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Abstract
We introduce the idea of Solid Strip Configurations which is a way of
describing 3-dimensional compact manifolds alternative to A-complexes
and CW complexes. The proposed method is just an idea which we believe
deserve further formal mathematical investigation.
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1 Introduction

Compact manifolds of dimension higher then 2 are very hard to study and clas-
sify. Starting from a method for the 2D case and focusing on 3D manifolds, we
propose in this paper a method, alternative to A-complexes and CW complexes,
to describe these manifolds which, if further developed, we believe may results
very convenient.

2 Strip Configurations in 2-Dimensions

2.1 Main Definitions

A Strip is a 2-dimensional manifold with boundaries obtained by identifying
2 opposite edges of the 4 edges of a square. It can be done without a twist
(Untwisted Strip) or with a twist (Mobius strip).

A Strip Configuration is a finite set of strips, crossing each other or not,
such that it exist a compact 2-dimensional manifold in which the set of strips can
be embedded. An example of two strings that do not form a string configuration
is given in Fig. la. Once we embed the strips on such a manifold we are allowed
to move the strips on the manifold at will. If a and b are two strips then we will
use the notation a < b for the configuration obtained by making a and b crossing
1 time.

A non path connected strip configuration can always be changed in a path
connected one according to the following procedure: 1-embed the strips in a com-
pact two dimensional manifold; 2- bring two strips from two non path connected
subset of the configuration close each other without changing the configuration
of the two subset(see Fig. 1b); 3- overlap the two trips so that they cross in two
points (see Fig. 1b).
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Figure 1: Definition of String Configuration
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Note that the boundary of a string configuration is made of a finite number of
sub-boundaries (i.e. non path connected parts) each of which being a circles
(i.e. S'). The Associated (Compact) Manifold to a strip configuration is
the compact manifold obtained by making the configuration path connected (if
it is not) and identifying the boundary of a disk (D?) to each sub-boundaries
of the strip configuration. We will use the notation Q(A) for the associated
manifold to the strip configuration A.

Two strip configurations are Homeomorphic Associated Equivalent if
their associated manifolds are homeomorphic or, which is the same, if once
embedded in the associated manifold one string configuration can be changed
into the other by moving the strips on the manifold and deforming the man-
ifold by means of continuous transformations. In the process each strip shall
always keep its own identity even when it crosses other strips with continuous
transformations meaning that a strip cannot be cut and glued to form other
strips. Two strip configurations are Homotopy Associated Equivalent if
their associated manifolds are homotopy equivalent.
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Figure 2: 1 and 2 Strip Configurations

In a strip configuration a string can be twisted n times (with n > 0) (if n
is even then the string is homomorphic to an untwisted strip, if n is odd to a
Mobius strip) and two strips can cross each other m times (with m > 0).

We want to give now some criteria for two strip configurations to be homeo-
morphic associated equivalent. Some of these criteria are not obvious and should
be formally proved.

1. A non path connected strip configuration and the path connected one
obtained from it using the procedure explained in the paragraph above



are equivalent.

2. An untwisted strip that does not cross any other strip can be removed
from the configuration because this is equivalent to removing from the
associated manifold a sphere which is sum connected to the manifold.

3. Given a strip configuration, this is equivalent to the same strip configu-
ration where strips that are twisted an odd number of times are replaced
by Mobius strips and strips that are twisted an even number of times are
replaced with untwisted strips.

We note that the direct sum of 2-dimensional manifolds has a non path
connected strip configuration given by the union of the two strip configurations
of the two manifolds.

However, the above criteria are not enough and we want to evaluate equiva-
lences by calculating topological invariants on the configurations. Strip config-
urations are very convenient from this point of view because the fundamental
group of the associated manifold can be easily computed from its strip configu-
ration using the van Kampen theorem.

To evaluate the fundamental group, the generators are given by the open
maximal spanning graph obtained from the graph we get homotopyng each strips
to a 1- dimensional space (i.e. we turn strips into lines) while the conditions to
present the group can be evaluated on the strip configuration itself.
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Figure 3: Strip Configurations Fundamental Groups

We will show this with some examples. In figure Fig. 3 we show some
strips configurations with the generators used to have the free non commutative
groups. The conditions to present the fundamental group of the associated
manifold are drawn in a ”polygonal picture” under each configuration. These
conditions are obtained starting from a point and adding the generators (group
are presented with an additive operation although unusual for non commutative
groups) that we encounter on the boundary going all around till we get to the
same point.

For case of Fig. 3a the condition lead to the group m = Z & Zs which is
the group of the Klein bottle. For case 3b, we have ¢ = d which, with a simple
algebraic manipulations give the condition presented in the two polygon under
the configuration in the figure. These lead to the group m; = Z @ Zs which is



the group of the Klein bottle. For case 3.c, from the two conditions we have
that @ = b and therefore the two conditions became a —a = 0 and b+ b = 0.
Once again these lead to the group m; = Z @ Zs which is the group of the
Klein bottle. Condition of Fig. 3d leads to the commutative free group on two
generators which is the group of the torus m = Z2.

We note that for cases of Fig. 3b and 3¢ we need to manipulate the conditions
algebraically to permute the names of edges for the polygonal representation end
this because in each polygon we want to have pairs of edges with the same name.

2.2 Represented 2D Manifolds

A question we may ask is how many compact 2D manifolds we can represent
with strip configurations. We have the following proposition:

Proposition 2.1: If a 2D compact manifold has a A-complex representa-
tion, then it has also a strip configuration representation.

Rather then proving the above proposition we will sketch an argument that
shows the relationship between homology groups and strip configurations which
lead to a constructive procedure for defining strip configurations (may be more
then one) associated to a 2D compact manifold from its A-complex. This argu-
ment, if fully developed, would lead to the proof of the above proposition.

We will show our argument with an example. Given the Klein bottle, its Hy
homology group is Hy = Z+ Z,. This group tells us that there are two separate
classes of loops in the manifold, which is one class (of trivial homotopy loops)
plus the rank of H;. The first loop (i.e. class of loops) can be ignored because
it is contractable to a point. We have also the Zs term that tells use that in the
above two classes there is somewhere a second loop (or even one for each class)
which needs to go around twice to be contractable to a point. An analysis of
the manifold shows indeed that such a loop exists and therefore we end up with
two separate loops. With abuse of terminology we may say that the first loop
is orientable, meaning that a flat man living in the surface and walking on the
loop would go back to the original point staying on the same side of the surface
with respect of the loop, and the second loop is not orientable.

The above loops may be used to define strips. To have a strip we need
two loops. We have 3 possibility. 1— we may take two copies of the orientable
loop, the second one displaced by a JL from the first one, together with the
surface between the two loops. This defines an untwisted strip. 2— we may
take two copies of the non orientable loop with the area between them, once
again with the second loop sightly displaced, but this time with the two loops
concatenated otherwise they would cross each other. This defines a Mobius
strip. 3— we may take a copy of the orientable loop and a copy on the non
orientable loop concatenated, so that they do not cross, move them close each
other and take the area between them. This would defines a Mobius strip.

We see that we have three separate strips that can be embedded in the
surface. However a configuration with three strip would be redundant since half
of the boundary of two strips would coincide with the two half boundaries of
the third strip. The strip configurations we are looking for are therefore formed
by two strips and we may take any two strips of the three above.



This is why we have two strip configurations associated to the Klein bottle.
The first one is formed by an untwisted strip crossing a Mobius strip and the
second one is formed by two Mobius strip crossing. The above example together
with the relevant procedure to derive strip configurations can be extended to
any 2D compact manifold.

3 Motivation for 3-Dimensions Strip Configura-
tions

If we think for a moment to what we did in the previous paragraph we see that
we represent 2D manifold starting from strip configurations or, another way to
see it, we use 2D strips to probe a 2D space in a similar way homotopy theory
does with loops. Given a strip configurations, this may not be embedded in R?
but it does exist a minimal (in away that may be made precise using the concept
of associated space) 2D compact manifold where this strip configuration can be
embedded. In other words a strip configuration defines a compact 2D manifolds
in the same way a CW complex or a A-complex does.

This way to probe spaces has the advantage to see differences in some spaces
that are homotopy equivalent. The most trivial example (although with bound-
aries) is the Mobius strip which is homotopy equivalent to S!. However, in this
space obviously a smaller Mobius Strip can be embedded while the same cannot
be done in the circle.

Me may think to have a look to a strip configuration and see immediately
what "strip loop” are present and tell in this way if two spaces are the same.
However, the examples from Fig. 3c show that this is not so straight forward.
In order to solve the problem we have build groups based on the boundaries of
the strip configurations, using the the van Kampen theorem, that are eventually
fundamental groups.

We will show later that we may defines some sort of 3D strips and there
are at least 15 of them. Once combined in configurations, this leads to an huge
amount of combinations, which may somehow be used to represent 3-manifold
in a convenient way.

Obviously, before we do that, we need to show what a 3D strip is and what
their configurations are. This will be done in the following sections.

4 Strip Configurations in 3-Dimensions

4.1 Main Definitions

In 2-dimensions we use 2-D strips obtained by identifying one couple of opposite
edges of the two couples of edges of a square. In 3-dimensions we will use Solids
Strips which are 3-D ”strips” obtained by identifying two couples of opposite
faces of the three couples of faces of a cube.

This manifolds have been studied in the paper [1] where they are named
”Solid Strips”.

The boundary of a solid trip is build by identifying the edges of two squares
and what we get may form one or two sub-boundaries. The total homeomorphic
configurations of Solid Strips are 21 (reported in Appendix A.1) but they may



be further reduced to 15 Homology equivalent classes of solid strips with the
same boundary and same homology groups (see [1]).

Solid strips are 3-manifolds or, another way we see it, they are Thick Com-
pact 2D Surfaces where by that we mean that they are like surfaces expanded
by a 6L in the third dimension which, by sake of visualization for the reasoning
that will follow, we may think to be small with respect to the surface itself when
needed.

Broadly speaking, and taking into account the approximation that the fol-
lowing sentence has, solid strips are thick surfaces that look like tori or Klein
bottles because they are like pipes that are joint at their far ends in various
way. In R3, tori intersect in two ways. In one circle (type 1 intersection) as
shown in Fig 5a or in two circles (type 2 intersection) as shown in fig 5b. Solid
strips cross (i.e. intersect) in the same way tori do but being tick surfaces they
intersect in solid tori rather then circles. When locally embedded (i.e. just a
little piece of them) in R3, they cross in one solid torus (type 1 intersection) or
2 path disconnected solid tori (type 2 intersection). We are always interested
in the last kind of crossing (type 2 intersection) and from now on when we say
that two strips intersect we mean that we have a type two intersection.
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Figure 4: Crossing of two Tiles

We can get solid strips by identifying opposite faces of cubes. Being tick
surfaces, for sake of representation, we can imagine the above cubes to have
one dimension smaller then the others so that they look like tiles. Fig 4c,
shows a type 2 intersection between strips represented by the above mentioned
tiles. This is a type two intersection because in R3, when we identify the up
and down faces and two opposite faces of the tiles to get the relevant strips,
we cannot avoid to have the tiles to cross a second time. However, in higher
dimensions we can identify the faces to get the strips without having a second
intersection. In higher dimensions two solid strips can cross (intersect) with a
type 2 intersection any zero, odd or even number of times in perfect analogy
with the 2D case. Another way to see that in higher dimensions two solid strips
can cross only once, is from Fig 4b. If we take one of the two intersections and
we move one of the two tori in the intersection along the 4** dimensions, this
will not intersect the other torus any more.

We will call a Solid Strip Configuration a bunch of solid strips that cross
each other (type 2 intersection) a finite number of times in the same way 2-strips
cross forming the 2-strip configurations described in the paragraphs above. If a
and b are two solid strip then we will use the notation a¢b for the configuration
obtained by making a and b crossing 1 time. The boundary of a solid strip
configurations is formed by Sub-Boundaries exactly as in the 2D case.



In analogy with the 2D case, we will call the Associated (Compact) Man-
ifold to a solid strip configurations the 3D compact manifolds that we get by
filing the holes defined by its sub-boundaries (i.e. we attached manifolds to its
boundaries till we get a compact space) in the most simple” topological way
where the meaning of the "most simple” will be clarified further on. In analogy
with the 2D case we will use the notation 2(A) for the associated manifold to
the solid strip configuration A. We note explicitly that a non path connected
strip configuration can be made connected using the same procedure we had for
the 2D case.

We need now to make more mathematically precise the two ideas of ”solid
strip crossing” and "filling the holes” of a configuration. This will be done in
the following two sections.

4.2 Crossing of Solid Strips

We have seen that we have a type 2 intersection when the two tiles A and B,
from which we form the strips, intersect also on two of their faces see Fig. 4c.
In the above figure we see that we can identify the vertical faces of the tiles as
we want in order to get our strips but for the up and down faces, having them
a square in common, we have some imitation in the way we can identify them.
Fig. 5a shows what the up and down face of the two strip (tiles) look like.
In this case we cannot apply all the 8 symmetry of a square for identifying the
up and down faces but only a subgroup of them which preserve the fact that
the up faces of the two tiles are identified with the down faces of the same tile.

Faces to be identified e
A c c
v v
1--<m= 1
E
B Boundary N
X
— O T
<
T of te
X \ v v
Topand bottom faces of e

the two strips Intersect
inthe square

(@ (b) (c)
Figure 5: Crossing of two Solid Strips

The above construction shows, what we mean for a type 2 intersection be-
tween 2 solid strips, although valid only for a limited number of combinations
of solid strips. This does not mean that we cannot have a type 2 intersection
for any two given types of strip.

We can compress the up direction of each tile and draw solid strip configura-
tions as in Fig 5b which give a good idea of what a type 2 intersection with only
one crossing is. Although misleading, for sake of representation, if we ignore
the up direction, we can draw solid strip configurations in a similar way as we
do for the 2D case see Fig. 5c. In this representation the inside of the strip is
represented as a surface but it is a 3D space and the boundaries of the config-
uration are represented as lines but they are surfaces. As for the 2D case, with



the above representation, by following the boundaries of the strip configuration
till we get back to the starting point, we identify sub-boundaries.

4.3 Associated Manifold

Given a strip configuration, we need to give a precise procedure to make its
associated manifold. Given a strip configuration, its sub-boundaries are closed
surfaces. For each sub-boundary in the configuration, we take a 2-A-Complex
decomposition of the sub-boundary and we attach a 3 simplex to each 2-simpex
of it. We identify the three 2-simplices of each of those simplices each other
following the same way the edges simplices of the sub-boundary are. This will
completely "fill the holes” of the solid strip configuration and will give us the
compact manifold we where looking for.

4.4 Represented 3D Manifolds

In the previous section we have defined the associated manifold to a Solid Strip
Configuration. We note explicitly that, in the 3D case, strip configurations may
represent a large class of spaces. As for the 2D case we have:

Proposition 4.3: If a 8D compact manifold has a A-complex representa-
tion, then it has also a solid strip representation.

The above proposition may be proven following an argument similar to the
one used for the 2D case although in 3D all becomes more tricky and, what was
a sketch for a prof in 2D, in 3D it becomes an interesting reasoning but very far
from proving anything.

In 3D we will relate solid strip configurations with the group Hs. This group
will give use a set of equivalence classes of compact surfaces in the manifold
under study (the equivalent of the loops in 2D). If & is the rank of Ha, in analogy
with the 2D case, then we will have k + 1 classes of surfaces, one of homology
trivial surfaces and k classes of surfaces that cross only once to surfaces in the
other classed.

We note explicitly that in the above classes there will be orientable surfaces
and also non orientable surfaces, if the group Hs has a torsion term Zs, in
perfect analogy with the 2D case. This non orientable surfaces correspond to
surfaces that have to go twice around to be homology trivial. There is no torsion
higher then Zs in the group Hy of compact 3D manifolds and therefore we do
not need to look for surfaces that go around more then twice (although this
should be proven). So far so good and we have a set of k + 1 classes of surfaces
which existence can be known just from the rank of the homology group of order
2. This is exactly equivalent to what we did in the 2D case for loops.

The difference with the 2D case is that for each of the above classes of
equivalence, while in 2D loops can be only of two kinds (orientable and non
orientable), in 3D surfaces may be of any kind (Spheres, Klein bottles, Tori,
etc...) and therefore in each class we have to find out what type of surface we
have (and we can have more then one type) and how they cross. At the end
of this process we will have a full set of surfaces and we will know the way
they cross. Some surfaces may be removed for one of the two following reasons:
1- if they can be moved and confined to a flat region of the manifold locally



homeomorphic to R? and do not cross any other strip. 2- if they can be moved
and superimposed to another surface homeomorphic to them in the manifold.
This process will eventually give us a minimal set of surfaces that cannot be
further reduced.

As said before, if k is the rank of the group Ha, we get k + 1 classes of
surfaces each of them containing a set of different surfaces. We believe that,
although this should be proven, if two surfaces belong to the same class and
are homeomorphic, then they cross other surfaces in the same way and can be
superimposed to each other. If that is true, searching for equivalent surfaces
in each class would be much easier. This is something that deserve further
investigation.

In analogy with the 2D case, we turn our set of surfaces to tick surfaces
(i.e. solid strips). As in the 2D case it take two separate copies of an orientable
surface and two copies of a non orientable surface that goes around twice to
make a tick surface. This give us the final solid strip configuration associated
to a given A-complex and its related compact manifold.

In the 2D case we where able to combine separate loops, two at a time, to
get additional redundant strips. The process may be done also in the 3D case
but it is much more difficult to be analysed and it will not be done here. This
point deserve further investigation.

We note explicitly that in the process we may find that for a generic A-
complex the possible compact surfaces lead to tick surfaces that are a subset
of the solid strips defined in [1]. In this case we are fine. If we find out that
we need additional tick surfaces to define any A-complex, then we need to add
these to the set of possible solid strip defined in [1] in order for our theory to
be complete. We will call I' the set of all thick surfaces required to define any
A-complex. Note that I' may turn out to be an infinite set. Once again, this
point is something that deserve further investigation.



Appendix

A.1 Solid Strip Configurations

This appendix contains the full set of solid strips equivalent class configurations.
For more details and for the meaning of the £(a;, b;) notation see [1].

€] | Homology || & o€ x(€)
Class
1 1 £(90, ao) T2 U T? 0
2 2 5(9470,0), E(go,a4) KUK O
3 3 (g4, a4) RP’URP? | 1
4 4 5(937 a’4)’ 5(925 a’4)» 6(947043)7 6(9470'2) RP2 v RP2 2
5 5 £(g3,a3), £(g2, az) X, VX, 2
6 6 £(9s,a5) S? 1
7 7 &(g1,a1) T? 0
8 7 5(917a0)a 5(go,a1) T? 0
9 8 £(95,a0), §(go; as) T2 0
10 9 5(9470’1)) 5(91,04) K 0
11 9 £(g5,a1), £(g1,a5) K 0
12 10 €(g6, as5), £(g7, as), £(g5 as), £(9s, ar) X 2
13 11 £(9g6,as), £(g7,a6), £(g6,ar), (g7, ar) X, 1
14 12 5(92,@3), f(gg,,dg) X2 1
15 12 (g3, a1), §(g2,a1), £(91,a3), £(g1,a2) Xy 1
16 12 €(g6:a1), (g7, a1), €(91, a6), E(g1,ar) Xo 1
17 13 5(9310/0)’ 5(92’040)7 5(90»043)7 5(9070'2) Yl 0
18 13 £(96, a0), §(g7,a0), €(90,as), £(go,ar) Y, 0
19 14 £(g6, aa), (g7, as), £(94, ag), £(9g4, ar) Y, 0
20 14 £(95,a3), £(g5,a2), £(g3,a5), (ge, as) Y, 0
21 15 £(96,a3), £(97,a3), &(g6, az), &(gr, az) Z, 0
£(g3, as), £(92, ae), £(g3,a7), £(g2, a7)
22 N/A &(g5,a4), £(ga,as) Not Feasible | N/A
Table A.1.1 : Solid Strips £ with Strip Classes [¢], Boundaries 0¢
and the Euler Characteristics x(£).
where:

e With the symbol U (disjoint union) we mean two separate instances of a
space which are not path connected.

e Space X;: is a 2-sphere where two separate points of the sphere are iden-
tified. This space has a point where the space is not locally homomorphic
to R? and therefore it is not a manifold.

e Space X; V X;j: is a wedge sum of two X spaces. This space has three
points where the space is not locally homomorphic to R? and therefore it
is not a manifold.
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e Space Xs: is a 2-sphere where two couple of separate points of the sphere
are identified. This space has two points where the space is not locally
homomorphic to R? and therefore it is not a manifold.

e Space Y: is a 2-torus where two separate points of the torus are identified.
This space has a point where the space is not locally homomorphic to R?
and therefore it is not a manifold.

e Space Z: is a Klein Bottle where two separate points of the Klein Bottle
are identified. This space has a point where the manifold is not locally
homomorphic to R? and therefore it is not a manifold.
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