

    
      fig. 2 

 

Remaining with the current R and B5, the next (gen-2) term 13, allows a new branch and 



extension of R, as shown in fig.2. A new branch can be formed from any term in the 

current branch except (0 mod 3). In the example, the next to last term is arbitrarily 

selected. Using the b-terms for each successive x, extends the branch vertically to the 

next termination value 9. This process is repeated with 7, 43, 203, etc., and can be 

extended without limit. 

 

B1 ={1 5 21 85 341 1365 ...},   (1 5) 

B5 ={3 13 53 213 ...},   (1 5 13)  

B13 = {17 69 277 1109...},  (1 5 13 17) 

B17 = {11 45 181 725...},  (1 5 13 17 11) 

B11 = {7 29 117 469...},  (1 5 13 17 11 7) 

B7 = {9 37 149 597...},  (1 5 13 17 11 7 37) 

...     (1 5 13 17 11 7 37...) 

 

A reverse sequence R of any length can be formed using the b-terms which allow tree 

expansion.  

 

4. even integer selection 

 

All reverse sequences for even integer selection, can be formed by appending a 2
k
 

progression times an odd integer, presented here as a list, using 1, 3, 5, 7, 9, ... 

 

(2 4 8 16 32 ...) 

(6 12 24 48 ...) 

(10 20 40 80 ...) 

(14 28 56 122 ...) 

(18 36 72 144 ...) 

... 

 

  

   
      fig.3 

 

This provides a means of extending the Y0 termination values to sequences of unlimited 

length as shown in fig.3. It also provides a second indirect method of selecting an odd 

integer. 



 

      
      fig.4 

 

Each term from Y1 and Y2 now have an additional branch of even integers, fig.4. 

 

5. x-y correspondence 

 

 
      fig.5 

 

Fig.5 is a summary of x to y correspondence. The Bx extend vertically in the X3  section. 

Remaining in the same column, an odd integer x is selected from section A. An 

application of d(x) yields u in section B, with a matching generation index. An 

application e(u) yields y in section C.  

 

6. Collatz graph 

  



   
      fig.6 

 

Fig.6 graphs the difference ∆ of x values, initially on the diagonal y=x, after applying d 

and e functions (par.2). Grid spacing us 2 units. 

For X1, ∆ = (6n-5) - (8n-7) = -2n+2 (blue) 

For X2, ∆ = (6n-1) - (4n-1) = 2n (red) 

For X3, ∆ = (2n-1) - (8n-3) = -6n+2 (blue) 

Blue horizontal lines from X3 values beyond 53 are not shown for clarity. 

 

7.1 additional factors 
 

Is it possible for an element of X2 to increase with a continuous number of steps?  

Using (2.0) and (2.1), 3(4mn-1)+1 = 12mn -2, so y = 6mn-1, with m a multiple of 2. 

With m=2, successive cycles yield y = (12n-1, 18n-1), and y decreases.  

With m=4, successive cycles yield y = (24n-1, 36n-1, 54n-1), and y decreases. 

With m=8, successive cycles yield y = (48n-1, 72n-1, 108n-1, 162n-1), and y decreases. 

As x2 increases there are longer finite sequences of increases, interrupted by a decrease, 

when the form becomes a member of 6n-1. If m = 2
k
, sequence length = k. 

 

8. the tree 
 

Using the tree analogy, when ascending from 1, there is a one to many relationship from 



y to x, via the Bx branching, presenting an unlimited number of possible sequences, as 

shown in section 3 and 4. Descending from a randomly selected term x, there is a one to 

one relationship from x to y. The current x determines the next term, therefore the entire 

sequence is pre-determined by the initial selection.  

 

 
      fig.7 

 

Fig.7 shows the initial growth of the tree for odd integers only, from a 'trunk' of 1, 

vertically with each branch terminating in a (0 mod 3) value, and horizontally via the Bx 

as demonstrated in section 3. The sequence for x=27 is revealed as a composite of 7 

branches to the right. Two dimensions is not adequate to visualize a partial tree with all 

odd integer and even integer branches.   

 

conclusion 

 

All odd integers, have a corresponding b-term as shown in section 3, therefore all 

sequences merge in descending mode.. The Collatz conjecture applies only to finite 

length sequences, in the descending mode. 
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