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Abstract

The 6th problem of the 50th International Mathematical Olympiad (IMO),
held in Germany, 2009, is called the grasshopper problem’. To this problem
Kos[1] developed theory from unique viewpoints by reference of Noga Alon’s
combinatorial Nullstellensatz.

We have tried to solve this problem by an original method inspired by a
polynomial function that Kos defined in [1] , then researched for n=3 and
n=4. For almost cases the problem can be solved, but there remains imper-
fection due to ’'singularity’.

Keywords. inductive, combinatorial Nullstellensatz, Vandermonde polyno-
mial

0.Introduction

The 6th problem of the 50th International Mathematical Olympiad (IMO),
held in Germany, 2009, was the following.

Let ay,as, ..., a, be distinct positive integers and let M be a set of n—1
positive integers not containing s=a;+as+- - -+a,. A grasshopper is to jump
along the real axis, starting at the point 0 and making n jumps to the right
with lengths aq, as, ..., a, in some order. Prove that the order can be chosen
in such a way that the grasshopper never lands on any point in M.

According to [1], Kos says that up to now, all known solutions to this
problem, so called ’the grasshopper problem’, are elementary and inductive,
for example, by drawing a real axis on paper. In fact a solution of ours is
one of its examples.

Then in [1], Kos tried to apply Noga Alon’s combinatorial Nullstellensatz
[2]. This theorem is effective but we couldn’t rely on this entirely. So another
method has proved to be necessary for further researches.

We try to present a way to solve the problem and prove it even if partially.



1. Alon’s combinatorial Nullstellensatz
Now we introduce an interesting tool which may help our research.

Lemma 1 (Nonvanishing combinatorial Nullstellensatz).

Let S1, ..., S, be nonempty subsets of a field F, and let ¢, ..., ¢, be non-
negative integers such that ¢;<|S;| for i=1,2,...n. Let P(zy,...,2,) be a
polynomial over F with total degree t,+- - -+t,, and suppose that the coeffi-
cient of x1" x5+ - -x,' in P(xy, ..., x,) is nonzero. Then there exist elements
$1€S51, ..., 8,€8, for which P(sq,...,s,)#0.

Also we present a polynomial function f(zq, xs, ..., x,) by reference of [1]
as follows.
f(x1,%2, ..., Xy) = (x3—my)(x;—my) . .. (xy—my,_1)(x3+Xe—my) . ..

(x14+xo—my) ... (T1+To—mp_1)(T1+ ... FTp_1—my) ...

(xX1F .. +xXpo1—ms) ... (T1+ . Ty =My )

n—1n—1

=TI II ((z14as + ...+ 2)—m,) (1)

=1 i=1

On the grasshopper problem now if we fix the jumping order as ay,as,. . .,
ay, then a grasshopper succeeds in its jumping without blocked if and only if
f(ay,...,a,) # 0, then the degree of f(ay, ..., a,) is (n—1)% And 2} 'a5~" ...
x2~7 is a monomial the total degree of which is (n—1)2, and the coefficient

n—1
of which is 1.
Now we define n sets S, Ss, - - -, .S, such that S1=5,=---=5,={a1, a9, - -,
a,}, then the number of elements of these n sets are |S1|=|Sz|=---=|S,|=n

>n—1, so we can adopt Lemma 1 to this polynomial function (1).

But there remains imperfection because the elements aq, as, ..., a, con-
sidered in Lemma 1 are not necessarily distinct, that is to say, a pair of
(ay,...,a,) may be the same number.

If we multiple f(zy,...,2,) by the so-called Vandermonde polynomial
(see, for example, [3, pp. 346-347]), a new polynomial is created as follows.

n—1n—1

I (@—=) (1 + @2+ -+ 1) —my) (2)

1<k<j<n—1 =1 i=1

-
Il

The elements aq, as, ..., a, are required to be distinct if the new polyno-
mial is nonzero when z;=a; for any i such that 1<i<n. But any monomial
of (2) the total degree of which is equal to the degree of (2), (n—1)2+,_;Cs,
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has a factor the power of which is over n—1. Thus Lemma 1 can’t be applied.
2. Attempts to use new polynomials by permutations

We could not apply Lemma 1 to f(z1,2s,...,x,) if ay,as,...,a,, are distinct.

We want to find out an effective polynomial function, on the condition
that the total degree is kept, if possible.

By a permutation m€Sym(n), we get

f(@zq), @ Tr(n))

m(2
lfllj xﬂ(l +Zr(2)+ —|—ZEW()) m;) (3)

\_/

There are totally (n—1)? factors in (3).
Then we multiple each (3) by the signature of each permutation, that is
+1 or —1, and make their summation as follows.

Z Sgn(ﬂ->f<x7r(l)7 x7r(2)7 ceey Iw(n))

weSym(n)

:ngn

reSym(n)

HE\

H xnu)—i—% +"'+x7r(l))_mi) (4)

In (4) z; and z; is anti-symmetric if i is not equal to j, so it may be a
multiple of the above-mentioned Vandermonde polynomial.

3. Real example for this case
3-1. n=3’s case

Unfortunately Alon’s combinatorial Nullstellensatz can’t be applied now,
because by simple calculations we can see that nothing but unsuitable 4-
degree monomials like 23xy, 2373 exist. In this case |S;| must be larger than
3, applying Lemma 1 is impossible.

We calculate (4) for n=3 by summing up 3!=6 polynomials as follows.

> sgn(m) [(Zr1), Tu(z)

meSym(3)

= > sgn(m) [T (e Hone) —mi) (5)

meSym(3) I=1i=1
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The calculation of (5) is the following.

(5) = f(x1, w2, x3)— f (21, ¥3, 12) — f (2, 71, 73)
+f(z2, x5, x1)+f (23, 21, 2)— f (23, T2, 21)
Z(xl—ml)(xl—m2)($1+$2—m1)($1+I2—m2)

( ) ma)(z1+a3—ms)

( ) my)(Ta+x1—my)

(xe—mg)(zo+x3—m1) (T2 T3—MN0)

( ) ) )

( )

l'2+1131— 1

T3+T1—m ) (X3+2T1—Ms

(6)

We present other calculations. 3 pairs of the above 6 polynomials appear

by turns.

Theorem 1.

(xth;x?)) f(x17x37x2)

=(x1—mq)(x 1—m2)(a:1+x2—m1)(:c1+x2—m2)
—(z1—mq) (x1—me) (x1+23—m1) (21+23—m2)
=(21—m) (z1—m2)((2z1+22+23)— (M1 +mo))
( Lo, Ty, T 3) ($2,$3,I1)
=(zg—m1)(xa—m2)(Ta+x1—1m0 ) (T2+T1—M02)
(I2— 1)(@2—mo) (z2+a3—m1)(T2+T3—M2
=(22—m)(z 2—m2)(($1+2$2+$3)—(m1+m2))
( T3, T1,T 2) f($3,$2,$1)
=(w3—m1)(x3—m2)(T3+T1—1m1 ) (T3 +T1—m3)
(1753— 1)(23—my2)(w3+20—m1)(T3+T2—0)
=(z3—m1)(v3— mg)((x1+x2—|—2$3)—(m1+m2))

(8)

(9)

Let aq, as, as be distinct positive integers, and mq, my be distinct

positive integers, then there exists 7 € Sym(3) that holds

f(aﬂ(1)7 QAr(2), a7‘(’(3)) =

(axy=m1)(ary=m2)(Ar1)Far@2)—m1)(Qr(1)Far(2)—2)

£0.

(10)



Proof.

If flar), an(2)=(ar@)—m1)(ar)—m2) (A1) +arz)—m1)
X (Ar(1)Fr(2)—m2)=0 for any e Sym(3),
then four equations hold as below by (6),(7),(8) and(9).

(a1—ag)(a1—az)(az—as)((a1+as+as)—(mi+ms)) =
(ar—mq)(a1—ms)((2a1+as+az)—(mi+ms)) =
(ag—mq)(ag—ms)((a1+2as+az)—(mi+ms))
( ) )

az—"my )\ az—12 (a1+a2+3a3)—(m1+m2))

(
0. (
0. (
0. (

From (11), (a14as+az)—(mi+ms)=0 follows, because ai, as, as are dis-
tinct. Then neither 2(a;+ag+as)—(my+ms) nor (a;+2as+as)—(mi+msz) nor
(a1+a9+3az)—(my+ms) is equal to 0, so (a;—my)(a;—mse)=0
and (ag—mq)(az—msg)=0 and (az—mi)(az—m2)=0 at (12), (13) and (14),
which does not happen at the same time, this is because a;,as and as are
distinct and m; and ms are also distinct.

It follows that the above-mentioned assumption does not come true.

This completes the proof.

]

If f(ay,as,a3) #0, then at least one of the above-mentioned six polynomi-
als consisting of (6) is not 0. Therefore the claim of the grasshopper problem
follows for n=3, that is to say, a grasshopper succeeds in jumping without
landing on m; or ms by choosing one order (a;1, a;2, a;3) out of six possible
jumping orders, such that f(a;1, a2, a;3)=(a;;—my)(a;1—ms)(ai+ai—m;)
(@i +aip—m2)70.

For the n=3’s case of the grasshopper problem, {(a, as, az)|(a1+as+a3)
—(m14+ms) = 0} is a ‘singularity’ set that may vanish the possibility of a
grasshopper’s safe jumping. But by comparing (6) with (7),(8) and (9), this
possibility bas been easily denied.

3-2. n=4’s case

We sum up 4!=24 polynomials which were made by permutation; as fol-
lows.

Z Sgn(ﬁ)f(%u), Tr(2), %(3))

TeSym(4)

= > son(m) [T T ((wrq) + 2ng2) + waga) —ma) - (15)

weSym(4) =1:=1



The degree is 32=9 and the permutation number is 4!=24, so the calcu-
lation of (15) is more complicated. We present the calculating results for the
n=4’s case, similarly as the n=3’s case, as below.

(15) = (z1—a2)(z1—23) (21—24) (T2 —23) (T2 —24) (T3 —74)
X (3(x1+xotxs+as)—2(M1+mae+ms))
x (6(z3 423423 4-23)+8(myme+mims-+mymy+moms-+momy+msmy)
—T7(my+mo+ms3)(z1+r2tx3+14)
+(mi+my+m3+6mimy+6mams+6msm,)) (16)

f(x1, x2, w3, 4)— f (21, 9, 4, X3)

=(r3—my)
X (312430 +a3°+242) + (621294371 23+371 24 +320 3 +300 04+ 2374
—(my4+ma)(2z142x94x3+14)+Mymams) (17)

Now generalizing (17), for (z;1, xj2, 3, T 4), any permutation of (x1, x2, x3, x4),

we obtain

f('%.jla Zj2,T43, $j4)—f($j1, Lj2,Tj4, 37;‘3)

=(mjz—m;a)

X ((327?1 +3JI]2»2+ZE§3+I§4)+(613j1$j2+3$j1]3j3+3Ij1ZL’j4+31Ej21'j3+313j21‘j4+$j3l’j4)

—(mj1+mya) (221422 jo+ j3+T4) +mj1m amys)

From (16), for the n=4’s case of the grasshopper problem, we can obtain
that

{(a1, as, as, ay)]
(3(ar+agtaz+as)—2(my+maot+ms))
x (6(at+as+az+af)
+8(ajas+ajaz+ajast+asaz+asastazay)
—T7(mi+mae+ms)(a+astaz+ay)
+(mi+mi+mi+6myma+6mams+6mam,)) = 0} (19)

is a ‘singularity’ set that may vanish the possibility of a grasshopper’s safe
jumping.

Unlike the n=3’s case, the comparison of (18) and (19) does not lead to
the solution of the grasshopper problem yet for n=4.

(18)



4. Discussion and conclusion

As we explained in the introduction, this grasshopper problem can be
proved only by elementary and inductive methods(see [1]), for example, by
drawing a real axis on paper.

And if they intend to solve by the current method we have shown, there
is not perfection yet.

We can easily assume anti-symmetry of the polynomial function (4). But
there is a big drawback, that is 'singularity’. It is not easy to analyze when
n is more than 3. In short, we are still destined to solve elementarily and
deductively, though in most cases, except for ’singularity’, a grasshopper
succeeds in jumping, judging from (4).

In the future we want to solve the grasshopper problem by analyzing
equations for larger n’s.
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