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Abstract: We present a simple, fully probabilistic, Bayesian solution to k -sample omnibus tests for comparison, with the 

Behrens-Fisher problem as a special case, which is free from the many defects found in the standard, classical frequentist, 

likelihoodist and Bayesian approaches to those problems. We solve the main measure-theoretic difficulty for degenerate 

problems with continuous parameters of interest and Lebesgue-negligible point null hypothesis by approximating the 

corresponding continuous random variables by sequences of discrete ones defined on partitions of the parameter spaces 

and by taking the limit of the prior-to-posterior ratios of the probability of the null hypothesis for the corresponding 

discrete problems. Those limits are well defined under proper technicalities thanks to the Henstock-Kurzweil integral that 

is as powerful as the Lebesgue integral but still relies on Riemann sums, which are essential in the present approach. The 

solutions to the relative continuous problems take the form of Bayes-Poincaré factors that are new objects in Bayesian 

probability theory and should play a key role in the general theory of point null hypothesis testing, including other 

important problems such as the Jeffreys-Lindley paradox. 

Keywords: Behrens-Fisher problem, k -sample tests for comparison, point null hypothesis testing, well-posed problem, 

Bayes factors, discrete and continuous random variables and problems, absolute and relative solutions, Riemann sums, 

Lebesgue measure, Henstock-Kurzweil integral, Bayes-Poincaré factors. 

Introduction 
The Behrens-Fisher problem(s) [1][2][3][4][5][6][8][9][10][11][12][13][14] and, more generally, k -sample hypothesis 

tests for comparison, is one of the most famous open problem in statistics and applied probability theory since 1929. 

Let us first recall that the Behrens-Fisher problems, according to the numerous authors over the last ninety years, come 

in two main variants: the hypothesis testing problems (i.e. test the equality of the numerical values of the parameters of 

interest) and the estimation problems (estimate the difference between the numerical values of those parameters). 

Hereafter, we deal only with the hypothesis testing problems, which are supposed to be the most important and most 

difficult ones [14][17], even if they are often formulated as interval estimation and confidence tests on the difference of 

both parameters of interest. 

To the best of our knowledge, there is no universally accepted solution to this problem in any statistical framework, 

frequentist, likelihoodist, fiducial or Bayesian. This is due to the interplay of several issues and difficulties including the 

proper treatment of the nuisance parameters and the non-existence of an uniformly most powerful (UMP) test proved by 

Linnik [5] (in the frequentist and likelihoodist frameworks), the proper assignment of prior probabilities and probability 

distributions for the hypotheses and the parameters, in particular, the fact that the null hypothesis has null prior and 

posterior probabilities if the parameter of interest is continuous (in the Bayesian framework), the logical (in)dependence 

of both experiments, etc. 

The original, historical Behrens-Fisher problem runs as follows. Given two mutually independent and conditionally 

independently and identically distributed samples  1

1 1

1

1 , , nx x x   and  2

2 2

1

2 , , nx x x   of sizes 1n  and 2n  from two 
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Gaussian random variables  2

1 1,   and  2

2 2,   with probability density functions  1 1,f x    and 

 2 2,f x    respectively, test the null hypothesis 0H  

0 1 2:H    

against the omnibus alternative hypothesis 1H  

1 1 2:H    

when 1  and 2  are unknown and not necessarily equal to each other. Some authors (but not Fisher) further assume 

that 1 2  . We do not, but the solution to come can be generalized to this case… 

To be short, let us just recall that within the frequentist, likelihoodist and fiducial statistical frameworks, the well-known, 

classical solutions typically rely on adaptations of the independent/unpaired Student t  statistic for the 2 -sample Gaussian 

test for comparison with equal/homoscedastic variances 1 2   and unequal sample size 

1 2

1 2

1 1
p

x x
t

s
n n






 

where 
   2 2

1 1 2 2

1 2

1 1

2
p

n s n s
s

n n

  


 
,  

1

2

1 1 1

11

1

1

n
i

i

s x x
n 

 

 ,  

2

2

2 2 2

12

1

1

n
i

i

s x x
n 

 

 , 

1

1 1

11

1 n
i

i

x x
n 

  , 
1

2 2

12

1 n
i

i

x x
n 

   

Such modifications and adaptations include the Behrens-Fisher statistic itself [10][14][15][16], the Welch-Alpin-

Satterthwaite t  statistics [11][15], the Wald-Romanovskaja satistic [15] and many other variations [15]. 

On the Bayesian side, Jeffreys (1940) [17] derived the same statistic as Fisher’s [16] with a different interpretation, of 

course. Jeffreys’ original derivation was quite ad hoc and complex [9] but it can be recast in his own, modern and general, 

Bayes factor framework for testing binary hypotheses. Let us briefly recall this Bayes factor framework in the case of the 

historical 2-sample Behrens-Fisher problem. 

Under 1H , the likelihood or model 1M  is 

         
1 2

1 2 1 2 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2

1 1

, , , , , , , , , , ,
n

i
n

i

i i

p x x M p x M p x M f x f x           
 

    

by conditional independence, so that the probability for the data  1 2,x x  given a joint prior probability distribution for 

the parameters  1 1 2 2, , ,p      is 

       
1 2

1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 2 2

1 1

, , , , , , d d d d
n

ii

i i

n

p x x M f x f x p           
 

     

Under 0H , by definition there is a common parameter of interest 

0 1 2     

so that the likelihood or model 0M  is 
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         
1 2

1 2 0 1 2 0 1 0 1 0 2 0 2 0 1 0 1 2 0 2

1 1

, , , , , , , , , ,
n

i

i

n

i

ip x x M p x M p x M f x f x          
 

    

and the probability of the data given a joint prior probability distribution for the parameters  0 1 2, ,p     is  

       
1 2

1 2 0 1 0 1 2 0 2 0 1 2 0 1 2

1 1

, , , , , d d d
n

i j

i i

n

p x x M f x f x p         
 

    

Therefore, the classical Bayesian solution relies on the “Bayes factor” 

 
 

     

     

1 2

1 2

1 0 1 2 0 2 0 1 2 0 1 2
1 2 0 1 1

01

1 2 1
1 1 1 2 2 2 1 1 2 2 1 1 2 2

1 1

, , , , d d d
,

,
, , , , , d d d d

n n
i i

i i

n n
i i

i i

f x f x p
p x x M

B
p x x M

f x f x p

         

           

 

 


 

  

 

that is equal to the genuine Bayes factor of interest, the prior-to-posterior odds ratio 

 
 

 

 
0 1 2 0

01

11 1 2

,
/

,

p M x x p M
B

p Mp M x x

   
    
    

 

if and only if  0 0p M   and  0 1p M  . 

For instance, for the homoscedastic 2-sample problem with 1 2    , Gönen et al. [9] show, for certain priors and 

under certain conditions, that Jeffreys’ Bayes factor reduces to 

  

 

 

1 /2

2
1/2

2

01 2 2

1 /
1

1 / 1

t
B n

t n



 

 




 

 

 


  
  
 

 

where t  is the statistic defined above, 1 2 2n n    , 

1

1 2

1 1
n

n n




 
  
 

 and 2

  is the prior variance on 1 2 




.  

See also [8]. As already found by Jeffreys [17], this kind of results shows that the classical approaches within the 

frequentist, likelihoodist and fiducial statistical frameworks can be derived and interpreted in Jeffreys’ Bayesian Bayes 

factor framework for binary hypothesis testing. 

Unfortunately, we hold that this classical Bayes factor approach is not correct for at least one sufficient and simple reason. 

Indeed, under the null model 0M , we cannot say that there is a common, a single parameter 0  : this is not because two 

parameters 1  and 2  have the same numerical values that there is only one parameter! 

There is a confusion between two different concepts: the identity of two parameters (so that there is only one of them) 

and the equality of their numerical values. But equality is not, does not imply identity. This point has been discussed 

especially by Henri Poincaré. See for instance this paper (in French)[7], page 30 of the .pdf version: 

The impossibility of understanding the application of the mathematical continuum to experimental data (…) as soon as 

one interprets the equality of two rational or real numbers as the identity of two entities, allows us to conclude… 

For instance, we find this mistake in equation 1 of [6] 
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0 : c tH      

around equation 4 of [1] 

The hypothesis sv assumes the [two] means and the [two] standard deviations are the same, so two parameters (a 

constant A and a standard deviation sigma1) [instead of 4] have been removed by marginalization. 

Eq. 4 

where B A  and 1 2  . 

See also [9] for another variation. This mistake, the principle of the identity of equality and identity rejected by Poincaré, 

was our starting point for the new and completely different Bayesian solution that we describe below. But, a posteriori, it 

shall appear that the standard Bayes factor approach above suffers other, even more cogent, defects and criticisms. 

Formal statement of the well-posed problems and their absolute and relative solutions 
Now, let us make a formal statement of the informal and the well-defined, well-posed and formal problems that we 

address together with their absolute and relative solutions. 

According the Lehmann [12], any of the following problems can be called a (generalized) Behrens-Fisher problem, but we 

reserve this terminology for the historical 2 -sample Gaussian problem. 

Let , 1k k  . Let  

   1 * *, , , , , H , ,
dd d

d d 

              

be a parametric family of probability distributions on some probability space  , , ,   (i.e. the data can be 

discrete or continuous) with bounded and positive probability mass function or probability density function  ,p x   .  

  is the parameter of interest and   is the nuisance parameter.  

Remark: we can consider more general problem with different parametric families of distributions  , , 1,i i i i k    

Let  

 ~ , , , H , 1,i i i i i i iX i k       

be k  mutually independent random variables.  

Let 

 1 *, , , 1, ,in

i i i ix x x i k n     

be k  conditionally independent and identically distributed samples of size in  drawn from random variables iX .  

Let 
0

1

k

i

i

   . Let also 

( , ), 1,i ip i k    

be the joint prior (proper) probability distributions for the parameters of each experiment.  
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Let 

   
H

, d , 1,

i

i i i ip p i k      

be the marginal prior probability distributions for the parameters of interest. Remark: the integrals must be understood 

as generalized sums: they are sums if i  is discrete.  

Let 

 
   

   
H

, ,
, , 1,

, , d d

i i

i i i i i

i i i

i i i i i i i

p p x
p x i k

p p x

   
 

     


 

 
$ 

be the joint posterior probability distributions for the parameters.  

Last, let 

   
H

, d , 1,

i

i i i i i ip x p x i k      

be the marginal posterior probability distributions for the parameters of interest. 

We first define the informal, ill-defined k -sample testing problems for comparison that we address. 

Definition: the informal k -sample (multivariate) hypothesis test for comparison problem is the problem 0  

0

0 1 2

0

1

1 0

Test the null hypothesis 

: ...
:

against the omnibus alternative hypothesis 

:

k

H

H

H

H H

  




  


 

 

Definition: if 1d  , then 0  is said to be univariate. 

Definition: if for 1, , ii k   is discrete, then 0  is said to be discrete. 

Definition: if 1, , 1, ( )ii k j d p      is continuous in j

i  (i.e. no atoms), then 0  is said to be continuous. 

Definition: the historical Behrens-Fisher problem is the informal 2 -sample, univariate and continuous problem 0  with 

   2, : ,    ,  2,   is the parametric family of Gaussian distributions, :  , :  . 

Now, what remains to be well-defined is this: what does it mean to test 0H  against 1H ? How to take the final decision 

that is case-by-case and may depend on subjective and non-quantitative, qualitative considerations? This is simply not 

part of the well-defined, well-posed problem. We do not mean we cannot put some mathematics on the decision-theoretic 

part of the whole problem. We mean that, in any case, this decision will rely, will be based on the prior and the posterior 

probabilities of the hypotheses 0H  and 1H , that is on the prior and posterior probabilities of the null hypothesis 0H  for 

an omnibus test. Moreover, there is nothing specific to the Behrens-Fisher problem and k -sample tests for comparison 

in the decision-theoretic parts of the whole problems. It follows that the decision-theoretic part of the problem can and 

has to be decoupled from the probabilistic part. Therefore, 
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Definition: the formal, absolute k -sample (multivariate) hypothesis test for comparison problem is the problem 0

  

   0 0 1

0

0 1 2

Compute the prior and posterior probabilities  and ,...,  
' :

of the null hypothesis : ...

k

k

p H p H x x

H   




  

 

Lemma: if 0

  is discrete, then    
0

0

1

  = 
k

i

i

p H p


 
 

 . 

Proof:  

   

 

 

 

0

0

0

0 1 2

1 2

1 2

1

...

... by total probability

, ,...,

by independence

k

k

k

k

i

i

p H p

p

p

p







  

   

     

 





 

    

    

   









 

Corollary: if 0

  is discrete, then    
0

0 1

1

,...,
k

k i i

i

p H x x p x


 
 

   

Proof: replace the marginal priors by the marginal posteriors in previous lemma. 

Corollary: the solution to the formal discrete absolute problem 0

  is given by 

   
0

0

1

  = 
k

i

i

p H p


 
 

   and     
0

0 1

1

,...,
k

k i i

i

p H x x p x


 
 

   

Lemma: the solution to the formal continuous absolute problem 0

  is given by 

   0 0 1,..., 0kp H p H x x   

Proof: the set     1 2 1 2 0 1 2, ,..., \ , ,..., , ...k

k k k             has Lebesgue probability measure 0  because, by 

definition,  0 0, 0j

ip      since j

i  is a continuous random variable without atoms. 

Hence, the formal continuous absolute problem 0

  admits a trivial and totally useless absolute solution. Therefore we 

need to introduce formal, weaker, relative problems with non-trivial and useful solutions. 

For sake of simplicity, we present those relative problems and solutions in the univariate and compact case. But it should 

be clear that those problems and solutions can be easily generalized to the non-compact and multivariate case, modulo 

some integration-theoretic technicalities that are beyond the scope of the present paper. In the same way, those definitions 

can be easily generalized to joint and marginal improper prior probability distributions, defined as limits of sequences of 

proper ones, especially because we do not need to go through improper integrals with the Henstock-Kurzweil integral, 

unlike the Riemann integral. 



7 
 

Suppose  1, , ,i i ii k L U     is compact. Let 
 0l

l





   and let 

 , , 1,...,l l l

i i j ij     

be l -fine partitions of i . Generally speaking, 0  is a finite set of intervals. Suppose that the partitions , 1,i i k   

coincide on each interval and form a partition of it. Let 0

l  be the set of those common partitions. 

1,i k  , let   *

l

k
l




 be sequences of discrete random variables on partitions l

i  with prior probability mass functions 

 
 

 
, i

l
i

i
l
i

l

i

p
p

p









 




  


 

respectively. 

Lemma: *l  , the solution to the formal discrete absolute problem 0

  for random variables , 1,i

l i k   is given by 

   
0

0 0

1

,   = l
i

l

k
l

i

p H l p







    and     
0

0 1 0

1

,..., , , l
i il

k
l

k x
i

p H x x l p







    

Corollary: if the function  
1

i

k

i

p 


  is Lebesgue-integrable, then 

   0 0 0 1 0lim , lim ,..., , , 0l l

k
l l

p H l p H x x l
 

     

Proof:  

   
 

 

 

 
 

 

 

 
 

 

0 0

0 0

0

11 1

0 0

1 1

1 1

1 1

1

,  =

d

0

d

i i
l l

l
i

l l

i i
l l
i i

i

i

i

i

i
l
i

k k
l

k k
ki il l

k k
li i

i i

k

k il

kl l

i

p p

p

p

p
H l p

p p

p

p







 


 

 

 









  

 

  















  

  

  

 

 

 







    



 

  
  

  









 

because i) all functions are Henstock-Kurzweil-integrable [13] if they are Lebesgue-integral and ii) all integrals are finite 

and non-zero on compact , 1,i i k   and 0  if the functions are bounded and positive. Same for 

 0 1 0lim ,..., , , 0l

k
l

p H x x l


  . 

Now, our main theorem. 

Theorem: if the functions  
1

i

k

i

p 


  and  
1

i i

k

x
i

p


 


  are Lebesgue-integrable, then 
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 
 

 

 

 

 

0 0
1 10 1 0

01

0 0

1 1

d d
,..., , ,

lim /
,

d d

ii i

ii i

i i

k k

xl
i ik

k kll

x

i i

p p
p H x x l

B
p H l

p p





   

   

  



  

   
   
   
   
   
      

  

  
 

Proof: 

 
 

 
 

 
 

 

 

 

 

0 0

0

1 10 1 0 1 1

0 0

1 1

1

1

,..., , ,
/

,

d

/

d

ii i
l l

ii i
l l
i i

i i

i i

i

k k
l l l l

l i ix
k kk i il l

k kl
l l l l

i ix
i i

k

x
i

k
l

x
i

p p
p H x x l

p H l
p p

p

p



 



 





   

 

   

 

 

   

  





 

   
    

     
   

    
   

 
 
 
 
 
  

  

  



 

 

 

0
1

1

d

d

i

i

i

k

i

k

i

p

p





 

 



 

 
 
 
 
 
  



 

 

because, as before, i) all functions are Henstock-Kurzweil-integrable if they are Lebesgue-integral and ii) the integrals are 

finite and non-zero on compact , 1,i i k   and 0  if the functions are bounded and positive. 

Remark: in the multivariate case 1d  , we need to check that the Henstock-Kurzweil integral still is equivalent to the 

Lebesgue integral. If it is not, we can assume all functions to be Henstock-Kurzweil-integrable. 

Remark: the conditions on the probability distributions and the different integrals are sufficient but not necessary. Our 

purpose is just to avoid technicalities that are beyond the scope of the present paper. 

Definition: the formal, relative, continuous k -sample (multivariate) hypothesis test for comparison problem is the 

problem 0 ''  

 
 

0 1 0

0 01

0 0

,..., , ,
: Compute lim

,

l

k

ll

p H x x l
B

p H l





 




 

whenever the limit exists. 

Lemma:  

 
 

 
 

0 1 0 0 0

01

1 01 1 0

,..., , , ,
lim /

,..., , , ,

l l

k

l ll
k

p H x x l p H l
B

p H x x l p H l

    
   

       

 

Proof:  

 
 

 
 

 
 

 
 

 
 

0 1 0 0 0 0 1 0 1 1 0

1 0 0 0 0 01

0 1 0

1

0 0

1

,..., , , , ,..., , , ,..., , ,
lim / lim /

,..., , , , , ,

,..., , , 1
lim /

,

l l l l

k k k

l l l ll l
k

l

k

ll

p H x x l p H l p H x x l p H x x l

p H x x l p H l p H l p H l

p H x x l p H

p H l

 



          
        

                 

  
 

  

 
 

 
 

1

0 1 0 0 1 0

0

0 0 00

,..., , , ,..., , ,
lim

1 , ,

l l

k k

l ll

x x l p H x x l
B

p H l p H l

    
    

        
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because 
 

 
0 1 0

00

1 ,..., , ,
lim 1

1 ,

l

k

ll

p H x x l

p H l

 


 
. 

It follows that 01B  is the limit of a sequence of Bayes factors. Therefore, 

Definition: 01B  is called a limit, a relative, a generalized Bayes factor, or a Bayes-Poincaré factor. 

Remark: it is worth observing, perhaps for the first time, that those Bayes factors for the discrete problems 

 
 

 
 

0 1 0 0 0

1 01 01

,..., , , ,
/

,..., , , ,

l l

k

l l

k

p H x x l p H l

p H x x l p H l

    
   

       

 

are not the ratios of any (marginal, supremum…) likelihoods. It follows that the Bayes-Poincaré factors are of a different 

nature than the classical, well-known likelihood ratios Bayes factors. In particular, the Bayes-Poincaré factors are not 

exponential. 

Corollary: as an example, the solution to the formal, relative, univariate, continuous, 2 -sample historical Behrens-Fisher 

problem with Jeffreys’ joint proper-improper prior 

       
1 1, , ,i i i i ip L U p L U p U L    
     

over   *,L U  , L U , 1,2i  , is given by 

 
   

   

1 2

1 2

1 2

1 2

2 22 2

1 2

1 1

01

2 22 2

1 2

1 1

d

,

d d

n n
U n n

i i

i iL

n n
U Un n

i i

i iL L

x x

B L U U L

x x

  

   

 

 

 

 

   
    

    

   
    

   

 

  

 

Proof: see Appendix 1 

Simulation results 
Finally, we present some early simulation results, just to check that the Bayes-Poincaré factors work as expected. We 

compare them to the p-values of the standard two-sample unpaired/independent Student t test for unequal variances 

with Satterthwaite’s approximation. See Appendix 2 for the corresponding Matlab code and the parameters of the 

simulations. Those results shall be completed with the standard Bayes factors for likelihoods 0M  and 1M . 



10 
 

 

It appears that the Bayes-Poincaré factors are actually meaningful: they decrease as 
1 2   increases. However, in this 

particular example, they yield completely different decisions from the decisions based on the 2 -sample 

unpaired/independent Student t  test p -values. For instance, if the decision rule for the Bayes-Poincaré factor is simply 

0 01

0 01

Do not reject  if 1

Reject  if 1

H B

H B





 

and the decision rule for the p -values of the Student t  test is 

0

0

Do not reject  if 

Reject  if 

H p

H p









 

for significance level  0,1 , then both decision procedures are strongly inconsistent for standard values of 0.1  

over a large range of values of 1 2  . Conversely, both procedures can match only for unusually large values of 0.2  

Moreover, it is quite clear that, depending on U L , the Bayes-Poincaré factors can be greater than one or smaller than 

one for almost all values of 
1 2  ! This issue comes from the uniform Bayes-Laplace prior whose normalization 

constant U L  is unbounded over  and it should disappear for location priors having bounded normalization 

constants. This shows that priors that are standard in estimation theory are not suitable for testing point null, continuous 

hypotheses. It will take some time to tame the Bayes-Poincaré factors and their suitable priors. 

Conclusion 

The likelihood or model 0M  under the null hypothesis 0H  for k -sample tests for comparison, within the classical, 

standard likelihoodist and Bayes factor approaches, succumbs the principle of the identity of equality and identity. This 
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was our main motivation for developing a new and different Bayesian approach to the Behrens-Fisher problem that is 

completely internal to probability theory. A posteriori, upon inspection, those classical likelihoodist and Bayesian solutions 

suffer many defects and criticisms, including 

 Two new and fictitious models/likelihoods 0M  and 1M  for the pooled data  1 2,x x  are introduced under both 

hypotheses 0H  and 1H  on top of both original models, in violation of Ockam’s razor; 

 Model 0M  requires a call to the principle of the identity of equality and identity, which is external to probability 

theory and false according to Henri Poincaré. This is not because two parameters have the same numerical values 

that they are identical; 

 Conversely, under model 1M , this is not because there are two different parameters that their numerical values 

are necessarily different. They are different almost surely with probability 1p   if the parameters are continuous 

and different with probability 1p   if they are discrete; 

 It follows that 1M  is not the logical negation of 0M , even in the continuous case, in contradiction with the 

definition of the original hypotheses 0H  and 1H ; 

 The prior probabilities for models 0M  and 1M  are assigned, quite arbitrarily, and decorrelated from the prior 

probabilities for the hypotheses 0H  and 1H  that must be computed from the prior probability distributions of 

the parameters of the original models and are equal to 0  respectively 1 for continuous parameters;  

 For a continuous parameter of interest with continuous marginal prior probability distributions under both 

experiments, the prior and posterior probabilities for the null hypothesis 0H  are equal to zero. It follows that the 

Bayes factor is undefined. Therefore, the solution cannot rely on a Bayes factor; 

 The classical solution remains the same, regardless of whether the parameter of interest is discrete or continuous, 

while the situation is completely different since the Bayes factor is well-defined in the discrete case and undefined 

in the continuous one. 

The first step towards the new, more rigorous solution was to distinguish the discrete problems from the continuous ones. 

The absolute solutions to the discrete problems are straightforward but become degenerate, trivial and totally useless for 

continuous problems, for which the Bayes factors (defined as prior-to-posterior odds ratios, not likelihood ratios) are 

undefined because the point null hypothesis is Lebesgue-negligible. This measure-theoretic issue was easily solved in a 

second step, by approximating the continuous problems by sequences of discrete ones, yielding the introduction of 

relative solutions and Bayes-Poincaré factors, which are well-defined thanks to the Henstock-Kurzweil integral that is as 

powerful as the Lebesgue one but still relies on Riemann sums that are essential in the present solution. This technique is 

of general interest in all point null hypothesis tests and might finally provide us with the solutions to other important 

problems, such as the Jeffreys-Lindley paradox. It will take some time to tame the Bayes-Poincaré factors and their suitable 

priors because they are very much different from the traditional Bayes factor. 
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Appendix 1: Calculations for the formal, relative, univariate, continuous, 2 -sample historical Behrens-

Fisher problem with Jeffreys’ joint proper-improper prior for the Gaussian probability distribution 
Let 

      1, , 1,2i i i i ip p p i         

be the classical Jeffreys’ improper prior over *  for the Gaussian distribution. 

In order to keep full control, we start with proper priors with compact support 

       
   

1
1

, , , , 2
log log

i
i i i ip N a b p N p a b N

b a


   




 


 

over     , ,N N a b  , 0 N , 0 a b  , 1,2i  . 

We introduce two identical sequences of discrete uniform random variables   *
, 1,2l

i
l

i


  defined on a partition of 

 ,N N  such as 

 , , 2 ,..., ,l N
N N N N

l
             

of cardinal 2 1l l   . The prior probability for the null hypothesis 0H   and the discrete parameters 1

l   and 2

l  is 

          
2 2 2 1

0 , 2 1 2 1 2 1 2 1
l l

lp H l N p l l l l
  

 

          

But it is more convenient to write it like this 

 
 

0 2
0

1 1 1 1 d
2 1

,
1 1 1 1 22

d d

l l

l l l l

N

N

N N

N N

N N
p H l N

l lN

 

 
 

 


  

 

   

 

  

     
 

  

   
 

 

Dropping index i  for clarity, both joint posteriors write 

 
     

     

   

   ' ' '

, , , , , , , , , , , , ,
, , , , ,

, , , , , , , d , , , , , , d
l l

l l l

l

b b

l l l

a a

p l N p a b p x l N a b p a b p x l N a b
p x l N a b

p l N p a b p x l N a b p a b p x l N a b

      
 

        
 

 

  

 

with 

   
 

2 2

1
2

, , , , , 2

m
i l

i

xm
l mp x l N a b e




   





 



  

We need to evaluate the integral 
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   
 
   

 
2 2

2 11
2

, , , , , , d d
log log

m
i lx

i

m
b b

l m

a a

p a b p x l N a b e
b a




     


 





 
   

Let 

   
2

1

1

2

m
l i l

i

A x 


  ,    
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2 22l ly A A y   


   ,  
31

22
1

d d
2

lA y y 


   

Then 

   
 

 

 

 

 
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A A m m
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 
 


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
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



 
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 

 


 

 
   

 

    
      

    

 



 $ 

It follows that 

 
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   

     
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      



     


 


 



    
     
     
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Now that the normalization constant    log logb a  has cancelled out, we can take the limits 0a   and b  to 
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Therefore, the null hypothesis 0H  has posterior probability 
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now has a well-defined limit when l  , equivalently 0    
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because all functions are Riemann-integrable. 

For 2m  , 2n   and non pathological data, the improper integrals converge 
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It follows that we have the undesirable but perfectly normal result 
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This is not a defect of the present method but of the uniform prior, due to the fact that 
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This is a very intuitive result, the larger N , the smaller  0p H N  but almost not  0 1 2, ,p H x x N  because the posterior 

distributions concentrate their mass around the sample means.  

Hence, this issue should disappear for any location prior whose normalization constant remains bounded over  such as 

a Gaussian prior  20, . 
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Appendix 2: Matlab simulation code 
 

clear all 
close all 
clc 
format long 

 
% Standard deviations of both Gaussian distributions 
sigma1 = 1; 
sigma2 = 1; 

  
% Sample sizes 
N1 = 100; 
N2 = 100; 
N12 = N1/2; 
N22 = N1/2; 

  
L = 0; 
U = 1; 

  
delta_delta_mu = 0.01; 
% Values of mu1 - mu2 
delta_mu = 0:delta_delta_mu:0.5; delta_mu2 = 2 * delta_mu; 
nb_delta_mu = length(delta_mu); 

  
mu1 = zeros(1,nb_delta_mu); 
mu2 = zeros(1,nb_delta_mu); 

  
% Bayes-Poincaré factors 
BPF = zeros(1,nb_delta_mu); 
% p-values for the 2-sample independent/unpaired Student t test with unequal variances 

ans Satterthwaite’s approximation  
pvalues = zeros(1,nb_delta_mu); 

  
delta_mus = 0.001; 
% Delta-fine partition for the Riemann sums/rectangle method for numerical 
% evaluation of the integrals 
mus = L:delta_mus:U; 
mus2 = mus.^2; 
nb_mus = length(mus); 

  
% Number of simulations 
nb_simu = 1000; 

  
for k = 1 : nb_delta_mu 

     
    k 

     
    % Mathematical expectations for both Gaussian distributions 
    mu1(k) = 0.5 + delta_mu(k); 
    mu2(k) = 0.5 - delta_mu(k); 

     
    for simu = 1 : nb_simu 

     
        % Samples 
        x1 = normrnd(mu1(k),sigma1,1,N1); 
        x2 = normrnd(mu2(k),sigma2,1,N2); 
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        % 2-sample independent/unpaires Student t test with unequal variances ans 

Satterthwaite’s approximation  
        %[h,p,ci,stats] = ttest2(x1,x2,'Vartype','unequal'); 
        [h,p] = ttest2(x1,x2,'Vartype','unequal'); 

  
        x1m = sum(x1); 
        x2m = sum(x2); 

  
        x1m2 = sum(x1.^2); 
        x2m2 = sum(x2.^2); 

  
        SSE1 = x1m2 - 2*x1m * mus + N1 * mus2; 
        SSE2 = x2m2 - 2*x2m * mus + N2 * mus2; 

  
        % Mean of the Bayes-Poincaré factors over the simulations 
        BPF(k) = BPF(k) + sum((SSE1).^(-N12).*(SSE2).^(-N22)) / (sum((SSE1).^(-N12)) * 

sum((SSE2).^(-N22))); 

         
        % Mean of the p-values over the simulations 
        pvalues(k) = pvalues(k) + p;  

         
    end 

     
    BPF(k) = BPF(k) * (U - L) / delta_mus / nb_simu; 
    pvalues(k) = pvalues(k) / nb_simu; 

     
end 

  
figure(1) 
plot(delta_mu2,BPF) 
hold 
plot(delta_mu2,pvalues,'r') 
xlabel('mu1-mu2') 
ylabel('Bayes-Poincaré factors and p-values') 
title('Bayes-Poincaré factors (b) and Student t p-values (r) vs mu1-mu2') 

 

 

End of the document 


