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Abstract In this paper, a successful approach for the visualization of the solutions of initial value 

problems using different Runge-Kutta methods by developing a new graphical user interface (GUI), has 

been introduced. The main objective of the paper is to apply the tkinter, numpy[1] and matplotlib[2] 

modules of the Python programming language in developing a GUI that would enable the user to appreciate 

the accuracy of each Runge-Kutta method at different step size/increment. The second purpose of this paper 

is to develop a python module that contains functions that can be imported to .py files when the need to 

implement Runge-Kutta methods on initial value problems arises. The GUI was used to solve and plot the 

solutions of an initial value problem. The variations in the graph patterns illustrate the accuracy of the 

output of each method. 
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1. Introduction  

Euler and Heun methods 

In numerical analysis, the Runge-Kutta methods are a family of iterative methods, which includes the well-

known routine called the Euler method, used in temporal discretization for the approximate solution of 

ordinary differential equations. These methods were developed by the German mathematicians Carl Runge 

and Wilhelm Kutta[3]. 

Euler’s method is one possible approach for solving differential equations with a given initial value 

numerically. Euler’s method assumes the solution is written in the form of a Taylor’s series. For Euler’s 

method, we just take the first two terms only. 

y(x + h) ≈  𝑦(𝑥) + ℎ𝑦′(𝑥)    (1) 

Euler’s method is useful because differential equations appear frequently in physics, chemistry, and 

economics, but usually cannot be solved explicitly, requiring their solutions to be approximated. The 

problem with Euler’s method is that you have to use a small interval size to get a reasonably accurate result. 

The Heun’s method is an improvement over the rather simple Euler’s method. Although the method uses 

Euler’s method as a basis, it attempts to compensate for the Euler’s method failure to take the curvature of 

the solution curve into account. Heun’s method is one of the simplest of a class of methods called the 

predictor-corrector algorithms. 
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2. Runge-kutta methods  

The table below gives the formulas for calculating values of Kn   (n = 1, 2, 3, 4, 5, 6) as well as the new 

value y after each iteration for different Runge-Kutta methods. [4] 

RK 
method 

Kn       (n = 1 , 2, 3, 4, 5, 6) y1 

RK2A k1 = f(x,y) 
 
k2 = f(x + h, y + (h x k1)) 

y1 = y + ((h / 2) x (k1 + k2)) 

RK2B k1 = f(x,y) 
 
k2 = f(x + (0.5 x h), y + (0.5 x h x k1)) 

y1 = y + (h x k2) 

RK2C k1 = f(x,y) 
 
k2 = f(x + ((3 / 4) x h), y + ((3 / 4) x h x k1)) 

y1 = y + ((h / 3) x (k1 + (2 x k2))) 

RK3 k1 = f(x,y) 
 
k2 = f(x + (h / 2), y + ((h x k1) / 2)) 
 
k3 = f(x + h, y - (h x k1) + (2 x h x k2)) 

y1 = y + ((h / 6) x (k1 + (4 x k2) + 
k3)) 

RK4 k1 = h x f(x, y) 
 
k2 = h x f(x + (0.5 x h), y + (0.5 x k1)) 
 
k3 = h x f(x + (0.5 x h), y + (0.5 x k2)) 
 
k4 = h x f(x + h, y + k3) 

y1 = y + ((1.0/6.0) x (k1 + (2 x k2) + 
(2 x k3) + k4)) 

RK5 
(Butcher’s 
fifth-order 
Runge-
Kutta 
method) 

k1 = f(x, y) 
 
k2 = f(x + (h / 4), y + (h x k1 / 4)) 
 
k3 = f(x + (h / 4), y + (h x k1 / 8) + (h x k2 / 8)) 
 
k4 = f(x + (h / 2), y - (h x k2 / 2) + (h x k3)) 
 
k5 = f(x + (3 x h / 4), y + (3 x h x k1 /16) + (9 x h x 
k4 / 16)) 
  
k6 = f(x + h, y - (3 x h x k1 / 7) + (2 x h x k2 / 7) + 
(12 x h x k3 / 7) - (12 x h x k4 / 7) + (8 x h x k5 / 7)) 
 

y1 = y + ((h / 90) x ((7 x k1) + (32 x 
k3) + (12 x k4) + (32 x k5) + (7 x 
k6))) 

RKF45 
(Runge-
Kutta-
Fehlberg 
method) 

k1 = f(x,y) 
 
k2 = f(x + (h / 5), y + (h x k1 / 5)) 
 
k3 = f(x + (3 x h / 10), y + (3 x h x k1 / 40) + (9 x h 
x k2 / 40)) 
 
k4 = f(x + (3 x h / 5), y + (3 x h x k1 / 10) - (9 x h x 
k2 / 10) + (6 x h x k3 / 5)) 
 
k5 = f(x + h, y - (11 x h x k1 /54) + (5 x h x k2 / 2) - 
(70 x h x k3 / 27) + (35 x h x k4 / 27)) 

y1 = y + (h x ((37 x k1 / 378) + (250 x 
k3 / 621) + (125 x k4 / 594) + (512 x 
k6 / 1771))) 
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k6 = f(x + (7 x h / 8), y + (1631 x h x k1 / 55296) + 
(175 x h x k2 / 512) + (575 x h x k3 / 13824) - 
(44275 x h x k4 / 110592) + (253 x h x k5 / 4096)) 

 

3. rungeKutta module 

The rungeKutta module contains functions that helps to compute the solutions of differential 

equations using the Runge-Kutta methods. Contained in the module are the second-, third- and 

fourth-order methods, as well as Butcher’s fifth order method and Runge-Kutta-Fehlberg method.  

The functions in the module can be accessed from another .py file with the command: 

import rungeKutta as rk 

To utilize this module, the user has to define the differential equation to be passed as an argument 

to the functions. The parameters of the functions in this module are the initial values of x and y, 

the increment at the end of each iteration i.e. step size, the desired number of iterations and the 

user-defined differential equation. For example, to utilize the RK2A method, the syntax is: 

rk.RK2A (initial x, initial y, step size, number of iterations, differential function) 

 

Figure 1: Importing and utilizing the rungeKutta module 

In Figure 2, the function, f(x,y) is the differential equation with variables x and y passed as the 

parameters. 
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4. rkgui.py 

 

Figure 2: The GUI 

The rkgui.py file imports the rungeKutta module in the design of a GUI for the visualization of 

results obtained using any of the Runge-Kutta schemes. It comprises entry boxes for specifying 

the initial values of the function we wish to evaluate, the desired increment per step, the number 

of steps, the first derivative of the function of interest and a final entry box for the exact function 

for differential equations whose exact solutions can be obtained. 

The GUI also includes a set of buttons. These buttons allows users to specify the desired scheme 

to evaluate the differential equation typed into the appropriate text box. The plot button passes the 

command to the GUI to plot the x and f(x) values but does not show the plot. The show plot button 

displays the the plot of f(x) against x. After computing the values of the specified function over 

the specified number of iterations, the results are displayed on the scrolled text widget of the GUI.  

The GUI utilizes the tkinter module, while the plot utilizes the matplotlib and numpy modules. 
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Figure 3: The GUI with output 

 

5. Case study and Results 

The GUI was used to solve and produce the plots of the numerical and exact solutions of the 

following initial value problem: 

𝑦′ =  𝑒−2𝑥 − 2𝑦   (2) 

With y(0) = 0.1 on [0,2] and step size h = 0.2 and h = 0.1. 

The exact solution is: 

𝑦(𝑥) =  
1

10
𝑒−2𝑥  + 𝑥𝑒−2𝑥  (3) 
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Figure 3: After calling the plot function via the plot and the show plot buttons  

 

h = 0.1 

 

Figure 4: Second-order Runge-Kutta method RK2A 
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Figure 5: Second-order Runge-Kutta method RK2B 

 

Figure 6: Second-order Runge-Kutta method RK2C 
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Figure 7: Third-order Runge-Kutta method RK3 

 

Figure 8: Fourth-order Runge-Kutta method RK4 
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Figure 9: Butcher’s fifth-order Runge-Kutta method RK5 

 

Figure 10: Runge-Kutta-Fehlberg method RKF45 

 



10 
 

h = 0.2 

 

Figure 11: Second-order Runge-Kutta method RK2A 

 

Figure 12: Second-order Runge-Kutta method RK2B 
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Figure 13: Second-order Runge-Kutta method RK2C 

 

Figure 14: Third-order Runge-Kutta method RK3 
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Figure 15: Fourth-order Runge-Kutta method RK4 

 

Figure 16: Butcher’s fifth-order Runge-Kutta method RK5 
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Figure 17: Runge-Kutta-Fehlberg method RKF45 

 

6. Conclusions/Discussions 

The main objective of the paper is to develop a GUI that would enable the user appreciate the 

accuracy of the Runge-Kutta methods. A major issue of the GUI is the need for users to supply the 

differential functions in terms of lowercase ‘x’ and lowercase ‘y’. This is partly as a result of the 

case-sensitivity of the Python programming language and partly because the source code for this 

portion of the GUI wasn’t written in such a way as to make it flexible enough to understand other 

symbolic representation besides ‘x’ and ‘y’. Added to this is the requirement that the equations 

must be typed using the Python programming language syntax. The GUI was applied to an initial 

value problem and the results obtained shows the efficiency, accuracy and reliability of the GUI, 

despite its simplicity and the aforementioned issues. 
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