
Anomaly detection for Cybersecurity: time
series forecasting and deep learning

Giordano Colò

December 17, 2019

Abstract

Finding anomalies when dealing with a great amount of data cre-
ates issues related to the heterogeneity of different values and to the
difficulty of modelling trend data during time. In this paper we com-
bine the classical methods of time series analysis with deep learning
techniques, with the aim to improve the forecast when facing time
series with long-term dependencies. Starting with forecasting meth-
ods and comparing the expected values with the observed ones, we
will find anomalies in time series. We apply this model to a bank
cybersecurity case to find anomalous behavior related to branches ap-
plications usage.

1 Time series forecasting
1.1 Introduction
Parameters and properties describing the data are intrinsecally linked to the
time at which they are collected. In order to modelling relations underlying
them, an analysis of how they change is vital. Mathematical statistics point
of view is to define a time series and deal with it in order to find recurrent
patterns and abrupt or slowly changes.

1

1.2 Time series
A time series is a set of observations xt each one recorded at a different time
t. During the rest of the paper we will deal with discrete time series, in
which the set T0 of times of the observations is a discrete set.
The principal point of interest of time series is the possibility to draw infer-
ences from their underlying laws.
The analysis of the series is performed by setting a probability model to
represent the data (or a family of probability models). After the model is
chosen, the estimation of parameters and the goodness of the model to fit
data can help understanding the mechanism that generates the series.
Using this model, one can give a compact description of the data, by iden-
tifying for example seasonal components and remove them, in order not to
confuse these components with long-term trends. Let’s define what a time
series model is.

A time series for observed data xt is a specification of the joint distribu-
tions of a sequence of random variables Xt of which xt is a realization.

A complete probabilistic time series model for the sequence of random
variables X1, X2, ... would specify all the joint distributions of the random
vectors X1, .., Xn, or equivalently all the probabilities

P [X1 ≤ x1, Xn ≤ xn], −∞ < x1, ..., xn < +∞, n = 1, 2, ... (1.1)

Anyway, such a specification is rare in time series analysis, because in gen-
eral there are too many parameters to be estimated from the data. Usually
all that we do is find the first- and second-order moments of the joint distri-
butions: the expected values EXt and the expected products E(Xt+h, Xt),
t = 1, 2, ..., h = 0, 1, 2, ..., focusing on the sequence Xt that depends only on
these ones.

The general approach adopted to analyze the time series is described by
the following points.

1. Plot the series and check for :

(a) trend,
(b) seasonal component,
(c) any apparent sharp changes in behavior,

2

(d) any outlying observation.

2. Remove the trend and seasonal components to get stationary residuals
(we will define stationary below). There are different ways to evaluate
trend and seasonal components, such as estimating them and subtract-
ing from the data or differencing the data, i.e. replacing the original
series Xt by Yt = Xt − Xt−d for some positive integer d. In any case,
the aim is to produce a stationary series, the values of which we refer
to as residuals.

3. Choose a model to fit the residuals, making use for example of auto-
correlation function.

4. Forecasting will be done by forecasting the residuals and then inverting
the transformation described above to arrive at forecasts of original
series Xt.

5. Another approach is to express the series in terms of Fourier compo-
nents, which are sinusoidal waves of different frequencies.

The most important objective of the analysis is to find stationary resid-
uals. In order to give a general idea, a time series {Xt, t = 0, 1, ..., n}
is stationary if it has statistical properties similar to the ”shifted” series
{Xt+h, t = 0,±1, ...}. Remember that we have to restrict the focus only on
first- and second-order moments of {Xt}, so we give a more detailed defini-
tion:

Definition 1.1. Let {Xt} be a time series with E(X2
t) < ∞. The mean

function of {Xt} is
µX(t) = E(Xt). (1.2)

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))] (1.3)

for all integers r and s.

Definition 1.2. We say that {Xt} is weakly stationary if:

1. µX(t) is independent of t,

2. γX(t+ h, t) is independent of t for each h.

3

If we add the condition that (X1, ..., Xn) and (X1+h, ..., Xn+h) have the
same joint distribution, the series is strictly stationary.

A fundamental tool used to analyze the series is the autocovariance func-
tion:

Definition 1.3. Let {Xt} be a stationary time series. The autocovariance
function (ACVF) of {Xt} at lag h is:

γX(h) = Cov(Xt+h, Xt). (1.4)

In the same way we define the autocorrelation function (ACF) of {Xt} at lag
h as:

ρX(h) = γX(h)
γX(0)

= Cor(Xt+h, Xt) (1.5)

Roughly speaking, these are measures of covariance and correlation ”in-
ternal” to the series at different lags. This is very useful when one have to
forecast future values of the series based on series analysis. In view of these
definitions, we expect that the ACF falls towards zero as the points become
more separated. This is logically due to the fact that it’s harder to forecast
data in the future.

When analyzing a time series, the first step is to plot the data and break-
ing it into homogeneous segments. As for the outliers, before discarding
them, they have to be studied carefully to check what is the meaning of
these values. By inspecting the graph it’s possible to represent the data as a
realization of a process and use the classical decomposition model:

Xt = mt + st + Yt (1.6)

where m is a slowly changing function known as trend, st is a function with a
period d referred to as seasonal component, and Yt is a random noise compo-
nent that is stationary. Our aim is to estimate and extract the deterministic
components mt and st in the hope that the residual component Yt will be a
stationary time series. Then, by using the theory of such processes, we will
search for a satisfactory probabilistic model for the process Yt, to analyze
its properties and to use it, in conjunction with mt and st for purpose of
prediction of {Xt}.

4

1.3 Trend and Seasonality estimation
In order to estimate the trend component of the time series we can use two
general approach: the first is to fit a polynomial trend (by least squares)
and subtract the fitted trend from the data to find an appropriate stationary
model; the second is to eliminate the trend by differencing (as we will see in
a few).
Smoothing with a finite moving average filter. Let q be a nonnegative integer
and consider the moving average:

Wt = (2q + 1)−1
q∑

j=−q

Xt−j (1.7)

of the process {Xt}. Then, for q + 1 ≤ t ≤ n− q,

Wt = (2q + 1)−1
q∑

j=−q

mt−j + (2q + 1)−1
q∑

j=−q

Yt−j ≈ mt (1.8)

assuming that mt is approximately linear in the interval [t − q, t + q] and
that the average of the error terms over this interval is close to zero. So the
moving average provides us with the estimates:

m̂ = (2q + 1)−1
q∑

j=−q

Xt−j, q + 1 ≤ t ≤ n− q (1.9)

In figure 1 we show an example of how the moving average filter is applied.

Exponential smoothing. For any fixed α ∈ [0, 1], the process of applying
the one-sided moving averages m̂t, defined by the recursions

m̂ = αXt + (1 − α)m̂t−1, t = 2, ..., n, (1.10)

and
m̂1 = X1 (1.11)

is referred to as exponential smoothing, since the recursions imply that, for
T ≥ 2, m̂t = ∑t−2

j=0 α(1 − α)jXt−j + (1 − α)t−1X1, a weighted moving average
of Xt, Xt−1, ... has exponentially decreasing weights (except for the last one).
Smoothing by elimination of high-frequency components. This is a technique
that consists in eliminating the high-frequency components of the Fourier

5

Figure 1: 5-term moving average m̂

series expansion of the time series.
Polynomial fitting. The method of least squares here it’s used to fit poly-
nomial trends, and correlation between the residuals is taken into account
when generalizing least squares estimation

The second method is the Trend elimination by differencing.
In this case, instead of removing the noise by smoothing as we have done in
the previous steps, we eliminate the trend by differencing. Let’s define the
1-lag difference operator ∇ by:

∇Xt = Xt −Xt−1 = (1 −B)Xt, (1.12)

where B is the backward shift operator ,

BXt = Xt−1. (1.13)

Powers of the operators B and ∇ are defined in an obvious way, Bj(Xt) =
Xt−j and ∇j(Xt) = ∇(∇j−1(Xt)), j ≥ 1, with ∇0(Xt) = Xt. In this way,
we can manipulate polynomials in B and ∇ in the same way as polynomial
functions of real variables. If the operator ∇ is applied to a linear trend
function mt = c0 + c1t, then we obtain the constant function ∇mt = mt −
mt−1 = c0 +c1t−(c0 +c1(t−1)) = c1.In the same way, every trend of degree k
can be reduced to constant by application of the operator ∇k. For example,
if Xt = mt + Yt, where mt = ∑k

j=0 cjt
j and Yt is stationary with mean zero,

6

Figure 2: Example of a differenced series

application of ∇k gives

∇kXt = k!ck + ∇kYt, (1.14)

a stationary process with mean k!ck. This gives the possibility, given any
sequence {xt} of data, of applying the operator ∇ repeatedly until we find a
sequence {∇kxt} that can be modeled as a realization of a stationary process.

1.4 Prediction
We want to stress the concept of how ACVF and ACF provide a measure of
the degree of dependence among the values of a time series at different times.
For this reason they play an important role when we consider the prediction
of future values of the series in terms of the past and present values.
Here with a simple example we’d like to present the role of autocorrelation
function. Suppose that {Xt} is a stationary Gaussian time series and that we
have observed Xn. We would like to find the function of Xn that gives us the
best predictor of Xn+h, the value of the series after another h time units have
been elapsed. By saying ”best” predictor we mean the function of Xn with
minimum mean squared error, for example. The conditional distribution of
Xn+h given Xn = xn is

N(µ+ ρ(h)(xn − µ), σ2(1 − ρ(h)2)), (1.15)

7

where µ and σ2 are the mean and the variance of {Xt}. The value of the
constant c that minimizes E(Xn+h − c)2 is the conditional mean

m(Xn) = E(Xn+h|Xn) = µ+ ρ(h)(Xn − µ). (1.16)

The corresponding mean squared error is:

E(Xn+h −m(Xn))2 = σ2(1 − ρ(h)2). (1.17)

This calculation shows that, for stationary Gaussian time series, prediction
of Xn+h in terms of Xn is more accurate as |ρ(h)| become closer to 1 and as
ρ → ±1 the best predictor approaches µ ± (Xn − µ) and the corresponding
mean squared error approaches 0. Let’s notice that the assumption of joint
normality of Xn+h and Xn played a crucial role The fact that the best linear
predictor depends only on the mean and ACF of the series {Xt} means that
the predictor can be calculated without more detailed knowledge of the joint
distributions. This is important because in practice it’s difficult to estimate
the joint distributions or, even if the distributions are known, it’s difficult to
compute the conditional expectations.

1.5 From ARMA to ARIMA models
The prominent models used to predict values of a time series are the ARIMA
models. The class of linear time series models includes autoregressive moving-
average (ARMA) models, that are a powerful tool to study stationary pro-
cess.

Definition 1.4. The time series {Xt} is a linear process if it has the repre-
sentation

Xt =
∞∑

j=−∞
ψjZt−j, (1.18)

for all t, where {Zt} ∼ WN (0, σ2)1 and {ψj} is a sequence of constants with∑∞
j=−∞ |ψj| < ∞. In terms of backwards shift operator B introduced above,

the equation 1.18 can be written simply as

Xt = ψ(B)Zt, (1.19)
1WN(0, σ2) is the white noise with zero mean and σ2 variance

8

where ψ(B) = ∑∞
j=−∞ ψjB

j. A linear process is called a moving average or
MA(∞) if ψj = 0 for all j < 0,i.e, if

Xt =
∞∑

j=0
ψjZt−j. (1.20)

We can think to ψ(B) as a linear filter which, applied to the white noise
input series {Zt} produces the output {Xt}. It’s out of the scope of this
discussion but there is a theorem that establishes that a linear filter, when
applied to a stationary input series, produces a stationary output series.
Let us assume that {Xt} is a stationary series satisfying the equations:

Xt = ϕXt−1 + Zt, t = 0,±1, ..., (1.21)

where {Zt} ∼ WN(0, σ2), ϕ < 1 and Zt is incorrelated with Xs for each
s < t. A first-order autoregression or AR(1) is a stationary solution {Xt} of
the equations:

Xt − ϕXt−1 = Zt. (1.22)
To show that such a solution exists and is the unique stationary solution, we
consider the linear process defined by

Xt =
∞∑

j=0
ϕjZt−j. (1.23)

(The coefficients ϕj for j ≥ 0 are absolutely summable, since |ϕ| < 1). It is
easy to verify that the process 1.23 is a solution of 1.22 and is also stationary
with mean 0 and ACVF

γX(h) =
∞∑

j=0
ϕjϕj+hσ2 = σ2ϕh

1 − ϕ2 (1.24)

for h ≥ 0. In addition, it can be easily showed that 1.23 is the only stationary
solution to 1.22.

Definition 1.5. {Xt} is an ARMA(p, q) process if {Xt} is stationary and
for every t,

Xt − ϕ1Xt−1 − ...− ϕpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q, (1.25)

where {Zt} ∼ WN(0, σ2) and the polynomials (1 − ϕ1z − ... − ϕpz
p) and

(1 + θ1z + ...+ θqz
q) have no common factors.

9

So the ARMA model is the combination of an autoregressive process of
order p and a moving-average model of order q. The requirement that {Xt}
is stationary allows us to introduce that a stationary solution {Xt} of the
equation 1.25 exists and is unique if and only if

ϕ(z) = 1 − ϕ1z − ...− ϕpz
p , 0 for all |z| = 1. (1.26)

In other words, a stationary solution exists if ϕ(z) , 0 for all the complex z
on the unit circle.

We point out above that the two measures that are crucial for studying
the series are the ACVF and ACF functions. Before calculating them for the
ARMA models, we introduce the concept of casuality:

Definition 1.6. An ARMA (p, q) process {Xt} is casual if there exist con-
stants {ψj} such that ∑∞

j=0 |ψj| < ∞ and

Xt =
∞∑

j=0
ψjZt−j for all t. (1.27)

Causality is equivalent to the condition

ϕ(z) = 1 − ϕ1z − ...− ϕpz
p , 0 for all z ≤ 1 (1.28)

The equivalence of the casuality and 1.6 follows from elementary prop-
erties of power series. Let’s now talk about ACF and ACVF of an ARMA
process. There is more than one method to calculate the ACVF. Here we
choose to multiply each side of the equations

Xt − ϕ1Xt−1 − ...− ϕpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q, (1.29)

by Xt−k, k = 0, 1, 2..., and, taking expectations on each side, we find that

γ(k) − ϕ1γ(k − 1) − ...− ϕkγ(k − p) = σ2
∞∑

j=0
θk+jψj, 0 < k < m, (1.30)

and
γ(k) − ϕ1γ(k − 1) − ...− ϕpγ(k − p) = 0 k ≥ m, (1.31)

where m = max(p, q + 1), ψj := 0 for j < 0, θ0 := 1, and θj := 0 for
j < {0, ..., q}. In calculating the right-hand side of 1.30 we made use of

10

the expansion 1.27. Equations 1.31 are a set of homogeneus linear difference
equations with constant coefficients, for which the solutions are well known
and are of the form:

γ(h) = α1χ
−h
1 + α2χ

−h
2 + ...+ αpχ

−h
p h ≥ m− p, (1.32)

where χ1, ..., χp are the distinct roots of the equation ϕ(z) = 0 and α1, ..., αp

are arbitrary constants. If we substitute the solution of 1.32 into 1.30 we
obtain a set of m linear equations that uniquely determines the costants
α1, ..., αp and the m − p autocovariances γ(h), 0 ≤ h ≤ m − p. Recall that
the ACF of an ARMA process {Xt} is the function ρ(·) found immediately
from the ACVF γ(·) as

ρ(h) = γ(h)
γ(0)

(1.33)

Another function can be calculated while analyzing ARMA processes, the
partial autocorrelation function (PACF) that is the function defined by the
equations:

α(0) = q (1.34)
and

α(h) = ϕhh, h ≥ 1, (1.35)
where ϕhh is the last component of

ϕ(h) = Γ−1
h γh, (1.36)

Γh = [γ(i− j)]hi,j=1, and γ(h) = [γ(1), γ(2), ..., γ(h)]′.
Let’s now close the discussion on time series with the ARIMA processes.
A problem which frequently arose in practice and in applications is that a
series of observations {x1, x2, ..., xn} is not stationary. As we have already
seen above, in case of stationarity we attempt to fit an ARMA model to the
data. In case of non-stationary series we have to look for a transformation of
the data that generates a new series that has no deviations from stationarity
and a rapidly decreasing autocovariance function. This is achieved by consid-
ering ARIMA (autoregressive integrated moving average) models, that are
processes that reduces to ARMA if differenced finitely many times.

Definition 1.7. If d is a nonnegative integer, then {X−t} is an ARIMA(p, d, q)
process if Yt := (1 −B)dXt is a casual ARMA(p, q) process.

11

This definition means that {Xt} satisfies a difference equation of the form

ϕ∗(B)Xt ≡ ϕ(B)(1 −B)dXt = θ(B)Zt, {Zt} ∼ WN(0, σ2), (1.37)

where ϕ(z) and θ(z) are polynomial of degrees p and q, respectively, and
ϕ(z) , 0 for |z| ≤ 1. As already said, deviation from stationarity may be
suggested by the graph of the series or by the sample autocorrelation function.
Inspection of the graph can reveal a strong dependence of variability on
the level of the series, in which case we have to transform or eliminate the
dependence. If we are dealing with non stationary time series that has a slowly
decaying sample ACF, we differencing it to transform the series in a process
with a rapidly decreasing ACF. The degree of differencing of a time series
{Xt} was largely determined by applying the difference operator repeatedly
until the sample ACF of {∇dXt} decays quickly. The differenced time series
can be modeled by a low-order ARMA(p, q) process, and hence the resulting
ARIMA (p, d, q) model for the original data has an autoregressive polynomial
(1 − ϕ1z − ...− ϕpz

p)(1 − z)d with d roots on the unit circle.

1.6 Forecasting ARIMA models
In order to find anomalies, which is our purpose, the first steps to take is to
analyze the time series, forecast values and find the differences with observed
values. At the moment we are able to do analysis of ARIMA processes. Let’s
briefly talk about forecasting values of ARIMA. If d ≥ 1, the first and second
moments EXt and E(Xt+hXt) are not determined by the difference equations
1.37. We cannot determine best linear predictors for {Xt} without further
assumptions. For example, suppose that {Yt} is a casual ARMA(p, q) process
and that X0 is any random variable. Define

Xt = X0 +
t∑

j=1
Yj, t = 1, 2... (1.38)

So {Xt, t ≥ 0} is an ARIMA(p, 1, q) process with mean EXt = EX0 and au-
tocovariances E(Xt+hXt)−(EX0)2. Our goal is to find the linear combination
of 1, Xn, Xn−1, ..., X1, that forecasts Xn+h with minimum mean squared er-
ror. The best linear predictor in terms of 1, Xn, ..., X1 is denoted by Pn and
has the form

PnXn+h = a0 + a1Xn + ...+ anX1. (1.39)

12

The values a0, ..., an are determined by finding the values that minimize

S(a0, ..., an) = E(Xn+h − ao − a1Xn − ...− anX1)2. (1.40)

Since S is a quadratic function of a0, ..., an and is bounded below by zero, is
it clear that there is at least one value of (a0, ..., an) that minimizes S and
that the minimum (a0, ..., an) satisfies the equation

∂S(a0, ..., an)
∂aj

= 0, j = 0, ..., n. (1.41)

Evaluation of the derivatives in the equation 1.41 gives the equivalent equa-
tions

E
[
Xn+h − a0 −

n∑
i=1

aiXn+1−j

]
= 0 (1.42)

E
[
(Xn+h − a0 −

n∑
i=1

aiXn+1−i)Xn+1−j

]
= 0, j = 1, ..., n. (1.43)

If we use vector notation, the equations can be written

a0 = µ
(

1 −
n∑

i=1
ai

)
(1.44)

and
Γnananan = γn(h) (1.45)

where
ananan = (a1, ..., an)′, Γn = [γ(i− j)]ni,j=1, (1.46)

and
γ(h) = (γ(h), γ(h+ 1), ..., γ(h+ n− 1))′. (1.47)

Hence,
PnXn+h = µ+

n∑
i=1

ai(Xn+1−i − µ), (1.48)

where ananan satisfies 1.45. From 1.48 the expected value of the prediction error
Xn+h − PnXn+h is zero, and the mean square prediction error is

E(Xn+h−PnXn+h)2 = γ(0)−2
n∑

i=1
aiγ(h+i−1)+

n∑
i=1

n∑
j=1

aiγ(i−j)aj = γ(0)−aaa′
nγn(h).

(1.49)

13

Coming back to the ARIMA models introduced at the beginning of the para-
graph and using Pn to forecast values, we can write

PnXn+1 = Pn(X0 +Y1 + ...+Yn+1) = Pn(Xn +Yn+1) = Xn +PnYn+1. (1.50)

To evaluate PnYn+1 it is necessary to know E(X0Yj), j = 1, ..., n + 1 and
EX2

0 . We shall assume that our observed process {Xt} satisfies the difference
equations

(1 −B)sXt = Yt, t = 1, 2, ..., (1.51)
where {Yt} is a casual ARMA(p, q) process, and the random vector (X1−d, ..., X0)
is uncorrelated with Yt, t > 0. The difference equation can be rewritten in
the form

Xt = Yt −
d∑

j=1

(
d

j

)
(−1)jXt−j, t = 1, 2, ... (1.52)

Now, to make prediction, let’s assume that we observed X1−d, X2−d, ..., Xn.
We use Pn to denote the best linear prediction in terms of observations up
to time n.
Our goal is to apply the operator Pn to each side of 1.52 (with t = n + h)
and using the linearity of Pn to obtain

PnXn+h = PnYn+h −
d∑

j=1

(
d

j

)
(−1)jPnXn+h−j. (1.53)

Assuming that (X1−d, ..., X0) is uncorrelated with Yt, t > 0, the predictor
PnXn+1 is obtained from 1.53 by noting that PnXn+1−j = Xn+1−j for each
j ≥ 1. The predictor PXn+2 can be found from 1.53 using the previous cal-
culated value PnXn+1. The predictors PnXn+3, PnXn+4, ..., can be computed
recursively in the same way.
So the h-step predictor

g(h) := PnXn+h (1.54)
satisfies the homogeneous linear difference equations:

g(h) − ϕ∗
1g(h− 1) − ...− ϕ∗

p+dg(h− p− d) = 0 h > q, (1.55)

where ϕ∗
1, ..., ϕ

∗
p+d are the coefficients of z, ..., zp+d in

ϕ∗(z) = (1 − z)dϕ(z). (1.56)

14

The solution of 1.55 is well known from the theory of linear difference equa-
tions. If we assume that zeros of ϕ(z) (denoted χ1, χ2, ..., χp) are all distinct,
then the solution is

g(h) = a0 + a1h+ ...+ adh
d−1 + b1χ

−h + ...+ bpχ
−h
p , h > q − p− d, (1.57)

where the coefficients a1, ..., ad and b1, ..., bp can be determined from the p+d
equations obtained by equating the right-hand side of 1.57 for q − p − d <
h ≤ q with the corresponding value of g(h) computed numerically.

2 Forecasting with recurrent networks
2.1 Introduction
In our road towards anomaly detection, the first steps concern the forecast
of our time series.What we see till now is a classical approach. A method
like ARIMA fit a single model to each time series we have. Then we can use
the model to extrapolate the time series into the future.
In cybersecurity applications (and in other areas, such as capacity manage-
ment) we have many similar time series across a set of cross-sectional units:
time series for server loads, requests for webpages, bytes exchange, access to
relevant applications. For this cases, it’s better to train a single model jointly
over all the time series. In order to achieve this objective we will conjugate
the classical approach with the recurrent networks.

2.2 Neural networks
Let’s briefly introduce neural networks. We can represent a neural network
with L layers as the composition of L functions fi : E × Hi → Ei+1 where
Ei, Hi and Ei+1 are inner product spaces for all i ∈ [L]. We will refer to
variables xi ∈ Ei as state variable, and θi ∈ Hi as parameters.
The output of a neural network for a generic input x ∈ E1 is a function
F : E1 × (H1, ..., HL) → EL+1 according to

F (x; θ) = (fL ◦ ... ◦ f1)(x), (2.1)

The goal of a neural network is to optimize some loss function J with respect
to the parameters θ over a set of n network inputs D = {(x(1), y(1)), ..., (x(n), y(n))},

15

where x(j) ∈ E1 is the jth input data point with associated response or target
y(j) ∈ EL+1. Most optimization methods are gradient-based, meaning that
we must calculate the gradient of J with respect to the parameters at each
layer i ∈ [L].
We now introduce the loss function. We will take derivatives of this loss
function for a single data point (x, y) = (x(j), y(j)) for some j ∈ [n] and
then present the error backpropagation in a concise format. Then, we will
discuss how to perform gradient descent steps and how to incorporate the
ℓ2-regularization, known as weight decay. We write

xi = αi−1(x) (2.2)

for ease of notation.
Let’s analyze the case of regression models. In this case, the target variable
can be any generic vector of real numbers. So, for a single data point, the
most common loss function to consider is the squared loss, given by:

JR(x; y; θ) = 1
2

||y − F (x; θ)||2 = 1
2

⟨y − F (x; θ), y − F (x; θ)⟩. (2.3)

In this case the network prediction ŷR is given by the network output F (x; θ).
We can calculate the gradient of JR with respect to θ according to a theorem,
the demonstration of which is out of the scope of this paper.

Theorem 2.1. For any x ∈ E1,y ∈ EL+1, and i ∈ [L],

∇θi
JR(x; y; θ) = ∇∗

θi
fi(xi) ·D∗ωi+1(xi+1) · (ŷR − y), (2.4)

where xi = αi−1(x),JR has been defined in 2.3, ŷR = F (x; θ), αi = fi ◦ ... ◦ f1
is the head map and ωi = fL ◦ ... ◦ fi is the tail map.

This implies that the derivative map above is a linear functional, i.e.
∇θi

JR(x; θ) ∈ L (Hi,R). Here with H1 we denote a Hilbert space.
So loss functions define the quality of the prediction we are going to make.
The choice of loss function has to be done in relation of the problem and
the data we want to analyze. For example, a choice has to be done when
deciding if the loss function should be symmetric. This means that a negative
prediction error is judged as causing the same loss as a positive error of the
same absolute value. Another example is about the convexity of the loss
function, which means that the differences between high prediction errors

16

Figure 3: Some kind of activation functions

are assessed as more important than differences between small prediction
errors.
A neural network is a collection of artificial neurons connected together.
Neurons are organized in layers. Neural networks are made in a way that
each neuron in a layer takes multiple inputs and produces a single output
(that can be passed as input to other neurons). To introduce a thresholding
mechanism to activate the neuron, an activation function is used (see figure
3 for the different kind of activation function).

In a multilayered network, when an input is taken by a neuron , it gets
multiplied by a weight value. For example, a neuron with 3 inputs has 3
weight values which are adjusted during training time. The weight space is
the set of all the possible values of the weights.
The backpropagation algorithm looks for the minimum of the error function
in weight space using the method of gradient descent. Since this method
requires computation of the gradient of the error function at each iteration

17

step, it’s important for the error function to be continuous and differentiable.
To determine the output of a neural network we use the activation function
(which is used to check for neuron output value and decide if it should be
fired or not). For backpropagation network the most used activation function
is the sigmoid, a real function sC : R→ (0, 1) defined by the expression

sC(x) = 1
1 + e−cx

(2.5)

The constant c can be selected arbitrarily. The derivative of the sigmoid with
respect to x is

d

dx
s(x) = e−x

(1 + e−x)2 = s(x)(1 − s(x)). (2.6)

Many other kinds of activation functions can be chosen, the important thing
is that a differentiable activation function makes the function computed by
a neural network differentiable, since the network computes only function
compositions. The error function also become differentiable. Following the
gradient descent to find the minimum of this function we have not to find
regions for which the error function is flat. As the sigmoid has positive
derivative, the slope of the error function provides a greater or lesser descent
direction which can be followed.
Our goal is to find the optimal combination of weights so that the network
function ϕ (the composite function from input to output space) approximate
a function f as closely as possible.
When an input pattern xi from the training set is presented to the network,
it produces an output ŷi different in general from the target yi. What we
want is to make ŷi and yi identical. More precisely we want to minimize the
error function E. The weights in the network are the only parameters that
can be modified to make E as low as possible. We can thus minimize E by
using an iterative process of gradient descent, for which we need to calculate
the gradient

∇E = (∂E
∂ω1

,
∂E

∂ω2
, ...

∂E

∂ωℓ

). (2.7)

Each weight is updated using the increment

∆ωi = −γ ∂E
∂ωi

for i = 1, ..., ℓ, (2.8)

18

where γ is a learning costant, defining the step length of each iteration in the
negative gradient direction.
Let’s now formulate the backpropagation algorithm.
Consider a network with a single real input x and network function F . The
derivative F ′(x) is computed in two phases:

• Feed-forward: the input x is fed into the network. The primitive func-
tions at the nodes and their derivatives are evaluated at each node,
then they are stored.

• Backpropagation: the constant 1 is fed into the ouput unit and the
network is run backwards. Incoming information to a node is added
and the result is multiplied by the value stored in the left part of the
unit. The result is transmitted to the left of the unit. The result
collected at the input unit is the derivative of the network function
with respect to x.

The backpropagation step computes the gradient of E with respect to the
input ∂E/∂ŷiωij.
So after choosing the weights randomly, the backpropagation algorithm is
used to compute the necessary corrections. The steps of the algorithm are:

• Feed-forward computation

• Backpropagation to the output layer

• Backpropagation to the hidden layer

• Weight updates

The algorithm is stopped when the value of the error function has become
sufficiently small.

2.3 LSTM
Gradient-based learning methods have a problem: in some cases, the gra-
dient will be small and prevents the weight from changing its values and
this may stop the neural network from further training. This is known as
the vanishing gradient problem. To address this problem, we introduce the
LSTM (Long Short-Term Memory) network.

19

LSTMs ensure that a constant error is mantained to allow the RNN (re-
current neural network) to learn over long time steps, which enables it to
associate problems and its effects remotely. This is particularly useful when
we need more context during the analysis. In fact, RNNs are unable to learn
as the gap between two information grows.
The default behavior of LSTMs is remembering information for long periods
of time. LSTMs have the same chain-like structure of an RNN but, instead
of having a single neural network layer, there are four which interact in a
specific way. Let’s start from the cell state, that is the conveyor of the in-
formation and can be view as an horizontal line that has only minor linear
interactions. As the data flows inside the cell state, LSTM can add or remove
information and this action is regulated by structures called gates. Gates are
a way to let information through, with a sigmoid neural network layer and a
pointwise multiplication operation. As already seen, the sigmoid layer out-
puts numbers between zero and one, describing how much of the component
should be let through: zero means the block of the information, one means
that all the information passes through. A LSTM has three gates to protect
and control the cell state.
Let’s see step by step how the information flows in the LSTM, first of all in
a rough manner, then more precisely.
The focus is on what information to throw away from the cell state. This
decision is done by the sigmoid layer called the ”forget gate layer”. So, in
the cell state Ct−1, the sigmoid outputs a number between 0 and 1 (1 is
”completely keep the information”). The next step is to decide what new in-
formation we are going to store in the cell state. This is done in two parts: a
sigmoid layer called the ”input gate layer” decides which values we’ll update.
Then a tanh layer creates a vector of new candidate values C̃t, that could be
added to the state. Then, combining the former two steps, we can create an
update to the state.
So the old cell state Ct−1 is updated into the new cell state Ct. All has been
decided in the previous steps. We multiply the old state by a function and
forget the thing we decided to forget earlier. Then we add C̃t multiplied by
the output of the sigmoid. This is the new candidate value, scaled by how
much we decide to update each state.
Finally we decide what we are going to output by running a sigmoid layer
and putting the cell state trough tanh (the values will be between −1 and
1) and multiply it by the output of the sigmoid gate, so that we only output
the parts we decided to.

20

Figure 4: Schematic view of a Simple recurrent network (left) and a Long
Short-Term Memory block (right) as used in the hidden layers of a recurrent
neural network.

Let’s be more precise.

A LSTM block has three gates (input, forget, output), a block input, a
single cell (the Constant Error Carousel), an output activation function, and
peephole connections. The output of the block is recurrently connected back
to the block input of all the gates. In figure 4 a schematic view of a LSTM
is showed.
Let xt be the input vector at time t, N be the number of LSTM blocks and
M the number of inputs. We have the following weights for an LSTM layer:

• Input weights: Wz,Wi,Wf ,Wo ∈ RN×M

• Recurrent weights: Rz,Ri,Rf ,Ro ∈ RN×M

• Peephole weights: pz, pi, pf , po ∈ RN

• Bias weights: bz, bi, bf , bo ∈ RN

21

Then the vector formulas is written as:

z̄ = WzX
t +Rzy

t−1 + bz

zt = g(z̄t) block input
īt = Wix

t +Riy
t−1 + pi ⊙ ct−1 + bi

it = σ(̄it) input gate
f̄ t = Wfx

t +Rfy
t−1 + pf ⊙ ct−1 + bf

f t = σ(f̄ t) forget gate
ct = zt ⊙ it + ct−1 ⊙ f t cell
ōt = Wox

t +Roy
t−1 + po ⊙ ct + bo

ot = σ(ōt) output gate
yt = h(ct) ⊙ ot block output

σ, g and h are point-wise non-linear activation functions. The logistic
sigmoid (σ(x) = 1

1+e−x) is used as gate activation function and the hyperbolic
tangent (g(x) = h(x) = tanh(x)) is used as the block input and output
activation function. Point-wise multiplication of two vectors is denoted by
⊙.
Then the deltas inside the LSTM block are calculated as:

δyt = ∆t +RT
z δz

t+1 +RT
i δ

t+1
i +RT

f δf
t+1 +RT

o δo
t+1

δōt = δyt ⊙ h(ct) ⊙ σ′(ōt)
δct = δyt ⊙ otδh′(ct) + po ⊙ δōt + pi ⊙ δīt+1 + pf ⊙ δf̄ t+1 + δct+1 ⊙ f t+1

δf̄ t = δct ⊙ ct−1 ⊙ σ′(f̄ t)
δīt = δct ⊙ zt ⊙ σ′(̄it)
δz̄t = δct ⊙ it ⊙ g′(z̄t)

∆ is the vector of deltas passed down from the layer above. E is the
loss function and formally corresponds to ∂E

∂yt , but not includes the recurrent
dependencies. The deltas for the inputs are only needed if there is a layer
below that needs training, and can be computed as follows:

δxt = W T
z δz̄

t +W T
i δī

t +Wfδf̄
t +Woδō

t (2.9)

The gradient for the weights are calculated as follows, where ⋆ can be any

22

of {z̄, ī, f̄ , ō}, and ⟨⋆1, ⋆2⟩ is the outer product of two vectors:

δW⋆ =
T∑

t=0
⟨δt

⋆, x
t⟩ δpi =

T −1∑
t=0

ct ⊙ δīt+1

δR⋆ =
T −1∑
t=0

⟨δ⋆t+1, yt⟩ δpf =
T −1∑
t=0

ct ⊙ δf̄ t+1

δb⋆ =
T∑

t=0
δt

⋆ δpo =
T∑

t=0
ct ⊙ δōt

2.4 DeepAR
Let’s show now the principal model used we will use for anomaly detection.
The model will do probabilistic forecasting, estimating the probability dis-
tribution of a time series’ future given its past, by applying deep learning.
Today the forecasting is done by using small groups of time series and inde-
pendently estimating parameters from past observations.
In recent years, a new problem has arisen: the need to predict thousand or
millions related time series. In this context, a great amount of data on past
behavior of similar time series can be leveraged for making a forecast for an
individual time series. Relations between time series allows fitting a more
complex models.
The model used in our search for anomaly is DeepAR, that is based on au-
toregressive recurrent network, which learns a global model from all time
series in the data set. The most important problem that DeepAR can solve
is that multiple time series differ widely and the distribution is skewed. If for
individual time series we can use ARIMA models and exponential smooth-
ing, the use of multiple time series is difficult because of the heterogeneous
nature of data. The characteristics that make probabilistic forecasting the
right choice for anomaly detection is that with this model we see the full
predictive distribution and, in order to obtain accurate distributions, we use
a negative Binomial likelihood, which improves accuracy.
Let’s denote the value of time series i at time t by zi,t. We want to model
the conditional distribution:

P (zi,t0:T |zi,1:t0−1, xi,1:T) (2.10)

of the future of each time series [zi,t0 , zi,t0+1, ..., zi,T] := zi,t0:T given its
past [zi,1, ..., zi,t0−2, zi,t0−1] := zi,1:t0−1 where t0 is the time point from which

23

we assume zi,t to be unknown at prediction time and xi,1:T are the covari-
ates that are assumed to be known for all time points. We will avoid ”past”
and ”future”, we will only refer to time ranges [1, t0 − 1] and [t0, T] as the
conditioning range and prediction range, respectively. During training, both
ranges have to lie in the past so that zi,t are observed, but during prediction
zi,t is only available in the conditioning range.
The model is based on an autoregressive recurrent network architecture. The
assumption is that our distribution QΘ(zi,t0:T |zi,1:T , xi,1:T) consists of a prod-
uct of likelihood factors

QΘ(zi,t0:T |zi,1:t0−1, xi,1:T) =
T∏

t=t0

QΘ(zi,t|zi,1:t−1, xi,1:T) =
T∏

t=t0

ℓ(zi,t|θ(hi,t,Θ))

(2.11)
parametrized by the output hi,t of an autoregressive recurrent network

hi,t = f(hi,t−1, zi,t−1, xi,t,Θ), (2.12)

where f is a function implemented by a multi-layered recurrent neural
network with LSTM cells. The model is autoregressive because takes the ob-
servations at the last time step zi,t−1 as input, as well recurrent because the
previous output of the network hi,t−1 is fed back as input at the next time
step. The likelihood ℓ(zi,t|θ(hi,t)) is a fixed distribution whose parameters
are given by a function θ(hi,t,Θ) of the network output hi,t.
Information about the observation in the conditioning range zi,1:t0−1 is trans-
ferred to the prediction range through the initial state hi,t0−1. Given the
model parameters Θ we can obtain joint samples ẑi,t0:T ∼ QΘ(zi,t0:T |zi,1:t0−1, xi,1:T)
through ancestral sampling: we obtain hi,t0−1 by computing 2.12 for t =
1, ..., t0. For t = t0, t0 + 1, ..., T we sample ẑi,t ∼ ℓ(·|θ(ĥi,t,Θ)) where ĥi,t =
f(hi,t−1, ẑi,t−1, xi,t,Θ) initialized with ĥi,t0−1 = hi,t0−1 and ẑi,t0−1 = zi,t0−1.
Samples from the model obtained in this way are used to calculate quantiles
of the distribution of the sum of values for some time range in the future.
The likelihood should be chosen to match the statistical properties of the
data. Multiple likelihood can be chosen, such as Gaussian, negative bino-
mial or Bernoulli. We can choose mixture, because we can easily obtain
samples from the distribution, and log-likelihood and its gradients can be
evaluated.
Gaussian likelihood is parametrized by its mean and standard deviation,

24

θ = (µ, σ):

ℓG(z|µ, σ) = (2πσ2)1/2 exp(−(z − µ)2/(2σ2))
µ(hi,t) = wT

µhi,t + bµ and σ(hi,t) = log(1 + exp(wT
σ hi,t + bσ)).

The negative binomial distribution is instead parametrize by its mean µ ∈ R+

and a shape parameter α ∈ R+,

ℓNB(z|µ, α) =
Γ(z + 1

α
)

Γ(z + 1)Γ(1
α
)

(
1

1 + αµ

) 1
α
(

αµ

1 + αµ

)z

µ(hi,t) = log(1 + log(1 + exp(wT
µhi,t + bµ))) and α(hi,t) = log(1 + exp(wT

αhi,t + bα)).

In this parameterization of the negative binomial distribution the shape
parameter α scales the variance to the mean: Var[z] = µ+ µ2α and this fact
leads to fast convergence.
So, given a data set of time series {zi,1:T }i=1,...,N and associated covariates
xi,1:T , obtained by choosing a time range such that zi,t in the prediction range
is known, the parameter Θ of the model, consisting of the parameters of the
RNN f(·) as well as the parameter of θ(·), can be learned by maximizing the
log-likelihood

L =
N∑

i=1

T∑
t=t0

logℓ(zi,t|θ(hi,t)). (2.13)

As hi,t is a deterministic function of the input, all quantities required to
compute 2.13 are observed, so that no inference is required and 2.13 can be
optimized directly via stochastic gradient descent by computing gradients
with respect to Θ.
For each time series in the dataset we can generate multiple training instances
by selecting windows with different start points from the original time series.
The total length T is kepts as well as the relative length of the conditioning
and prediction ranges. For example , if (as in our case) the total available
range for a given time series ranges from 2018-10-01 to 2019-05-14, we can
create training examples with t = 1 corresponding to 2018-10-01, 2018-10-
02,2018-10-03 and so on. When choosing these windows we ensure that
the entire prediction range is always covered by the available ground truth
data, but we may choose t = 1 to lie before the start of the time series, for
example 2018-09-01 in our case, padding the unobserved target with zeros.
This allows the model to learn the behavior of ”new” time series taking

25

into account all other available features. By augmenting the data using
this window procedure, we ensure that information about absolute time is
only available to the model through covariates, but not through the relative
position of zi,t in the time series.

3 Application: anomaly detection in bank ap-
plication use

Let’s now see how we apply the models introduced above in cybersecurity
case; obviously the applications in cybersecurity or in other fields (like ca-
pacity monitoring) can be extended to a great amount of cases.

Problem: Anomalies in logs regarding applications used by bank branches and
related to bank operations are generally crucial for cybersecurity mon-
itoring. Even a little change in the behavior of the person working on
this apps can be symptom of something malicious happening, like for
example a suspicious operator intent or a keylogger connected to the
branch pc.

In order to circumscribe the problem and to be able to let the model run
even on personal workstation, we consider only a branch with 10 operators
working on sensitive apps, we collect the log starting from 2018-10-01 until
2019-05-14 and we see the model predictions day by day, starting from 2019-
05-02 in order to find anomalies that can be indicator of ongoing malicious
activity.

The most important time series considered are related to the aspects of
the activity (all done hourly and all reduced to numeric values): general
operations done by the user, specific app used, specific function of the app
used, value returned from the app.

The models introduced above are used to forecast future values, see how
much the hourly observed values differs from the predicted ones and, after
that, find time-points with the largest negative log-likelihood. These points
(if found) are the anomalies we want to detect.

26

Figure 5: Normal behavior of bank operator

First of all we normalize all the features in order to have values between
zero and one and to make this values suitable for our gradient-based esti-
mator. Our prediction length, i.e. the forecast horizon, will be made of 24
hours multiplied by the days we want to predict: from the 2th of May to the
14th of May, so 24 × 13.

We will plot the 90% prediction interval, the 50% prediction interval and
the median prediction. These values will be compared with the observed
values in our test data in order to find suspicious behavior related to bank
applications usage.

As we see in figure 5, normal user activity on the 10th of May falls inside
the prediction interval and it’s an indicator of absence of anomalies.
In figure 6 we can clearly see anomalous behavior. In order to better evaluate
the anomaly, we extend the period as in figure 7 and we see that the prediction
made by our model and based on our time series is totally different from
what’s happening.
We introduce figure 8, where red line indicates the observed behavior found
by the model on larger scale (based on the largest negative log-likelihood),

27

Figure 6: Anomalous behavior of bank operator with 2-days forecasting

only to clearly show how the model investigates the behavior on different
dimensions and doesn’t made a ”naive” analysis sic et simpliciter on one-
dimensional peaks.
Let’s finally look at the evaluation of the model. We get a MSE (Mean squared
error) of 0, 02, a MASE(Mean Absolute Error) of 1, 13 and an rMSE of 0, 15.

28

Figure 7: Anomalous behavior of bank operator with a week forecasting

Figure 8: Anomalous behavior of bank operator during longer period. In red
the anomaly. As we can see, the model looks for the anomalies on different
plans, not only on the immediately visible peaks.

29

4 Conclusion
Anomaly detection using time series and deep learning methods is a powerful
tool not only in cibersecurity but in other IT fields. In this paper the exper-
iment has been reduced in order to make it work on personal workstation,
but the results and the applications can be improved in different ways.
In view of the fact that the LSTM network can perform better with a great
amount of data, a big number of series can be added to the few ones consid-
ered here. With the addition of other historical data related to other aspects
of the problem we are facing, we can drastically improve the prediction power.
Other ways of forecasting time series using deep learning techniques, such as
Deep State or Deep Factors, can also be considered and developed.
Concerning cybersecurity, anomaly detection can help in finding suspicious
behavior in nearly every part of the infrastructure. Here we have considered
only bank applications used by branches, but this research for anomaly can
be done in antifraud fields, on firewalls, on proxy traffic, on VPN traffic and,
outside cybersercurity for example, in capacity management and performance
monitoring.

30

References
[1] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert,

J. Gasthaus, T. Januschowski, D. C. Maddix, S. Rangapuram, D. Sali-
nas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang, Glu-
onTS: Probabilistic Time Series Modeling in Python, arXiv preprint
arXiv:1906.05264 (2019).

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton, Layer nor-
malization, arXiv preprint arXiv:1607.06450 (2016).

[3] Michèle Basseville, Igor V Nikiforov, et al., Detection of abrupt changes:
theory and application, vol. 104, Prentice Hall Englewood Cliffs, 1993.

[4] Peter J Brockwell and Richard A Davis, Introduction to time series and
forecasting, springer, 2016.

[5] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber, Lstm: A search space odyssey, IEEE transactions
on neural networks and learning systems 28 (2016), no. 10, 2222–2232.

[6] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Col-
well, and Tom Soderstrom, Detecting spacecraft anomalies using lstms
and nonparametric dynamic thresholding, Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ACM, 2018, pp. 387–395.

[7] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh
Vig, Puneet Agarwal, and Gautam Shroff, Lstm-based encoder-decoder
for multi-sensor anomaly detection, arXiv preprint arXiv:1607.00148
(2016).

[8] Daehyung Park, Hokeun Kim, Yuuna Hoshi, Zackory Erickson, Ariel
Kapusta, and Charles C Kemp, A multimodal execution monitor with
anomaly classification for robot-assisted feeding, 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), IEEE,
2017, pp. 5406–5413.

[9] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski,
Deepar: Probabilistic forecasting with autoregressive recurrent networks,
International Journal of Forecasting (2019).

31

[10] Alex Sherstinsky, Fundamentals of recurrent neural network (rnn)
and long short-term memory (lstm) network, arXiv preprint
arXiv:1808.03314 (2018).

[11] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka, A multi-horizon quantile recurrent forecaster, arXiv preprint
arXiv:1711.11053 (2017).

32

	Time series forecasting
	Introduction
	Time series
	Trend and Seasonality estimation
	Prediction
	From ARMA to ARIMA models
	Forecasting ARIMA models

	Forecasting with recurrent networks
	Introduction
	Neural networks
	LSTM
	DeepAR

	Application: anomaly detection in bank application use
	Conclusion

