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Abstract
The 6th problem of the 50th International Mathematical Olympiad (IMO),

held in Germany, 2009, is called ’the grasshopper problem’. To this problem
Kos[1] developed theory from unique viewpoints by reference of Noga Alon’s
combinatorial Nullstellensatz.

We have tried to solve this problem by an original method inspired by a
polynomial function that Kos defined in [1] , then researched for n=3 and
n=4. For almost cases the problem can be solved, but there remains imper-
fection due to ’singularity’.

Keywords. inductive, combinatorial Nullstellensatz, Vandermonde polyno-
mial

0.Introduction

The 6th problem of the 50th International Mathematical Olympiad (IMO),
held in Germany, 2009, was the following.

Let a1, a2, . . . , an be distinct positive integers and let M be a set of n−1
positive integers not containing s=a1+a2+· · ·+an. A grasshopper is to jump
along the real axis, starting at the point 0 and making n jumps to the right
with lengths a1, a2, . . . , an in some order. Prove that the order can be chosen
in such a way that the grasshopper never lands on any point in M.

According to [1], Kos says that up to now, all known solutions to this
problem, so called ’the grasshopper problem’, are elementary and inductive,
for example, by drawing a real axis on paper. In fact a solution of ours is
one of its examples.

Then in [1], Kos tried to apply Noga Alon’s combinatorial Nullstellensatz
[2]. This theorem is effective but we couldn’t rely on this entirely. So another
method has proved to be necessary for further researches.

We try to present a way to solve the problem and prove it even if partially.
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1. Alon’s combinatorial Nullstellensatz

Now we introduce an interesting tool which may help our research.

Lemma 1 (Nonvanishing combinatorial Nullstellensatz).
Let S1, . . . , Sn be nonempty subsets of a field F, and let t1, . . . , tn be non-

negative integers such that ti<|Si| for i=1,2,. . .,n. Let P(x1, . . . , xn) be a
polynomial over F with total degree t1+· · ·+tn, and suppose that the coeffi-
cient of x1

t1x2
t2· · ·xntn in P(x1, . . . , xn) is nonzero. Then there exist elements

s1∈S1, . . . , sn∈Sn for which P(s1, . . . , sn)6=0.

Also we present a polynomial function f(x1, x2, . . . , xn) by reference of [1]
as follows.

f(x1, x2, . . . , xn) =: (x1−m1)(x1−m2) . . . (x1−mn−1)(x1+x2−m1) . . .

(x1+x2−m2) . . . (x1+x2−mn−1)(x1+ . . .+xn−1−m1) . . .

(x1+ . . .+xn−1−m2) . . . (x1+ . . .+xn−1−mn−1)

=
n−1∏
l=1

n−1∏
i=1

((x1+x2 + . . .+ xl)−mi) (1)

On the grasshopper problem now if we fix the jumping order as a1,a2,. . .,
an, then a grasshopper succeeds in its jumping without blocked if and only if
f(a1, . . . , an) 6= 0, then the degree of f(a1, . . . , an) is (n−1)2. And xn−11 xn−12 · · ·
xn−1n−1 is a monomial the total degree of which is (n−1)2, and the coefficient
of which is 1.

Now we define n sets S1, S2, · · · , Sn such that S1=S2=· · ·=Sn={a1, a2, · · · ,
an}, then the number of elements of these n sets are |S1|=|S2|=· · ·=|Sn|=n
>n−1, so we can adopt Lemma 1 to this polynomial function (1).

But there remains imperfection because the elements a1, a2, ..., an con-
sidered in Lemma 1 are not necessarily distinct, that is to say, a pair of
(a1, . . . , an) may be the same number.

If we multiple f(x1, . . . , xn) by the so-called Vandermonde polynomial
(see, for example, [3, pp. 346–347]), a new polynomial is created as follows.

∏
1≤k<j≤n−1

(xk − xj)
n−1∏
l=1

n−1∏
i=1

((x1 + x2 + · · ·+ xl)−mi) (2)

The elements a1, a2, ..., an are required to be distinct if the new polyno-
mial is nonzero when xi=ai for any i such that 1≤i≤n. But any monomial
of (2) the total degree of which is equal to the degree of (2), (n−1)2+n−1C2,
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has a factor the power of which is over n−1. Thus Lemma 1 can’t be applied.

2. Attempts to use new polynomials by permutations

We could not apply Lemma 1 to f(x1,x2,...,xn) if a1,a2,...,an are distinct.
We want to find out an effective polynomial function, on the condition

that the total degree is kept, if possible.
By a permutation π∈Sym(n), we get

f(xπ(1), xπ(2), ..., xπ(n))

=
n−1∏
l=1

n−1∏
i=1

((xπ(1)+xπ(2)+ · · ·+xπ(l))−mi) (3)

There are totally (n−1)2 factors in (3).
Then we multiple each (3) by the signature of each permutation, that is

+1 or −1, and make their summation as follows.∑
π∈Sym(n)

sgn(π)f(xπ(1), xπ(2), ..., xπ(n))

=
∑

π∈Sym(n)

sgn(π)
n−1∏
l=1

n−1∏
i=1

((xπ(1)+xπ(2) + · · ·+xπ(l))−mi) (4)

In (4) xi and xj is anti-symmetric if i is not equal to j, so it may be a
multiple of the above-mentioned Vandermonde polynomial.

3. Real example for this case

3-1. n=3’s case

Unfortunately Alon’s combinatorial Nullstellensatz can’t be applied now,
because by simple calculations we can see that nothing but unsuitable 4-
degree monomials like x31x2, x

3
1x3 exist. In this case |S1| must be larger than

3, applying Lemma 1 is impossible.
We calculate (4) for n=3 by summing up 3!=6 polynomials as follows.

∑
π∈Sym(3)

sgn(π)f(xπ(1), xπ(2))

=
∑

π∈Sym(3)

sgn(π)
2∏
l=1

2∏
i=1

((xπ(1)+xπ(2))−mi) (5)
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The calculation of (5) is the following.

(5) = f(x1, x2, x3)−f(x1, x3, x2)−f(x2, x1, x3)

+f(x2, x3, x1)+f(x3, x1, x2)−f(x3, x2, x1)

=(x1−m1)(x1−m2)(x1+x2−m1)(x1+x2−m2)

−(x1−m1)(x1−m2)(x1+x3−m1)(x1+x3−m2)

−(x2−m1)(x2−m2)(x2+x1−m1)(x2+x1−m2)

+(x2−m1)(x2−m2)(x2+x3−m1)(x2+x3−m2)

+(x3−m1)(x3−m2)(x3+x1−m1)(x3+x1−m2)

−(x3−m1)(x3−m2)(x3+x2−m1)(x3+x2−m2)

=(x1−x2)(x1−x3)(x2−x3)((x1+x2+x3)−(m1+m2)) (6)

We present other calculations. 3 pairs of the above 6 polynomials appear
by turns.

f(x1, x2, x3)−f(x1, x3, x2)

=(x1−m1)(x1−m2)(x1+x2−m1)(x1+x2−m2)

−(x1−m1)(x1−m2)(x1+x3−m1)(x1+x3−m2)

=(x1−m1)(x1−m2)((2x1+x2+x3)−(m1+m2)) (7)

f(x2, x1, x3)−f(x2, x3, x1)

=(x2−m1)(x2−m2)(x2+x1−m1)(x2+x1−m2)

−(x2−m1)(x2−m2)(x2+x3−m1)(x2+x3−m2)

=(x2−m1)(x2−m2)((x1+2x2+x3)−(m1+m2)) (8)

f(x3, x1, x2)−f(x3, x2, x1)

=(x3−m1)(x3−m2)(x3+x1−m1)(x3+x1−m2)

−(x3−m1)(x3−m2)(x3+x2−m1)(x3+x2−m2)

=(x3−m1)(x3−m2)((x1+x2+2x3)−(m1+m2)) (9)

Theorem 1.

Let a1, a2, a3 be distinct positive integers, and m1,m2 be distinct

positive integers, then there exists π ∈ Sym(3) that holds

f(aπ(1), aπ(2), aπ(3)) =

(aπ(1)−m1)(aπ(1)−m2)(aπ(1)+aπ(2)−m1)(aπ(1)+aπ(2)−m2)

6= 0. (10)
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Proof.
If f(aπ(1), aπ(2))=(aπ(1)−m1)(aπ(1)−m2)(aπ(1)+aπ(2)−m1)

×(aπ(1)+aπ(2)−m2)=0 for any π∈Sym(3),
then four equations hold as below by (6),(7),(8) and(9).

(a1−a2)(a1−a3)(a2−a3)((a1+a2+a3)−(m1+m2)) = 0. (11)

(a1−m1)(a1−m2)((2a1+a2+a3)−(m1+m2)) = 0. (12)

(a2−m1)(a2−m2)((a1+2a2+a3)−(m1+m2)) = 0. (13)

(a3−m1)(a3−m2)((a1+a2+3a3)−(m1+m2)) = 0. (14)

From (11), (a1+a2+a3)−(m1+m2)=0 follows, because a1, a2, a3 are dis-
tinct. Then neither 2(a1+a2+a3)−(m1+m2) nor (a1+2a2+a3)−(m1+m2) nor
(a1+a2+3a3)−(m1+m2) is equal to 0, so (a1−m1)(a1−m2)=0
and (a2−m1)(a2−m2)=0 and (a3−m1)(a3−m2)=0 at (12), (13) and (14),
which does not happen at the same time, this is because a1, a2 and a3 are
distinct and m1 and m2 are also distinct.

It follows that the above-mentioned assumption does not come true.
This completes the proof.

If f(a1, a2, a3) 6=0, then at least one of the above-mentioned six polynomi-
als consisting of (6) is not 0. Therefore the claim of the grasshopper problem
follows for n=3, that is to say, a grasshopper succeeds in jumping without
landing on m1 or m2 by choosing one order (ai1, ai2, ai3) out of six possible
jumping orders, such that f(ai1, ai2, ai3)=(ai1−m1)(ai1−m2)(ai1+ai2−m1)
(ai1+ai2−m2)6=0.

For the n=3’s case of the grasshopper problem, {(a1, a2, a3)|(a1+a2+a3)
−(m1+m2) = 0} is a ‘singularity’ set that may vanish the possibility of a
grasshopper’s safe jumping. But by comparing (6) with (7),(8) and (9), this
possibility bas been easily denied.

3-2. n=4’s case

We sum up 4!=24 polynomials which were made by permutation; as fol-
lows. ∑

π∈Sym(4)

sgn(π)f(xπ(1), xπ(2), xπ(3))

=
∑

π∈Sym(4)

sgn(π)
3∏
l=1

3∏
i=1

((xπ(1) + xπ(2) + xπ(3))−mi) (15)
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The degree is 32=9 and the permutation number is 4!=24, so the calcu-
lation of (15) is more complicated. We present the calculating results for the
n=4’s case, similarly as the n=3’s case, as below.

(15) = (x1−x2)(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x3−x4)
×(3(x1+x2+x3+x4)−2(m1+m2+m3))

×(6(x21+x
2
2+x

2
3+x

2
4)+8(m1m2+m1m3+m1m4+m2m3+m2m4+m3m4)

−7(m1+m2+m3)(x1+x2+x3+x4)

+(m2
1+m

2
2+m

2
3+6m1m2+6m2m3+6m3m1)) (16)

f(x1, x2, x3, x4)−f(x1, x2, x4, x3)

=(x3−m4)

×((3x1
2+3x2

2+x3
2+x4

2)+(6x1x2+3x1x3+3x1x4+3x2x3+3x2x4+x3x4)

−(m1+m2)(2x1+2x2+x3+x4)+m1m2m3) (17)

Now generalizing (17), for (xj1, xj2, xj3, xj4), any permutation of (x1, x2, x3, x4),
we obtain

f(xj1, xj2, xj3, xj4)−f(xj1, xj2, xj4, xj3)

=(mj3−mj4)

×((3x2j1+3x2j2+x
2
j3+x

2
j4)+(6xj1xj2+3xj1xj3+3xj1xj4+3xj2xj3+3xj2xj4+xj3xj4)

−(mj1+mj2)(2xj1+2xj2+xj3+xj4)+mj1mj2mj3) (18)

From (16), for the n=4’s case of the grasshopper problem, we can obtain
that

{(a1, a2, a3, a4)|
(3(a1+a2+a3+a4)−2(m1+m2+m3))

×(6(a21+a
2
2+a

2
3+a

2
4)

+8(a1a2+a1a3+a1a4+a2a3+a2a4+a3a4)

−7(m1+m2+m3)(a1+a2+a3+a4)

+(m2
1+m

2
2+m

2
3+6m1m2+6m2m3+6m3m1)) = 0} (19)

is a ‘singularity’ set that may vanish the possibility of a grasshopper’s safe
jumping.

Unlike the n=3’s case, the comparison of (18) and (19) does not lead to
the solution of the grasshopper problem yet for n=4.
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4. Discussion and conclusion

As we explained in the introduction, this grasshopper problem can be
proved only by elementary and inductive methods(see [1]), for example, by
drawing a real axis on paper.

And if they intend to solve by the current method we have shown, there
is not perfection yet.

We can easily assume anti-symmetry of the polynomial function (4). But
there is a big drawback, that is ’singularity’. It is not easy to analyze when
n is more than 3. In short, we are still destined to solve elementarily and
deductively, though in most cases, except for ’singularity’, a grasshopper
succeeds in jumping, judging from (4).

In the future we want to solve the grasshopper problem by analyzing
equations for larger n’s.
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