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Abstract:  

The permanent’s polynomial-time computability over fields of characteristic 3 for k-semi-

unitary matrices (i.e. n×n-matrices A such that 𝑟𝑎𝑛𝑘(𝐴𝐴𝑇 − 𝐼𝑛) = 𝑘) in the case k ≤ 1 

and its #3P-completeness for any k > 1 (Ref. 9) is a result that essentially widens our 

understanding of the computational complexity boundaries for the permanent modulo 3. 

Now we extend this result to study more closely the case k > 1 regarding the (n-k)×(n-k)-

sub-permanents (or permanent-minors) of a unitary n×n-matrix and their possible 

relations, because an (n-k)×(n-k)-submatrix of a unitary n×n-matrix is generically a k-

semi-unitary (n-k)×(n-k)-matrix. 

The following paper offers a way to receive a variety of such equations of different sorts, 

in the meantime extending (in its second chapter divided into subchapters) this direction 

of research to reviewing all the set of polynomial-time permanent-preserving reductions 

and equations for a generic matrix’s sub-permanents they might yield, including a 

number of generalizations and formulae (valid in an arbitrary prime characteristic) 

analogical to the classical identities relating the minors of a matrix and its inverse. 

Moreover, the second chapter also deals with the Hamiltonian cycle polynomial in 

characteristic 2 that surprisingly demonstrates quite a number of properties very similar 

to the corresponding ones of the permanent in characteristic 3. 

Besides, the paper’s third chapter is devoted to the computational complexity issues of 

the permanent and some related functions on a variety of Cauchy matrices and their 

certain generalizations, including constructing a polynomial-time algorithm (based on 



them) for the permanent of an arbitrary square matrix in characteristic 5 and 

conjecturing the existence of a similar scheme in characteristic 3. 

Throughout the paper, we investigate various matrix compressions and transformations 

preserving the permanent and related functions in certain finite characteristics. And, as 

an auxiliary algebraic tool supposed for an application when needed in all the 

constructions we’re going to discuss in the present article, we’ll introduce and utilize a 

special principle involving a field’s extension by a formal infinitesimal and allowing, 

provided a number of conditions are fulfilled, to reduce the computation of a polynomial 

over a field to solving a system of algebraic equations in polynomial time.     

 

Introduction 

Historically the computation of polynomials over finite fields was considered as quiet a 

special area related to the general theory of computational complexity. It’s known that 

the existence of a polynomial-time algorithm for computing the number of solutions of 

an NP-complete problem modulo p (i.e. the statement that the complexity class #pP is a 

subset of P) implies the equality RP = NP for any prime p. This fact can be demonstrated 

via considering, for instance, the Hamiltonian cycle polynomial ham(Z) over a finite field 

F, where Z is an n×n-matrix, that is a homogeneous polynomial in Z’s entries such that 

each variable’s degree is 0 or 1 in each monomial. In the meantime, any polynomial 

over F in m variables such that each variable’s degree is 0 or 1 in each monomial can 

have no more than m|F|m−1 roots over F (it’s easy to prove by the induction on m). 

Hence if we take an n×n-matrix W = {wi,j}n×n over F and, given a digraph G with n 

vertices whose adjacency matrix is AG, define its weighted adjacency matrix as AG ⋆ W, 

where ⋆ denotes the Hadamard (entry-wise) product, then the equation for the 

variables wi,j     ham(AG ⋆ W) = 0 can have no more than n2|F|n
2−1 roots over |F|. It 

implies that if we consider W random then the probability that ham(AG ⋆ W) = 0 is 

smaller than 
n2

|F|
 when G is Hamiltonian and 1 otherwise. Moreover, because for all the 

2n
2
 possible adjacency matrices AG we can get, altogether, no more than 2n

2
n2|F|n

2−1 

roots of the equations ham(AG ⋆ W) = 0, in case if 
2n
2
n2

|F|
< 1 it also implies the 

existence of a matrix W such that for any digraph G with n vertices ham(AG ⋆ W) = 0 if 

and only if G isn’t Hamiltonian, while the probability of taking such a matrix W randomly 



is 1 −
2nn2

|F|
 . Accordingly it also demonstrates the known fact that RP is a subset of 

P/poly. 

From the other hand, given a finite field F of characteristic p, any computational circuit 

can be polynomial-time represented as a set of relations over F where each variable is 

either expressed as the sum or product of two other variables or equaled to a given 

constant. Such a representation hence calculates a polynomial in the set of given 

constants. In the meantime, when we extend F to a bigger field F̂ we therefore receive 

an extension of this polynomial to another one over F̂. And, in case if the initial circuit 

implements a correct polynomial-time algorithm for solving an NP-complete problem, 

we accordingly get the question whether the extended polynomial should be #pP-

complete.  

Besides, many polynomial-time algorithms on graphs or digraphs have algebraic 

representations via a determinant (of a size polynomial in the graph’s or digraph’s 

number of vertices) over a finite field. A bright example is the Tutte matrix algorithm for 

determining the existence of a perfect matching in a graph. We hence may say that a 

wide variety of problems from the class NP can be embedded into computational 

problems over finite fields and fields of finite characteristics, i. e. into algebraic 

complexity problems.  

A number of attempts to use a prime characteristic’s advantages for computing a #P-

complete polynomial modulo that characteristic were already performed by many 

mathematicians. For instance, in their paper “The Parity of Directed Hamiltonian Cycles”    

(https://arxiv.org/abs/1301.7250 ) Andreas Bjorklund and Thore Husfeldt compute the 

parity of the number of Hamiltonian cycles of a generic digraph with n vertices in 

O(1,618n) time via efficiently using certain properties of this field and some relevant 

theorems of graph theory. Likewise, the parity of the number of Hamiltonian 

decompositions, as the corresponding existence problem is NP-complete too, is also a 

subject for an intense research yielding such results as Thomason’s theorem stating that 

in a 4-regular graph the number of its Hamiltonian decompositions where a given pair of 

edges doesn’t belong to one cycle is even. This result was extended in (21) by one of the 

authors. 

In the present article we’re going to apply all the algebraic machinery of arbitrary fields 

and rings of some finite characteristics to a number of computationally complete 

functions over them. While the infinite fields of finite characteristics have a certain 

“smoothness” allowing to use a metric-like mechanics (introduced in the paper) and 

https://arxiv.org/abs/1301.7250


methods of functional analysis for efficient computations, the finite idempotent rings of 

characteristic 2 (including GF(2)), though deprived of “analytic smoothness”, appear to 

possess very special useful properties unavailable in any other types of rings. For 

instance, the classical theorem that the number of Hamiltonian cycles through any given 

edge is even in any odd-degreed graph receives, under our approach, the following 

generalization: 

over an idempotent ring of characteristic 2, in a weighted graph with n+2 vertices 

whose weighted adjacency matrix is (
A b c
bT

cT
0 1
1 0

) the sum of the products of the edge 

weights of Hamiltonian cycles through the edge (n+1,n+2) is zero if 

 c = hb + A1⃗ n + 1⃗ n + (A + Diag(d))diag(A + Diag(d))
−1 + d  

for some d ∈ {0,1}n such that det(A + Diag(d)) = 1 and h ∈ {0,1}, where diag(A +

Diag(d))−1 is the n-vector of diagonal entries of (A + Diag(d))−1 and 1⃗ n is the n-vector 

all whose entries are unity.   

In the case when the ground ring is GF(2), d = 0⃗ n (where 0⃗ n is the n-vector all whose 

entries are zero), h = 1, 1⃗ n
Tb = cT1⃗ n = 0 and the graph has no loops (i.e. A is a matrix 

with the zero diagonal) this relation yields an equality for a non-weighted odd-degreed 

graph that is precisely the above-mentioned classical theorem on the parity of 

Hamiltonian cycles through a given edge.  

Besides, the approach we propose is also able to yield such easily verifiable results as 

the statements (proven in the article’s second chapter) that, for any Boolean symmetric 

n×n-matrix X with the zero diagonal and n-vector y, the two graphs with the adjacency 

matrices (
X y

yT 0
) and (

X X1⃗ n + 1⃗ n + y

1⃗ n
TX + 1⃗ n

T + yT 0
)) have the same parity of the 

number of Hamiltonian cycles and this equality also holds for the two adjacency 

matrices X and (X + D)−1 for any diagonal Boolean n×n-matrix D when det(X + D) is 

odd. These statements provide quite a powerful instrument for polynomial-time 

transforming a graph whose parity of the number of Hamiltonian cycles we wish to 

know into another graph on the same set of vertices and with the same parity of the 

number of Hamiltonian cycles. 



 

The neighboring computation principle  

(for any characteristic). 
 

We’ll denote by δ(q) the natural function in the natural variable q that equals unity if q 

is zero and equals zero otherwise, and by 𝔍(b(t), t)|t=g the Jacobian matrix of the 

vector-function b(t) on the vector-variable t computed in the point t = g.  For a field F, 

we’ll denote by F(ε) F′s extension by the formal infinitesimal variable ε, i.e. F(ε) ∶=

{a = ∑ akε
k∞

k=orderε(a)
, orderε(a) ∈ ℤ, ak ∈ F  for k = orderε(a),… ,∞} . 

Let  f(u) be a polynomial in  u1, … , udim(u) of degree d over a field F,  

û = û(h1, … , hdim(h)), v = v(h1, … , hdim(h))  be two analytic vector-functions in the 

parameter vector-variable h such that dim(û) + dim(v) ≤ dim(h) and  h[0] be a value 

of this vector-variable such that û(h[0]) exists, v(h[0]) = 0⃗ dim(v), 

𝔍((
û(h)

v(h)
) , h)|

h=h[0]
exists and is nonsingular. 

Then, given a value u[0] of the vector-variable u, over F(ε)  (where ε is a formal 

infinitesimal)    

f(u[0]) =∑coefεi(f(û(∑εk
d

k=0

d

i=0

h[k]))) 

where the dim(h)-vectors h[1], … , h[d] satisfy the equations 

 𝔍((
û(h)

v(h)
) , h)|

h=h[0]
h[k] = (

δ(k − 1)(−û(h[0]) + u[0]) − coefεk(û(∑ εik−1
i=0 h[i]))

−coefεk(v(∑ εik−1
i=0 h[i]))

)  

                                                           for k = 1, … , d 

(and  thus  û(∑ εkh[k]d
k=0 ) = û(h[0]) + ε(−û(h[0]) + u[0] ) + O(εd+1),

v(∑ εkh[k]d
k=0 ) = O(εd+1)  ) 

This method will be called the neighboring computation of the polynomial 𝐟(𝐮) in the 

point 𝐮[𝟎] via the parameterization �̂�(𝐡) in the region 𝛎(𝐡) = �⃗⃗� 𝐝𝐢𝐦(𝛎) from the bearing 

point 𝐡[𝟎].  



 

Therefore if  f(û(h)) is computable in polynomial time for any h such that ν(h) =

0⃗ dim(ν) (including the ε-power series h = ∑ εkh[k]d
k=0 + O(εd+1) whose members of 

degrees higher than d are the solutions of the above equations for k > d) and there 

exists a bearing point h[0] such that û(h[0]) exists, v(h[0]) = 0⃗ dim(v), 

𝔍((
û(h)

v(h)
) , h)|

h=h[0]
  exists and is nonsingular then f(u[0] ) is computable in polynomial 

time for any u[0]  too.  

In the further, for the purpose of simplicity, we’ll call a system of functions S 

algebraically absolutely independent in a region R (given by a system of equations with 

a zero right part) if and only if the joint system of functions consisting of S and the left 

part of the system representing R is algebraically independent at some point of R.    

We’ll also define a computational circuit as arithmetically polynomial-time over a field 

if it consists of a polynomial-time number of arithmetic operations over the field. 

The above principle hence implies that a polynomial in n variables over a field 

is computable in arithmetically polynomial (in n) time over the field when its 

calculation can be arithmetically polynomial-time (in n, over the field) reduced 

to finding a solution of an algebraic equation system for a polynomial (in n) 

number of some other variables that consists of a polynomial (in n) number of 

equations represented by arithmetically polynomial-time (in n, over the field) 

computable and analytic (over the field) functions in these new variables.  

 

I. Equalities for the sub-permanents of a unitary matrix 

over fields of characteristic 3 

Definitions: 

Let A be an nxn-matrix, I, J be two subsets of {1,…,n} of an equal cardinality. Then we 

define its I→J-replacement matrix  A[I→J] as the matrix received from A through 

replacing its rows with indexes from J by those with indexes from I, i.e. through 

replacing its ik-th row by its jk-th one for k =1,...,|I|. 



Analogically, given two pairs I,J and K,L of subsets of {1,…,n}  such that |I|=|J| and 

|K|=|L|, we define its  I→J,K→ 𝐿-double-replacement matrix A[I→J,K→L] as the matrix 

received from A through replacing its rows with indexes from J by those with indexes 

from I and its columns with indexes from L by those with indexes from K. 

We also define its I,J-repeat matrix A[I,J] as the matrix received from A through 

repeating twice its rows with indexes from I and its columns with indexes from J (while 

the pairs of doubled rows or columns receive neighboring indexes. i.e. the doubled rows 

and columns follow each other). 

By A(I,J) we’ll denote the matrix lying on the intersection of the rows with indexes from I 

and the columns with indexes from J, and by  A(\I,\J) we’ll denote the matrix received 

from A through removing its rows with indexes from I and its columns with indexes from 

J. 

For the purpose of simplicity, for a 1-set {i} we’ll omit the brackets {} and write just i 

instead.  

Theorem I.1: 

Let U be a unitary n×n-matrix, I, J be two disjoint subsets of {1,…,n} of an equal 

cardinality. 

Then per(U[I→J]) = (−1)|I|per(U[J→I]) 

Proof: 

To prove this theorem, we should effectively apply the principal equality expressing the 

permanent of an nxn-matrix through its “principal minor convolution”, i.e. 

(1)     per(A) = (−1)n∑ det(A(L,L))L,L⊆{1,…,n} det(A(\L,\L))             

First of all, as the permanent of a square matrix doesn’t change after any permutation 

of its rows and a unitary matrix remains unitary after any permutation of its rows, we 

can assume I={1,3,…,2k-1}, J={2,4,…,2k} because we always can permute the rows of U 

so that the latter condition is fulfilled. Therefore proving the theorem for this pair of 

sets I, J is equivalent to proving it for the generic case. Hence, each of the two rows of 

the matrix U[I→J] with the indexes 2q-1, 2q are the (2q-1)-th row of U, q=1,…,k. 

Since the matrix U[I→J] for |I|=k has k doubled rows, the sum over T in the above 

equality (1) can be replaced by the sum over those T that contain exactly one element 

from each pair 2q-1, 2q  for q=1,…,k. 



And now we apply the equality expressing a minor of a square matrix A through a minor 

of its inverse (for L,M being subsets of {1,…,n} of an equal cardinality):  

(2)         det(A(L,M)) = det(A)det((A−1)(\M,\L))(−1)∑ llϵL +∑ mm∈M  

For a unitary U this formula just takes the form 

(3)       det(U(L,M)) = det(U)det(U(\L,\M))(−1)∑ llϵL +∑ mm∈M  

while in such a case the convolution equality (1) for the matrix U[I→J] yields:   

per(U[I→J]) =

(−1)n ∑ ∑ det(U(R∪I,R∪G(h)))h∈{0,1}kR,R⊆{1,…,n}\{I∪J} det(U(\{R∪J},\{R∪G(h)}))             

where G(h) = {2 − h1 ∪ …∪ 2k − hk}. 

After the application of the formula (3) to the latter equality, we receive  

per(U[I→J]) = 

(−1)n ∑ ∑ (−1)kdet(U(\{R∪I},\{R∪G(h)}))

h∈{0,1}kR,R⊆{1,…,n}\{I∪J}

det(U(R∪J,R∪G(h))) 

as all the indexes of the involved minors are doubled except 1,…,2k each of whom  

appears exactly once in the corresponding sum of indexes (according to the formula (3)) 

and their sum is equal to k modulo 2. Hence, we get the theorem. 

Theorem I.2: 

Let U be a unitary n×n-matrix, I,J be two subsets of {1,…,n} of an equal cardinality. 

Then per(U[I,J]) = (−1)|I|per(U(\I,\J)) 

Proof: 

The proof of this theorem virtually repeats the proof of Theorem I.1, including the 

preliminary permutations of repeated rows and repeated columns that make their 

indexes belong to the set {1,…,2k}, where |I|=|J|= k. I.e. we can assume, beforehand, 

that  I = J = {1,…,k} – for the same reason as in the proof of Theorem I.1, while 

preserving the degree of commonness.  In such a case in the corresponding convolution 

sum all the indexes would be repeated twice when passaging to the inverse’s minors, 

while each product of principal minors will have the coefficient 2|I| = (−1)|I| 

Theorem I.3:   given two pairs I,J and K,L of subsets of {1,…,n} such that  



|I|=|J|=|K|=|L|, I ∩ J = K ∩ L = ∅, 

per(U[I→J,K→L]) = per(U[J→I,L→K]) 

Proof: 

Once again, this theorem can be easily proven in the same way as Theorems I.1, I.2, 

while assuming I = K = {1,3,…,2k-1},  J = L = {2,4,…,2k}. 

Definition: 

For an n×n-matrix A and k ≤ n, let’s define its k-th permanent-minor matrix P(A, k) as a 

Cn
k × Cn

k-matrix  whose rows and columns are indexed by k-subsets of {1,…,n}  and 

whose I,J-entry pI,J(A, k) = per(A
(I,J)) for a pair of k-subsets I,J.  

Let’s also define its k-th permanent-complement matrix F(A, k) as a Cn
k × Cn

k-matrix  

whose rows and columns are indexed by k-subsets of {1,…,n}  and whose I,J-entry 

fI,J(A, k) = per(A
(\I,\J)) for a pair of k-subsets I,J. 

Obviously,  P(UT, k) = PT(U, k) and F(UT, k) = FT(U, k) . 

Corollary I.4: let U be unitary. Then 

(*)                F(U, k)PT(U, k) = (−1)kP(U, k)FT(U, k) ⋆ {(−1)|I∩J|}Cnk×Cnk  

 where ⋆ denotes the Hadamard (i.e. entry-wise) product of matrices.  

 Corollary I.5: 

 (**)                         (−1)k+1F(U, k) + P(U, k)FT(U, k)P(U, k) = 

= −{∑ ∑ ( P(U, s)FT(U, s)P(U, s))Î,ĴpI\Î,J\Ĵ(U, k − s)

Î⊂I,Ĵ⊂J

|Î|=|Ĵ|=s

k−1

s=0

}Cnk×Cnk = 0 

Both the above corollaries follow from Theorems I.1 and I.2 correspondingly and the 

Laplace expansions of the permanent for a set of rows and for a set of rows and a set of 

columns.  

The equalities (*) and (**) are actually linear equations expressing the entries of F(U,k) 

through the entries of F(U,s) for s<k. 



We can also notice that for a unitary U its replacement matrix for |I|=|J|= 1 is 1-semi-

unitary and, therefore, we can compute its permanent in a polynomial time, while for a 

unitary U and four pair-wise distinct indexes i, j, s, r  (where s<r) 

(***)   per(U[{i,s}→{j,r}]) −  per(U[{i,r}→{j,s}]) = per(Ms,rU
[i→j]) 

where Ms,r is the identity matrix In where the s-th and r-th rows were left-multiplied by 

the unitary matrix ( √
−1 √−1

−√−1 √−1
)  (hence Ms,rU

[i→j] is also 1-semi-unitary as a unitary 

row-transformation of the 1-semi-unitary matrix U[i→j]).  

Lemma I.6. 

Let U be unitary, i<j. Then per(U[i→j]) = per(Mi,jU) 

Lemma I.7.  

Let U be unitary, i<j, s<r, |{i,j,r,s}|=4. Then 

per(U[{i,s}→{j,r}]) −  per(U[{i,r}→{j,s}]) = per(Ms,rMi,jU) 

 

 

Since, by the Laplace expansion of the permanent for a set of rows, the I,J-entry of the 

matrix  P(U, 2)FT(U, 2) equals per(U[I→J]), i.e  (P(U, 2)FT(U, 2))I,J = per(U
[I→J]), the 

equalities (***)  (together with the fact that if |I ∩ J| > 0 then U[I→J]  has either 

precisely one replaced row or no replaced rows and, accordingly, is 1-semi-unitary or 

unitary correspondingly) signify that the matrix F(U, 2)PT(U, 2) = (P(U, 2)FT(U, 2))T  

can be polynomial-time expressed as the sum of a known matrix and a matrix X(U) with 

the following properties:  xI,J(U) =  xK,L(U) if I ∪ J = K ∪ L and  xI,J(U) = 0 if |I ∩ J| >

0. We’ll call a matrix super-symmetric if its rows and columns are indexed by 2-subsets 

of {1,…,n} and it satisfies the two latter conditions. Hence, analogically, the matrix 

PT(U, 2)F(U, 2) = P(UT, 2)FT(UT, 2) can also be expressed as the sum of a known 

matrix and a super-symmetric Y(U). Accordingly, if in the generic case of a unitary U the 

homogeneous system of linear equations for two super-symmetric matrices X and Y  

P(U, 2)X − YP(U, 2) = 0 is non-singular and, therefore, its only solution is zero, we can 

polynomial-time compute the entries of F(U,2) because the two above-mentioned 

expressions yield a non-singular system of linear equations for X(U), Y(U) (via expressing 

F(U,2) through X(U) and Y(U) correspondingly from these expressions). As an instrument 



for studying the equation P(U, 2)X − YP(U, 2) = 0, we can apply, for n ≡ 0 (mod m), 

the unitary matrix U = Diag({Wq}q=1,…,n
m
)  where W1, … ,Wn/m are unitary m×m-

matrices.  

Analogically, we can polynomial-time compute the differences  

(****) per(U[i→j,r→s]) −  per(U[i→j,s→r]) =  per(U[i→j])Ms,r 

because per(U[i→j])Ms,r is also 1-semi-unitary for the same reason as Ms,rU
[i→j]. 

It provides us with even more equations for the entries of the matrix F(U,2). Similar 

unitary linear combinations of k-1 pair-wise disjoint pairs of rows in the matrix U[i→j] 

would lead to some linear equations relating the entries of the matrices F(U,k),…,F(U,1). 

And the following question arises accordingly: whether it may appear that all those 

equations form a non-singular system for finding those matrices for some k>1 in the 

generic case of a unitary U. If it’s so, we may easily reduce their computation in any 

special case of our interest (particularly, significant for proving P=NP) to computing 

those matrices in the most generic case -- hence implying P=NP. As a necessary tool for 

such a research, we can offer the neighboring computation principle. 

Let’s call the equation (***) the (i,j;r,s)-replacement-shift equation for the matrix U and 

the equation (****)  the (i,j;r,s)-double-replacement-shift equation for U.  

 Let’s also define the matrix B(U, α) = (
αIn √1−α2UT

√1−α2U −αIn
) which we’ll call the α-

block-composition of U where α is an element of a field. It’s easy to see that B(U, α) is 

unitary when U is unitary. We’ll now consider, for a ground field H the entries of U 

belong to, its α-extension H(α) whose elements are formal power series in α, i.e. having 

the form h = ∑ htα
t∞

t=k  where k we’ll call the smallness-order of h (or just the order of 

h)  order(h). 

Conjecture I.8. 

For the generic case of a unitary nxn-matrix U, the set of (i,j;s,r)-replacement-shift 

equations for U and  𝑈𝑇and  (i+n,j;r+n,s)-replacement-shift equations (considered only 

for the power 𝛼2) for 𝐵(𝑈, 𝛼) 𝑎𝑛𝑑 𝐵(𝑈𝑇, 𝛼), where i,j,s,r are from {1,…,n}, form an 

algebraically complete (i.e. having a nonsingular Jacobian matrix) system of equations 

for the entries of F(U,2). 



Actually, while proving the above conjecture looks yet too difficult at the present time, 

we can try to experimentally check it via a computer modeling on a random U. 

II. Reviewing the permanent-minors and other permanents 

derived from a unitary matrix from a much wider point of 

view. 

 

1. The permanent-analog of the inverse’s minor formula.  

 

Let A be an n×n-matrix over a field of a prime characteristic p,  α, β be two n-vectors 

having all their entries from the set {0,…,p-1}, i.e. α, β ∈ {0, . . . , p − 1}n. Then let’s 

denote by A(α,β) the matrix received from A through repeating αi times its i-th row 

for i = 1,…,n and βj times  its j-th column for j=1,…,n (if some αi or βj equals zero it 

would mean we remove the i-th row or j-th column correspondingly). Then, in case if 

A(α,β) is square, i.e. ∑ αi
n
i=1 = ∑ βj

n
j=1 , the following identity holds 

Theorem II.1.1 (in characteristic p): 

per(A(α,β)) = detp−1(A)per((A−1)((p−1)1⃗⃗ n−β,(p−1)1⃗⃗ n−α))
∏ αi
n
i=1 !

∏ (p − 1 − βj)
n
j=1 !

 

where 1⃗ n is the n-vector all whose coordinates are equal to 1. 

The above identity can be also written as 

(∗)           per(A(α,β)) =

= detp−1(A)per((A−1)
((p−1)1⃗⃗ n−β,(p−1)1⃗⃗ n−α)) (∏ αi

n

i=1
!) (∏ βj

n

j=1
!)(−1)n+∑ αi

n
i=1  

Proof: 

First of all, let’s prove that 

(1)       (∏
(p−1)!

αi!

n
i=1 )per(A(α,β)) = per(In

((p−1)1⃗⃗ n,(p−1)1⃗⃗ n−α) A((p−1)1⃗⃗ n,β)) 

where in the right side is the permanent of a matrix composed of two blocks, the first 

block In
((p−1)1⃗⃗ n,(p−1)1⃗⃗ n−α) being block-diagonal itself with diagonal blocks of sizes  (p −



1) × (p − 1 − αi), i=1,…,n. The identity (1) follows from the Laplace expansion of the 

right permanent by the columns corresponding to the first block (this expansion is the 

direct product of the Laplace expansions for its diagonal blocks). 

Secondly, if B is an m×((p-1)m)-matrix and G is an m×m-matrix then 

(2)        per((GB)((p−1)1⃗⃗
 m,1⃗⃗ (p−1)m)) = detp−1(G)per(B((p−1)1⃗⃗

 m,1⃗⃗ (p−1)m)) 

as in characteristic p the permanent doesn’t change if each row of a matrix is repeated 

p-1 times and we add one of its (p-1)-tuples of equal rows to another (p-1)-tuple of 

equal rows, and is multiplied by dp−1 if we multiply a (p-1)-tuple of equal rows by d. 

Upon applying the formula (2) to the case B = (In
(1⃗⃗ n,(p−1)1⃗⃗ n−α) A(1⃗⃗ n,β)), G = A

−1, we’ll 

receive an identity involving a two-blocked matrix with the second block being block-

diagonal itself (like in the identity (1)) and hence analogous to the identity (1) what will 

give us the initial identity.  

This identity is, first of all, a generalization (for an arbitrary prime characteristic p) of all 

the repeat-removal identities we received in characteristic 3, and, secondly, the 

permanent-analog of the classical formula for the matrix inverse’s minor. 

Besides, in characteristic p there is the following pair of dual identities for an n×n-

matrix A: 

per(A) = (−1)n ∑ det(A(J1,J1))…det (A(Jp−1,Jp−1))

J1,…,Jp−1

 

det(A) = (−1)n ∑ per(A(J1,J1))… per (A(Jp−1,Jp−1))

J1,…,Jp−1

 

where in both the above formulas the summation is over all the (p-1)-tuples J1, … , Jp−1 

that are partitions of the set {1,…,n} into p-1 subsets, some of them possibly empty, 

while p isn’t obliged to be prime. 

 

2. Permanent-preserving compressions over fields of 

characteristic 3 

 
2.1   The basic compression 



 

Let A be an n×n-matrix over a field of characteristic 3 with at least one pair of 

equal rows. Let i,j  (i<j) be the indexes of the lexicographical minimum (index-

wise) of such pairs of rows. We’ll define the compression of A Comp(A) as the (n-

1)×(n-1)-matrix received from A through making zero (via the Gauss algorithm) all 

the entries of the first column of A by its i-th row (having ai,1 as the leading entry 

for the column elimination) and then removing the first column and the j-th row 

of the received matrix. Then  

per(A) = −ai,1per(Comp(A)) 

We’ll also define the compression-closure of A  Comp̂(A) as the limit of the 

compression operator’s sequential application to A or, if at some stage the 

received matrix is incompressible, to its transpose (i.e. the limit of actions when 

we compress the matrix and transpose it if no rows are equal any more but there 

are equal columns, until it would have no equal rows or equal columns). We can 

also speak about applying the compression and compression-closure operators to 

sets of matrices that would map them into another sets of matrices. It’s obvious 

that, if we denote by 𝕌k the set of k-semi-unitary matrices, Comp̂(𝕌0) = 𝕌0, i.e. 

unitary matrices are incompressible because they are non-singular and can’t have 

equal rows.  

But, if we take a unitary matrix with one row replaced by another one (whose 

permanent we can polynomial-time compute) and multiply both copies of the 

repeated row by √−1, then such a matrix will be both 1-semi-unitary and 

compressible, and, though strange, its compression won’t be 1-semi-unitary but 

will be 2-semi-unitary instead. Hence Comp(𝕌1) ⊂ 𝕌2 and the latter fact raises 

somewhat a hope that  Comp̂(𝕌1) is a set of matrices that is #3P complete and, 

in such a case, we can use the neighboring computation principle to prove  #3P = 

P and, therefore, P = NP. 

 

2.2 The generalized compression. 

Let A be an n×n-matrix over a field of characteristic 3 having at least one linearly 

dependent triple of rows, i.e. a triple of rows with pair-wise distinct indexes i, j, k such 

that  ak = gai+haj where g and h are some elements of the field (we also assume 

ai and aj are linearly independent). Then adding the row gai−haj multiplied by any 

element of the field to any row of A except the i-th, j-th and k-th ones doesn’t change 

the permanent because of its row-wise multi-linearity and the fact that the permanent 



of a matrix having four rows  ai,  aj,  gai+haj, gai−haj is zero in characteristic 3. Hence 

we can eliminate, while assuming that the first entry of the row gai−haj is non-zero (or 

permuting A’s columns for to fulfill this condition otherwise) and using it as the 

Gaussian column-elimination’s leading entry, the first column of A except the entries  

ai1, aj1, ak1. Then per(A) equals the permanent of the matrix received from A through 

replacing its i-th, j-th and k-th rows by the pair of rows  aj1ai−ai1aj, gai−haj  and 

removing its first column. We’ll call such a compression a triple-compression (as it 

involves a triple of linearly dependent rows), while the case of two linearly dependent 

rows  aj = dai , where d is some element of the field, we’ll call a pair-compression (i.e. 

we can divide the j-th row by d while the permanent will also be divided by d and hence 

we’ll receive the above-described case of equal rows). In fact, the pair-compression is a 

partial case of the triple-compression by putting d=g, h=0, but, nevertheless, these are 

two cases of permanent-preserving matrix compressions we’ll distinguish and in the 

further let’s understand by Comp(A) the lexicographically least (index-wise) pair- or 

triple-compression of A. In the meantime, the compression-closure operator’s definition 

won’t change in this generalization of the compression-operator. 

Thus the question of determining the structure of the matrix class Comp̂(𝕌1) becomes 

even more intriguing and challenging towards the chief mystery P versus NP. Actually 

we can even consider, instead of 𝕌1, the wider class 𝕌(1) ⊂ 𝕌2 of matrices received 

from unitary ones via replacing one row by an arbitrary vector-row (by the Laplace 

expansion, the permanent of such a matrix is the sum of the permanents of 1-semi-

unitary matrices and hence polynomial-time computable and if the replacing vector-row 

is a linear combination of the matrix’s two other rows then such a matrix is triple-

compressible) and, accordingly, study the class Comp̂(𝕌(1)).  

It would be also useful to notice that the identity given and proven in the first section of 

this paper that links the generalized permanent-minors of a matrix and its inverse is, if 

considered only for characteristic 3, merely an application of the pair-compression 

operator to certain matrices. Accordingly, the following questions could be raised: what 

family of identities may we receive in characteristic 3 when applying the most general 

compression, i.e. including the triple case, and, actually, what are the possible analogs 

of the permanent-preserving compressions we found in characteristic 3 for other prime 

characteristics? 

An answer to the former of these two questions might be gotten via studying an 

arbitrary (3n)×(3n)-matrix consisting of n linearly dependent triples of rows whose 

compression-closure would be of size at most (2n)×(2n). It could also provide us, upon 



permuting the matrix’s columns so that a chosen n-subset of its column set will turn 

into {1,…,n}, with an opportunity to determine a relation between all the (2n)×(2n) 

matrices (thus having equal permanents) we may receive in this way. Let’s call two 

(2n)×(2n)-matrices triple-conjugate if they can be received via such a procedure from 

one initial (3n)×(3n)-matrix consisting of n linearly dependent triples of rows. By the 

way, if we apply the same scheme for a (2n)×(2n)-matrix consisting of n pairs of equal 

rows and the pair-compression operator then we’ll receive n×n-matrices that are 

partial inverses to each other. Hence, while computing the permanent in char 3, we can 

transfer not only to the matrix’s partial inverse, but to its triple-conjugate as well 

(however, beforehand we should actually verify that, in fact, a triple-conjugate is 

(generically) not a partial inverse but its genuine generalization). 

2.3  A wider generalization of permanent-preserving compressions. 

Let A be a square matrix such that its first 2k rows form a matrix of rank k, i.e., 

generically, its rows with the indexes k+1,…,2k are linear combinations of its first k rows 

with a coefficient k×k-matrix B. Then per(A) is equal to the product of per(B) and the 

permanent of the matrix received from A through removing its rows with the indexes 

k+1,…,2k and doubling its rows with the indexes 1,…,k. In such a case we’ll receive a 

matrix with k pairs of equal rows to which we can apply (k times) the pair-compression 

operator in order to reduce its size by k. We’ll call such a compression an even 

compression. 

Let A be a square matrix such that its first 2k-1 (for k>1) rows form a matrix of rank k, 

i.e., generically, its rows with the indexes k+1,…,2k-1 are linear combinations of its first k 

rows with a coefficient (k-1)×k-matrix B. Then per(A) is equal to the permanent of the 

matrix received from A through removing its rows with the indexes k+1,…,2k-1, doubling 

its rows with the indexes 1,…,k, and, afterwards, adding one new column whose entries 

corresponding to both copies of the q-th row are  −per(B({1,…,k−1},{1,…,k}\q)) for q=1,…,k 

and all the other entries are zeros. (Please notice that the added column ensures the 

matrix remains square). In such a case we’ll receive a matrix with k pairs of equal rows 

to which we can apply (k times) the pair-compression operator in order to reduce its 

size by k. We’ll call such a compression an odd compression.  

In both the above cases of even and odd compressions, we just should suppose, 

naturally, that k is fixed so that per(B) or  per(B({1,…,k−1},{1,…,k}\q)) correspondingly 

could be computed in a polynomial time, or that we, at least, can polynomial-time 

calculate these values in some way otherwise. And, apparently, we may speak about 



applying to a 2k- or (2k-1)-set of rows of rank k the 2k- or (2k-1)-compression operator 

correspondingly (as stated above) upon an appropriate permutation of the matrix’s 

rows turning the set into {1,…,2k} or {1,…,2k-1}. We’ll call k and k-1 the compression’s 

velocity for an even and odd compression correspondingly as they lessen the matrix’s 

size by k and k-1 correspondingly. We can also prove that a compression transformation 

doesn’t change the matrix’s rank (although changing, possibly, its semi-unitarity class), 

while transferring to a partial inverse doesn’t change the matrix’s semi-unitarity but, 

nevertheless, may change its rank. Hence, coupled together, the compression operator 

and all the partial inversions form a yet more perfect instrument for permanent-

preservingly compressing matrix classes, first of all 𝕌(1). If we define transferring to a 

partial inverse as a compression of velocity 0, we might be able to compute the 

permanent on a yet more reach class Comp̂(𝕌(1)). 

Actually, it’s easy to notice that the earlier mentioned pair- and triple-compressions are 

merely partial cases of even and odd compressions correspondingly (that are, in fact, 

their generalizations), and, though strange, the triple-compression itself can be 

expressed as a double pair-compression (in a beforehand modified matrix, though). 

Hence since now we can start defining the compression of a matrix as its 

lexicographically least (index-wise) even or odd compression, with the same notion of 

the matrix’s compression-closure.  

              2.4 A criterion of the permanent’s equality to zero 

Let A be a square matrix such that its rows with the indexes k+1,…,k+m are linear 

combinations of its first k rows with the coefficient m×k-matrix B such that all its m×m-

subpermanents (or permanent-minors) are zero. Then per(A) = 0. In characteristic 3, an 

example of such a matrix B is the matrix C(x,y) where dim(y) < 2dim(x) and the joint 

vector (
x
y) is the root vector of a polynomial that is the derivative of another 

polynomial. This fact is based on Lemma that is to be given further in the article. 

2.5 The partial inverse equivalence and classification 

of permanent-preserving compressions. 

Lemma II.2.5.1 (on the permanent of a partial inverse): 

over a field of characteristic 3, for A11,  A22 being square,  



(**)  per (
A11 A12
A21 A22

) = det2(A11)per (
A11
−1 A11

−1A12
A21A11

−1 A22 − A21A11
−1A12

) 

The proof of the above formula can be received via the technique applied in proving the 

analog of the inverse’s minor formula for permanent-minors in Part 1 of this article.  

Apparently, the latter formula is a generalization of the formula for the permanent of a 

matrix’s inverse in characteristic 3, i.e., for a square non-singular A,  per(A) =

det2(A)per(A−1). In the meantime, in a generic prime characteristic p and with the 

same technique’s usage, we can even similarly generalize the formula (*) for 

permanent-minors via giving to both parts of the formula (**) their row/column 

multiplicity degrees: 

(***)       per (
A11 A12
A21 A22

)
(α,β)

= 

= detp−1(A11)per (
A11
−1 A11

−1A12
A21A11

−1 A22 − A21A11
−1A12

)

((p−1)1⃗⃗ n−β,(p−1)1⃗⃗ n−α)

∙ 

∙ (∏ α1,i

n

i=1

!) (∏ β
1,j

n

j=1

!)(−1)n1+∑ α1,i
n
i=1  

where:  

for an n×m-matrix  𝑀, an n-vector x and an m-vector y, both vectors having all their 

entries from the set {0,...,p-1},  𝑀(𝑥,𝑦) denotes the matrix received from  𝑀 via 

repeating  𝑥𝑖  times its i-th row for i = 1,...,n and 𝑦𝑗  times its j-th column for j = 1,...,m (if 

some row's or column's multiplicity equals zero it would mean that the row or column 

was removed, and thus this notion is a generalization of the notion of submatrix); 

 (
A11 A12
A21 A22

)
(α,β)

= (
A11
(α1,β1) A12

(α1,β2)

A21
(α2,β1) A22

(α2,β2)
), A11 is of size n1 × n1 and in the right part of 

the equality (***) each block-matrix is multiplicity-degreed correspondingly  (while A11 

and A(α,β) = (
A11 A12
A21 A22

)
(α,β)

 are square). 

Corollary II.2.5.2 (in characteristic 3): over a field of characteristic 3, for A11 of size n1 ×

n1 and invertible and  A22 of size n2 × n2, let the last n2 rows of (
A11 A12
A21 A22

) be linearly 

expressible through its first n1 rows (what implies A22 − A21A11
−1A12 = 0n2×n2). Then 



per (
A11 A12
A21 A22

) = det2(A11)per (
A11
−1 A11

−1A12
A21A11

−1 0n2×n2
) 

The above corollary can be used for another interpretation of the earlier introduced 

even and odd compressions: if we permute A’s rows so that all the linearly dependent 

rows we refer to in the corresponding definitions would form the second block-row in 

the received matrix’s block-decomposition then its corresponding (to the block-

decomposition) partial inverse will have the form  

(
A11
−1 A11

−1A12
(B 0k×(n1−k)) 0k×k

) or (
A11
−1 A11

−1A12
(B 0(k−1)×(n1−k)) 0(k−1)×(k−1)

) correspondingly 

and, due to B being of size either k×k or (k-1)×k correspondingly, we can permanent-

preservingly reduce this matrix via the Laplace-expansion for the second block-row 

(we’ll call such compressions primitive). If there are several pair-wise disjoint sets of 

such linear dependencies we refer to by the definitions, they’ll yield the direct product 

of corresponding primitive compressions. Hence even and odd compressions are 

equivalent to primitive ones via partial inverse reductions. 

But there are yet compressions that are not (at least, so obviously) equivalent to 

primitive ones. For instance,  

per (
(
α β α + β
c1 c2 c3

) A12

b1 b2 b3 0
) = per ((

r11α + r12β r21α + r22β
d e

) A12) 

where r11r21 = b2 , r12r22 = b1, r11r22 + r12r21 = b1 + b2 + b3 , 

r11e + r21d = per (

1 0 1
c1 c2 c3
b1 b2 b3

) 

r12e + r22d = per (

0 1 1
c1 c2 c3
b1 b2 b3

) 

𝛼, β are vector-columns, A12 is a matrix (of appropriate sizes), all the other values are 

elements of the ground field. 

All the types of compression we discussed in Chapter 2 of the present article we’ll call 

elementary. To summarize, we may, hence, conclude that in characteristic 3 there exists 

a whole variety of permanent-preserving compressions of a square matrix which, 

together with the set of partial inverse transformations, form the set of permanent-



preserving and polynomial-time computable elementary transformations of a matrix. 

The problem of finding and classifying all of them is yet to be solved. And, accordingly, 

the compression-closure operator (understood as the closure-limit of those elementary 

compressions) is a pretty rich opportunity to reduce the size of a matrix whose 

permanent we need to know. Therefore the question of studying the compression-

closure of important matrix classes we can polynomial-time compute the permanent on 

like 𝕌(1) still arises as one of the chief mysteries related to the ever mysterious 

indefiniteness of P versus NP. 

Besides,  the formulae (*), (**), (***) provide us, when applied to a unitary matrix in 

characteristic 3, with another variety of linear equations for a unitary matrix’s 

permanent-minors of a bounded depth (i.e. its sub-permanents received via removing k-

sets of their rows and columns, with a bounded k) whose non-singularity (for a given 

maximum of k) is to be researched as well. 

And, at last, it would be worth noting the following simple construction that, actually, is 

applicable in any characteristic. Let’s call reducing the permanent via the Laplace 

expansion on a set I of k rows (or columns) containing only k or k+1 non-zero columns 

(or rows) the Laplace compression on I. If we extend an n×n-matrix whose first row has 

only two non-zero entries, one of them equal to 1 and another to -1, by one row and 

column so that 

the new matrix’s first column would contain only two non-zero entries, 1 and -1,  

the Laplace compression on its first column would yield the original matrix, 

the original matrix’s first row would be involved in this extension,  

and transpose the received matrix afterwards, -- then each time we can involve some 

arbitrary row vector as a parameter, let’s call it a Laplace extension vector, while such 

an extended matrix we’ll call the elementary Laplace extension of the original matrix by 

a Laplace extension vector. Hence a generic sequence of elementary Laplace extensions 

will provide us with a matrix whose lower-right corner n×n-submatrix is the initial 

matrix or its transpose and whose permanent is the same as of the initial one. Actually 

such a sequence of elementary Laplace extensions could be started with an arbitrary 

matrix via extending it by one row and column so that the new matrix’s first column 

would have only two non-zero entries, 1 and -1, and the new matrix’s permanent would 

equal the permanent of the original one whose first row would be involved in the 

extension, and transposing the result afterwards (a Laplace extension vector is 

supposed here too, and we’ll call it an initial Laplace extension). We’ll also call the 



overall result of an elementary Laplace extension sequence the Laplace extension of a 

matrix by a sequence of Laplace extension vectors. 

A special interest the Laplace extensions can present in characteristic 3 is the following 

question: what is the class of square matrices possessing 1-semi-unitary Laplace 

extensions? If, say, a generic square matrix can be Laplace-extended to a 1-semi-unitray 

one then this fact would yet imply, via the neighboring computational principle, the 

permanent’s polynomial-time computability in characteristic 3. And, actually, even 

though earlier in this paper we somehow paralleled the elementary compressions based 

on row linear dependencies and those we’ve now called the elementary Laplace ones, 

still we also may investigate the above-defined (i.e. row linear dependency) 

compression-closure of the class of Laplace extensions generated by a given matrix or 

just a matrix class. We hence may conjecture that, despite the mutual expressibility of 

the elementary Laplace and row linear dependency compressions through each other, 

their self-generating chains (and, in fact, their compression-closures defined as the 

limits of action) pretty might appear to be nonequivalent. However, from the other 

hand, if we add the elementary Laplace compressions to the whole set of row linear 

dependency compressions (completed by the transpose and partial inverse 

transformations) we earlier introduced then we just may receive a much wider variety 

of elementary transformations whose compression-closure is to be studied – but, 

nevertheless, for the Laplace compression the structure of  its corresponding extension 

(Laplace extension) perceived as its inverse modification (i.e. aka decompression) of a 

matrix is much more clear and can be expressed in a simple manifest form, while the 

row linear dependency compressions and their inverses (extensions) are apparently 

more difficult to express algebraically. 

 

 

3. Some formulae for the hafnian 

of a symmetric matrix in characteristic 3 and the 

Hamiltonian cycle polynomial in characteristic 2. 

 

3.1 The even permanent 

The approaches demonstrated and applied in the present article’s first chapter for 

proving (in characteristic 3 only) a number of dependencies between the permanents of 



matrices received from a unitary one via certain row/column repeat/replacement 

modifications were in fact overlapped by the compression techniques and associated 

formulas that appeared in the second chapter. Nevertheless, the first chapter’s methods 

of proof aren’t yet deprived of some independent meaning as we can also use them (in 

characteristic 3 only as well) for proving various facts on the hafnian of a symmetric 

(2n)×(2n)-matrix that is a generalization of the permanent of a square matrix. For this 

purpose, first of all let’s define for a (2n)×(2n)-matrix A its even-permanent as 

pereven(A) = ∑ ∏ ai,π(i)
2n
i=1π∈S2n

(even)  

where S2n
(even)

 is the set of 2n-permutations having only cycles of even lengths. 

Theorem II.3.1.1: let A be a (2n)×(2n)-matrix. Then, in characteristic 3,  

pereven(A) = ∑ (−1)|L|det(A(L,L))L⊆{1,…,2n} det(A(\L,\L))      

Hence, analogically to the permanent,        

pereven(A) = det
2(A)pereven(A

−1) 

Lemma II.3.1.2: let A be a symmetric (2n)×(2n)-matrix. Then 

haf 2(A) = pereven(A) 

We may also notice that the even-permanent of A doesn’t depend on its diagonal 

entries. Secondly, in characteristic 3, if we represent a symmetric matrix in the form  

(d bT

b M
) where d is an element of the ground field and b is a (2n-1)-vector then  

haf (d bT

b M
) = haf (d bT

b M + αbbT
) for any scalar coefficient α. The latter fact implies 

the analogical (to the permanent) relation between the hafnians and even-permanents 

of a symmetric matrix A = (
A11 A12
A21 A22

) and its symmetric partial inverse: 

haf 2 (
A11 A12
A21 A22

) = det2(A11)haf
2 (

A11
−1 A11

−1A12
A21A11

−1 A22 − A21A11
−1A12

) 

                                                                 and  

pereven (
A11 A12
A21 A22

) = det2(A11)pereven (
A11
−1 A11

−1A12
A21A11

−1 A22 − A21A11
−1A12

) 



We can expect that, as a generalization of the permanent, the hafnian probably does 

possess its own types of compression, some of them analogical to certain types we’ve 

earlier found for the permanent, while others, perhaps, not. The one we would call 

primitive is to be applied to a symmetric matrix having the form (
0m,m A12
A21 A22

) where 

A12’s number of non-zero columns equals m or m+1. 

3.2 The case of characteristic 2: the Hamiltonian cycle polynomial. 

Definition: let A be an n×n-matrix. Then its Hamiltonian cycle polynomial (or, shortly, 

the Hamiltonian of A) is defined as ham(A):= ∑ ∏ ai,π(i)
n
i=1π∈Hn

 where Hn is the set of 

Hamiltonian n-permutations, i.e. n-permutations having only one cycle. 

Theorem II.3.2.1: let A be an n×n-matrix. Then 

1) in an arbitrary characteristic: 

ham(A):= ∑ det (−A(I,I))per (A({1,…,n}\I,{1,…,n}\I))

I∈{2,…,n} 

 

2) in a finite characteristic p (not necessarily prime): 

ham(A) = (−1)n+1∑ det(A(J1,J1))… det (A(Jp,Jp))J1,…,Jp =  

= ∑ per(A(J1,J1))… per (A(Jp,Jp))

J1,…,Jp

 

where the summation is over all the p-tuples 𝐽1, … , 𝐽𝑝 that are partitions of the 

set {1,…,n} into p subsets (some of them possibly empty) such that  1∈ 𝐽1. 

Theorem II.3.2.2 (in characteristic 2):  

let A be an n×n-matrix. Then 

ham(A):= ∑ det (A(I,I))det (A({1,…,n}\I,{1,…,n}\I))I∈{2,…,n}  .  

Theorem II.3.2.3 (in characteristic 2):  

1) let U be a unitary n×n-matrix, i. e. such that UUT = In. Then ham(U) = det2 (U +

In + C1,1) where C1,1 is the n×n-matrix whose 1,1-th entry is 1 and all the others 

are zero. 

2) let A be an involuntary n×n-matrix, i. e. such that A2 = In.  

Then ham(A) = det2(A + In + C1,1) = 0  for n > 1. 



The above theorem implies that, when n > 2, the Hamiltonian of an n×n-matrix having 

either three identical rows or a pair of indexes i,j such that its i-th and j-th rows are 

identical and its i-th and j-th columns are identical too equals zero.  

While the former property generates, in this characteristic, a Hamiltonian-preserving 

compression of the Gaussian type (analogical to the simplest pair-compression for the 

permanent in characteristic 3 that possesses the same feature), the latter one (specific 

only for the Hamiltonian modulo 2) implies the following identity generating a type of 

Hamiltonian-preserving compressions applicable to certain structured unitary matrices 

(what makes the unitary class Hamiltonian-compressible in characteristic 2 like the 1-

semi-unitary class is permanent-compressible in characteristic 3):  

Theorem II.3.2.4 (in characteristic 2): 

1) ham((
V V + D A

V + D−1 V + D−1 + D A
B B U

)) = det(D + D−1) ham((
V A
B U

)) where D is 

diagonal, V, U are square; 

2) if U is unitary of size n×n, V is of size m×m, VD + DVT + AAT = Im + D
2  then 

the matrix (
V V + D A

V + D−1 V + D−1 + D A
UATD−1 UATD−1 U

) is unitary and  

ham((
V V + D A

V + D−1 V + D−1 + D A
UATD−1 UATD−1 U

)) = det2((

V + Im + C1,1 V + D A

V + D−1 V + D−1 + D+Im A

UATD−1 UATD−1 U+In

)) 

 

We’ll call the passage of the theorem’s part (1) the (multiple) two-sided pair-

compression. 

As, upon multiplying the first block-column of the matrix (
V A

UATD−1 U
)  by D, 

we’ll receive the matrix (
W A
UAT U

) where W = VD whose Hamiltonian is 

det(𝐷) ℎ𝑎𝑚((
V A

UATD−1 U
)) and is hence also polynomial-time computable and 

therefore we get the following generalization of the theorem that the 

Hamiltonian of a unitary matrix is polynomial-time computable in characteristic 2: 

 

Corollary II.3.2.5 (in characteristic 2): let U be unitary of size n×n, W, D be of size 

m×m, D be non-singular diagonal such that D + D−1 is non-singular, W+WT +

AAT = Im + D
2. Then 



 ham(( W A
UAT U

)) = 
det(D)

det(D+D−1)
det2((

WD−1 + Im + C1,1 WD−1 + D A

WD−1 + D−1 WD−1 + D−1 + D+Im A

UATD−1 UATD−1 U+In

)) 

Theorem II.3.2.6: let A11, (

A11 A12
A11 A12
A21 A22

) be square matrices, det(A11) ≠ 0. Then  

ham((

A11 A12
A11 A12
A21 A22

)) = det2 (A11)ham((
A11
−1A12

A21A11
−1A12 + A22

)) 

We’ll call the theorem’s passage the (multiple) pair-compression. 

We can also add that, like the even-permanent in characteristic 3, the Hamiltonian of a 

square matrix naturally doesn’t depend on its diagonal elements and ham(A) =

det2 (A)ham(A−1) 

This Hamiltonian-preserving compressibility and variability analogically yields the 

conjecture that the compression-closure (defined by the analogy with the permanent in 

characteristic 3) of the unitary class (which, as we’ve just showed above, is compressible 

unlike the case of the permanent in characteristic 3) is the whole set of square matrices 

that likewise implies the polynomial-time computability of the Hamiltonian in 

characteristic 2.  

Besides, in characteristic 2 the Hamiltonian possesses replacement identities for a 

unitary matrix U similar to the earlier introduced relations for the permanent in 

characteristic 3. 

Definition: for a square matrix X, a pair I,J of equally sized sets of its row-indexes with a 

bijection f1: I
f1
→ J and a pair K,L of equally sized sets of its column-indexes with a 

bijection f2: K
f2
→ L, let’s define the 𝑰

𝒇𝟏
→ 𝑱,𝑲

𝒇𝟐
→𝑳-double-replacement matrix  X[I

f1
→J,K

f2
→L] 

as the matrix received from X through replacing, for each i ∈ I, its f1(i)-th row by its i-th 

row and, for each k ∈ K, its f2(k)-th column by its k-th column. 

Theorem II.3.2.7 (in characteristic 2): 

Let A be a square matrix, I,J be sets of its row-indexes and K,L be sets of its column-

indexes, |I|=|J|, |K|=|L|, f1, f2 be bijections I
f1
→ J, K

f2
→L correspondingly. Then 

 ham(A[I
f1
→J,K

f2
→L]) = det2 (A)ham(((A−1)T)[J

f1
−1

→  I,L
f2
−1

→  K])   

where f1
−1, f2

−1 are the inverse bijections J
f1
−1

→ I, L
f2
−1

→ K correspondingly.  



Like for the permanent in characteristic 3, the proof of this identity can be received by 

means of using the fact that in characteristic 2 (where we have no signs +/-) any minor 

of a unitary matrix equals its algebraic complement, with the only essential difference 

that a square matrix’s rows and columns can be Hamiltonian-preservingly permuted 

only by an arbitrary pair of identical permutations (unlike the permanent that allows 

independent arbitrary permutations of rows and columns). 

Corollary II.3.2.8 (in characteristic 2):  

Let U be a unitary matrix, I,J be sets of its row-indexes and K,L be sets of its column-

indexes, |I|=|J|, |K|=|L|, f1, f2 be bijections I
f1
→ J, K

f2
→L correspondingly. Then 

 ham(U[I
f1
→J,K

f2
→L]) = ham(U[J

f1
−1

→  I,L
f2
−1

→  K])   

where f1
−1, f2

−1 are the inverse bijections J
f1
−1

→ I, L
f2
−1

→ K correspondingly.  

 

Definition: 

Let A be an n×n-matrix, ε be a formal infinitesimal. Then we’ll call the matrix formal 

power series U = ∑ εkUk
∞
k=0  , where each Uk is an n×n-matrix over a ground field F,  

U0 = In and U1 = A, an 𝜺-unitarization of A over F(ε) if U(A) is unitary as a matrix 

formal power series in ε. 

It’s easy to see that an ε-unitarization U of A exists in characteristic 2 if and only if A =

AT, while for a pair i, j ∈ {1,… , n} coefεn−1ham(U
(\i,\j)) = ham(A(\i,\j)) and thus it’s 

#2P-complete as a function in the edge weights of the weighted digraph corresponding 

to A which is identically equal to zero if and only if this graph has no Hamiltonian path 

between the vertices i and j. Hence, taking into account the fact that for a unitary U the 

matrix U(\i,\j) is 1-semi-initary, we conclude that computing the Hamiltonian of a 1-

semi-unitary matrix in characteristic 2 is a #2P-complete problem. It also implies, 

likewise, the #2P-completeness of computing the Hamiltonian of a unitary matrix over a 

ring of characteristic 4.  

If for a an n×n-matrix A we define the matrix H(A) = {ham(A(\i,\j))}n×n then we’ll 

receive, based on the above relation ham(U[I
f1
→J,K

f2
→L]) = ham(U[J

f1
−1

→  I,L
f2
−1

→  K]), the identity 

UHT(U) = H(U)UT. 



And we may add that the partial inverse relation also concerns the Hamiltonian in 

characteristic 2: 

Lemma II.3.2.9 (in characteristic 2): 

For an n1 × n1-matrix  A11 and an  n2 × n2-matrix   A22 , 

ham((
A11 A12
A21 A22

)) = det2(A11)ham((
A11
−1 A11

−1A12
A21A11

−1 A22 + A21A11
−1A12

)) 

Proof: 

This fact can be easily proven via the identities ham((
In A
In A

)) = ham(A) and   

ham((
B BA
B BA

)) = det2(B)ham((
In A
In A

))  for any two n×n-matrices A, B (the latter 

relation is due to the fact that the Hamiltonian of a matrix with two equal rows isn’t 

changed by adding one of them to a third row) when putting  B = (
A11
−1 0n1×n2

A21A11
−1 In2

) 

and permuting the rows and columns of (
B BA
B BA

)) by the 2n-permutation (where 

n = n1 + n2) mapping i and n + i to each other for i = 1,… , n1 and all the other 

elements from the set (1,…,2n} to themselves. 

It has the following  

Corollary II.3.2.10 (in characteristic 2):  

Let X, Y, Z be n×n-matrices. Then 

ham(
X XZ
YX YXZ

) = det2(X)ham((
0n×n Z
Y 0n×n

)) 

Besides, when speaking about the Hamiltonian in characteristic 2 that is a direct 

algebraic representation of a fundamental NP-complete problem, it would be worth 

noting the existence of a non-trivial class of digraphs whose arcs could be given non-

zero weights over a field of characteristic 2 making their weighted adjacency matrices 

unitary. Let’s call them weight-unitarazable over a ground field F, while such a system 

of arc weights we’ll call a digraph’s weight-unitarization over F. Let’s consider several 

examples of digraphs weight-unitarizable over fields of characteristic 2. 

One partial case is a system of pair-wise vertex-disjoint simple directed cycles whose arc 

set is partitioned into pairs of vertex-disjoint arcs (a,b) and (c,d) connected by two 



additional arcs (c,b) and (d,a) so that the four arcs form the anti-cycle a → b ← c → d ←

a and their weights satisfy the following system of equations: 

weight(a,b)weight(c,b) = weight(a,d)weight(c,d),  

weight(a,b) + weight(a,d) = weight(c,b) + weight(c,d) = 1. 

Those systems are variable-disjoint for different anti-cycles and are solvable in linear 

time, while leaving, for each anti-cycle, one independent weight-variable as a 

parameter. In the case of its planarity, particularly, such a digraph depicts a city with a 

system of two way streets between one way cyclic roads around squares where the 

digraph’s vertices correspond to the crossroads. 

Another interesting example is the arc-digraph of a digraph (received via taking the 

initial digraph’s arc set as the new vertex set, while two new vertices are connected if 

and only if they form, as initial arcs, a path of length 2) where some connections 

between new vertices (i.e. initial arcs) are removed so that for each initial vertex the 

remained connections form a weight-unitarizable digraph. This example generates a 

direct algebraic representation of a constrained Eulerian cycle problem where some 

passages between adjacent arcs are forbidden.  

Tournaments can be conjectured to be weight-unitarizable in characteristic 2 as well. 

Moreover, in characteristic 2 the Hamiltonian has a generalization that is also 

computable in polynomial time for unitary and involuntary matrices. 

Definition: let A be an n×n-matrix, w be an n-vector. Then its cycle polynomial is 

cycle(A,w):= ∑ ∏ (1 +∏ wiiϵC )C∈ℂ(π) ∏ ai,π(i)
n
i=1π∈Sn

 where ℂ(π) is the set of π′s 

cycles. 

Theorem II.3.2.11: let A be a unitary or involuntary matrix, w be an n×n-vector. Then 

cycle(A, w) = det (A⋆2 + Diag(w)) 

As this function is polynomial-time computable for involuntary matrices as well, we may 

analogically (with weight-unitarizable ones) define weight-involuntarizable digraphs. 

Hence the cycle polynomial can be considered for digraphs weight-unitarizable or 

weight-involuntarizable in characteristic 2 and presumably serve as a direct algebraic 

representation of a number of problems on digraphs. 

II.3.3    The Hamiltonian cycle polynomial over idempotent rings of characteristic 2  



and undirected graphs. 

Another issue related to the Hamiltonian in characteristic 2 is its usage for undirected 

graphs. One can notice that for a symmetric n×n-matrix and two n-vectors b,c 

ham((
A b
cT 0

)) is the sum of the products of the edge weights of Hamiltonian cycles 

through the edge (n+1,n+2) in the weighted undirected graph with n+2 vertices whose  

weighted adjacency matrix is (
A b c
bT

cT
0 1
1 0

). (For simplicity, further we’ll call the product 

of the arc/edge weights of a path in a weighted digraph/graph the path’s weight).  

In this regard, over idempotent rings of characteristic 2 (whose partial case is GF(2)) the 

Hamiltonian obtains some additional properties unavailable over any fields of this 

characteristic bigger than GF(2), like the following: 

Theorem II.3.3.1 (over idempotent rings of characteristic 2): 

Let X be a symmetric n×n-matrix with the zero diagonal, y be an n-vector, n > 1. Then 

ham((
X y

1⃗ n
TX + 1⃗ n

T + hyT 0
)) = 0 for h = 0,1. 

Proof: 

The proof of this theorem is based on the fact that, due to the Hamiltonian’s linearity on 

each row,  

  ham((
X y

1⃗ n
TX + 1⃗ n

T + hyT 0
)) = ham((

X y

1⃗ n
TX 0

)) + ham((
X y

1⃗ n
T 0

)) + ham((
X y

yT 0
))h. 

The first summand ham((
X y

1⃗ n
TX 0

)) in the right side is, generally over any field for a 

weighted digraph with n+1 vertices, the sum of the weights of the graph’s Hamiltonian 

cycles where the arc from the vertex n+1 was replaced by an arc with the same end and 

a beginning different from n+1. Due to characteristic 2 and the matrix X’s symmetry (i.e. 

the symmetry of the digraph induced by the vertices 1,…,n), the first summand hence 

equals the sum of the weights of such transformed Hamiltonian cycles where the 

appearing “internal” cycle is of length 2. As any element of the ground ring is 

idempotent, it’s exactly the sum of the weights of the digraph’s Hamiltonian paths 

ending in the vertex n+1, i.e. the second summand ham((
X y

1⃗ n
T 0

)).  And the third 



summand ham((
X y

yT 0
))h  is zero for n > 1 because it’s the Hamiltonian of a symmetric 

matrix with more than 2 rows. 

 

This theorem’s equality for h = 1 over GF(2), when completed by the two requirements 

 1⃗ n
Ty = (1⃗ n

TX + 1⃗ n
T + yT)1⃗ n = 0 that make the corresponding undirected graph (whose 

adjacency matrix is (

X y X1⃗ n + 1⃗ n + y

yT 0 1

1⃗ n
TX + 1⃗ n

T + yT 1 0

) ) odd-degreed, is a 

generalization of the well-known theorem that any odd-degreed graph has an even 

number of Hamiltonian cycles through a given edge.  

For an arbitrary symmetric n×n-matrix X (with an arbitrary diagonal) the relation of 

Theorem II.3.3.1 can be formulated, over idempotent rings of characteristic 2, as 

                                            ham((
X y

1⃗ n
TX + (diag(X))T + 1⃗ n

T + hyT 0
)) = 0  

where diag(X) ∶= {xi,i}n, h = 0,1. Let’s call this relation the simple parity condition for 

Hamiltonian cycles through the edge (n+1,n+2). (Actually, it’s meaningful to use the 

word “parity” here because any idempotent ring of characteristic 2 is an extension of 

GF(2) that can be represented as the ring of k-variate Zhegalkin polynomials for some k. 

In this ring, unity is the only invertible element and accordingly the non-singularity of a 

matrix is equivalent to its determinant’s equality to unity). 

In the meantime, if we take an arbitrary matrix (
A b
cT 0

) where A is a symmetric n×n-

matrix then, due to the above-given identity relating the Hamiltonians of a matrix and 

its partial inverse and the Hamiltonian’s independence from diagonal entries, we get the 

following identity for an arbitrary diagonal n×n-matrix D: 

ham((
A b
cT 0

)) = det2(A + D)ham((
(A + D)−1 (A + D)−1b

cT(A + D)−1 0
)).  

Hence, when applying the simple parity condition for Hamiltonian cycles through the 

edge (n+1,n+2), we get the following condition implying, for any diagonal D such that 

A + D is nonsingular and h = 0,1, the equality ham((
A b
cT 0

)) = 0: 



cT(A + D)−1 = 1⃗ n
T(A + D)−1 + (diag(A + D)−1)T + 1⃗ n

T + h((A + D)−1b)T 

Upon right-multiplying by (A + D)−1, it turns, due to the symmetry of (A + D)−1,  into  

cT = 1⃗ n
T + (diag(A + D)−1)T(A + D) + 1⃗ n

T(A + D) + hbT 

Upon transposing it and denoting D = Diag(d) where d is an n-vector, we hence obtain 

for h = 0,1: 

c + hb + A1⃗ n + 1⃗ n = (A + Diag(d))diag(A + Diag(d))
−1 + d 

Let’s call it the diagonal parity condition for Hamiltonian cycles through the edge 

(n+1,n+2). 

Hence if the diagonal parity condition is solvable as an equation for d then 

ham((
A b
cT 0

)) = 0. 

In the case when d = 0⃗ n, h = 1 and A is a nonsingular matrix with the zero diagonal, it 

generates the simple parity condition, and if we also restrict this case by the two 

additional requirements 1⃗ n
Tb = cT1⃗ n = 0 then over GF(2) we again receive the classical 

theorem about the parity of Hamiltonian cycles through a given edge in an odd-degreed 

graph.  

And now, once more, let’s use the fact that ham((
A b
cT 0

)) is a linear function in the 

vector c. Let’s express it from the diagonal parity condition, when it’s fulfilled (for 

simplicity, further we’ll always assume A with the zero diagonal): 

c = hb + A1⃗ n + 1⃗ n + (A + Diag(d))diag(A + Diag(d))
−1 + d 

Let’s denote by DPCS(A, b) (the diagonal parity condition space of A, b) the linear 

space over the ground idempotent ring  ℛ  generated by all the vectors from the set 

 {hb + A1⃗ n + 1⃗ n + (A + Diag(d))diag(A + Diag(d))
−1
+ d, h = 0,1, d ∈

GF𝑛(2), det(A + Diag(d)) = 1} 

that is a subspace of ℛn . We hence can now formulate the following statement: 

Theorem II.3.3.2 (over idempotent rings of characteristic 2): 

If c ∈ DPCS(A, b)  then  ham((
A b
cT 0

)) = 0. 



 

This theorem (that is also a generalization of the above-mentioned theorem about the 

parity of Hamiltonian cycles) provides an instrument for changing the vector γ in the 

expression ham((
A b
γT 0

)) via adding any vector from DPCS(A, b), while unchanging 

the Hamiltonian.  Hence if upon completing DPCS(A, b), for some i ∈ {1, … , n}, by the 

vector ei = (
0⃗ i−1
1

0⃗ n−i

)  it generates all the space ℛn  (i.e. when it’s possible to turn γ into 

ei via adding a vector from DPCS(A, b)) then ham((
A b
γT 0

)) = ham((
A b
ei
T 0

)) and in 

such a case this computational problem can be reduced to the same problem of a 

smaller size via removing the (n+1)-th row and the i-th column from the matrix 

(
A b
γT 0

).  

Definition: 

Let A be a symmetric n×n-matrix, n > 2. Then we define unham(A) ∶=
1

2
ham(A) as its 

undirected Hamiltonian cycle polynomial (or, shortly, as its undirected Hamiltonian). 

 

Like the Hamiltonian, the undirected Hamiltonian satisfies the partial inverse relation: 

Theorem II.3.3.3 (in characteristic 2): 

For a non-singular n1 × n1-matrix A11 and an n2 × n2-matrix A22,  

unham((
A11 A12
A21 A22

)) = det2(A11)unham((
A11
−1 A11

−1A12
A21A11

−1 A22 + A21A11
−1A12

)) 

Proof: 

For a (2n)×(2n)-matrix X, let’s denote per−2,even(X) ∶= ∑ (−2)𝑐(π)∏ xi,π(i)
2n
i=1π∈S2n

(even)  

where S2n
(even)

 is the set of 2n-permutations having only cycles of even lengths and 𝑐(π) 

is the number of π’s cycles. (In characteristic 3, per−2,even(X) = per even(X) .) Then we 

get, over an arbitrary ring of any characteristic, the identity  

per−2,even(X) ∶= ∑ (−1)|L|det(X(L,L))

L⊆{1,…,2n}

det(X(\L,\L)) 



The proof of the theorem can be based on the following relation for a symmetric n×n-

matrix A over a ring of characteristic 2 for n > 2 : 

unham(A) =
per−2,even((

In A
In A

))

4
 

where the right side should be understood as a quotient taken modulo 2 because 

per−2,even((
In A
In A

)) is a multiple of 4 when n > 2. But, because of the above 

determinantal expansion of per−2,even(X), if a (2n)×(2n)-matrix X has two equal rows 

then one of them can be added to a third one, while unchanging per−2,even(X). 

Therefore per−2,even((
B BA
B BA

)) = det2(B)per−2,even((
In A
In A

)) for any non-singular 

n×n-matrix B. Hence putting B = (
A11
−1 0n1×n2

A21A11
−1 In2

) and permuting the rows and 

columns of (
B BA
B BA

)) by the 2n-permutation (where n = n1 + n2) mapping i and n + i 

to each other for i = 1, … , n1 and all the other elements of the set (1,…,2n} to 

themselves completes the proof. 

Theorem II.3.3.4 (over idempotent rings of characteristic 2): 

Let X be a symmetric n×n-matrix with the zero diagonal, y be an n-vector, n > 1. Then 

unham((
X y

yT 0
)) = unham((

X X1⃗ n + 1⃗ n + y

1⃗ n
TX + 1⃗ n

T + yT 0
))  

Proof: 

We’re going to use the following simple identity, implied by the undirected 

Hamiltonian’s definition, for an n×n-matrix X and two n-vectors a, b: 

       unham((
X a + b

aT + bT 0
)) =  

= unham((
X b
bT 0

)) + ham((
X a
bT 0

)) + unham((
X b
bT 0

)) 

In our case, we obtain 

unham((
X X1⃗ n + 1⃗ n + y

1⃗ n
TX + 1⃗ n

T + yT 0
)) =            



 = unham((
X X1⃗ n + 1⃗ n

1⃗ n
TX + 1⃗ n

T 0
)) + ham((

X y

1⃗ n
TX + 1⃗ n

T + yT 0
)) + unham((

X y

yT 0
))  

The summand ham((
X y

1⃗ n
TX + 1⃗ n

T + yT 0
)) equals zero due to satisfying the diagonal parity 

condition. 

The summand unham((
X X1⃗ n + 1⃗ n

1⃗ n
TX + 1⃗ n

T 0
)), in turn, can be further expanded as the 

sum   unham((
X X1⃗ n

1⃗ n
TX 0

)) + ham((
X X1⃗ n

1⃗ n
T 0

)) + unham((
X 1⃗ n

1⃗ n
T 0

)) .                                

This sum’s first summand unham((
X X1⃗ n

1⃗ n
TX 0

)) is the sum of the weights of the graph’s 

Hamiltonian cycles where each of the two edges adjacent to the vertex n+1 was replaced by 

an edge adjacent to this vertex’s corresponding neighbor (in the cycle) and not adjacent to 

n+1. Due to characteristic 2, it’s the sum of the weights of such transformed Hamiltonian 

cycles where both the appearing “internal” cycles are of length 2. As any element of the 

ground ring is idempotent, it’s also the sum of the weights of Hamiltonian paths of the 

weighted graph induced by the vertices 1,…,n, i.e. the above sum’s third summand 

unham((
X 1⃗ n

1⃗ n
T 0

)). Besides, this sum’s second summand ham((
X X1⃗ n

1⃗ n
T 0

)) is, upon 

transposing, ham((
X 1⃗ n

1⃗ n
TX 0

)) = ham((
X 1⃗ n

1⃗ n
TX + 1⃗ n

T + 1⃗ n
T 0

)) and, accordingly, equals 

zero due to satisfying the diagonal parity condition. It completes the proof. 

 

Hence Theorems II.3.3.3 and II.3.3.4 provide a couple of algebraic instruments we can 

change a symmetric matrix over idempotent rings of characteristic 2 by (together with 

adding an arbitrary diagonal matrix) while preserving its undirected Hamiltonian. 

However, the introduced variety of affine Hamiltonian-preserving transformations we 

can subject a symmetric matrix to, as well as the above-given DPCS-algorithm for 

transforming a matrix when computing the sum of the weights of its Hamiltonian cycles 

through a given edge, is deprived, over idempotent rings of characteristic 2, of the core 

algebraic tool of infinite fields – the neighboring computation principle. It arises the 

question of their efficient usability for computing the undirected and directed 

Hamiltonians. 



 

 

 

 

 

III. The Schur complement compression 

on informationally sparse classes 

 
Given an n×n-matrix class defined by a system of matrix-functions in a set of 

parameters, let’s define its algebraic rank as the system’s algebraic rank. And, in case if 

the class is defined by an algebraic equation system, we’ll define its algebraic rank as 

the difference of n2 and the algebraic equation system’s algebraic rank. In both cases 

we’ll call it the algebraic n-rank of such a matrix class and we’ll also call such a matrix 

class algebraically definable – in fact, it’s an exact analogy of the notion of a smooth 

manifold in characteristic 0. We may also assume that both the above-mentioned forms 

of a matrix class’s definition are reducible to each other and yield the same algebraic 

rank. 

 

In the present article’s two previous chapters we discussed some matrix compressions 

that polynomial-time reduce the permanent of a matrix to the permanent of a derived 

matrix of a smaller size, and we dealt with either arbitrary matrices or k-semi-unitary 

ones etc., i.e. classes of n×n-matrices whose algebraic rank is either n2 or n2/2 + O(n). 

Let’s call an algebraically definable matrix class informationally dense if for any n the 

ratio of its algebraic n-rank and n2 (that we’ll call the informational n-density of the 

class) is bigger than a nonzero constant, and informationally sparse otherwise.  

 

In this chapter we’re going to study some informationally sparse matrix classes 

(particularly, those of informational n-density 1/O(n)) built via Cauchy and Cauchy-like 

matrices, as well as certain matrix compression operators (particularly, the Schur 

complement compression) that polynomial-time reduce one function to another on 

those classes, while still acting as genuine self-reducing compressions for certain 

introduced functions.  

 

Definition: 



For an n×m-matrix A we define per(A) as ∑ per(A({1,…,n},J))J,J⊆{1,…,m}
|J|=n

 if n ≤ m and zero 

otherwise. 

 

And, once again throughout the chapter, the neighboring computation principle is 

supposed to serve as a chief algebraic instrument the principal below-introduced 

polynomial-time reductions would be impossible without. In this regard, we’ll also need 

the following related definition:  

 

Definition: 

For a field F, a formal infinitesimal ε, and F’s ε-extension F(ε) ≔ {u =

∑ ukε
k∞

k=order𝜀(u)
, order𝜀(u) ∈ ℤ, uk ∈ F for k = order𝜀(u),… ,∞}, let’s define  

for u ∈ F(ε)    lim
ε→0
u ≔ [

uo  if order𝜀(u) ≥ 0

a nonexistent (infinitely big) element otherwise
  

And we’ll call order𝜀(u) the order of u on 𝜀 (or, shortly, the 𝜀-order of u). 

 

Denotation: for a matrix A, a subset I of its row set and a subset J of its column 

set, by SchurI,J(A) we’ll denote (for the purpose of simplicity) the Schur 

complement A/A(I,J). 

 

 

Definition: 

Let a be an n-vector and b be an m-vector. Then its Kronecker sum is defined as  

                                      a+⃛b ∶= a⊗ 1⃗ m + 1⃗ n⊗b = (
a11⃗ dim(m) + b

…

an1⃗ dim(m) + b

) 

 

 

Definition: let u, w, v, γ be vectors, dim (v) = dim (γ). Then 

φp,h(u, w, v, γ) ≔ ∑ (∑ ∏
1

(ui − vj)
p)det

h(C(w, vJ
dim(u)

i=1
))∏γj

j∈J
j∈J

J,|J|=dim(w)

 

and we’ll call it the Cauchy determinant base-sum, while calling the vector u the 

Cauchy base-vector and p the Cauchy base-degree.   

 

Definition: let A, B be two skew-symmetric 2n×2n-matrices. Then 



ξm(A, B) ∶= ∑ Pf(A(I,I))

I⊆{1,…,2n},|I|=m

Pf(B(I,I)) 

Theorem III.1: let A, B be two skew-symmetric 2n×2n-matrices. Then for an 

even m  

ξm(A, B) = coefωm/2Pf((
ωA I2n
−I2n B

)) 

 

Definition: for a rational number r, a natural number k and two vectors z, d of 

equal dimension, we define 

ηr,m(z, d) ∶= ∑ detr(C̃(zI))

I,|I|=m

∏di
i∈I

 

                  Theorem III.2 (in characteristic p): 

ηpq+1
2 ,m

(z, d) = ξm (Diag(d
⋆(1/2))C̃(z)Diag(d⋆(1/2)), C̃(z⋆p

q
)) 

 

Definition: for three n-vectors x, a, d, let’s define the skew-symmetric  n×n-

block-matrix with 2×2-blocks (i.e. 2n×2n-matrix)  

                                  K(x, d, a): = {Kij}n×n  

where 

Kii ∶=  (
0 ai
−ai 0

)   for  i = 1,…,n 

Kij ≔

(

 
 

1

xi − xj
(
∂

∂xj
+ dj

∂2

∂xj
2)

1

xi − xj

(
∂

∂xi
+ di

∂2

∂xi
2
)

1

xi − xj
(
∂

∂xi
+ di

∂2

∂xi
2
)(
∂

∂xj
+ dj

∂2

∂xj
2
)

1

xi − xj)

 
 
    

for i ≠ j, i, j ∈ {1, … , n} 

 

In the above-defined matrix, we’ll call di the differentiation-weight and  

ai the absence-weight corresponding to the denominator-value xi. 

 

Definition: 

Given two matrices A = {ai,j}n×m and B = {bi,j}n×m, by A ⋆ B = {ai,jbi,j}n×m  

we’ll denote their Hadamard product.  



Given a rational number k, by A⋆k = {ai,j
k }n×m  we’ll denote the k-th Hadamard 

power of A and, given a sequence of rational numbers (k1, … , ks), by  

A⋆(k1,…ks) we’ll denote its (k1, … , ks)-th Hadamard-power (
A⋆k1

…
A⋆ks

). 

Definition:  

1) For two vectors x, y, let’s define their Cauchy matrix C(x, y) ≔

{
1

xi−yj
}dim (x)×dim (y)  where we’ll call xi its i-th row (or left) denominator-value 

and yj its j-th column (or right) denominator-value. 

2) For an n-vector x, let’s define C̃(x) as an n×n-matrix whose i,j-th entry is 
1

xi−xj
 

if i ≠ j, i, j ∈ {1,… , n}, and 0 otherwise. We’ll call it a Cauchy-wave matrix and 

xi its i-th row and column denominator-value (or just the i-th denominator-

value). 

3) For three vectors x, y, z, let’s also define C̃(x, y, z) ∶= (
C̃(x) C(x, z)
C(y, x) C(y, z)

)  

We’ll call it a Cauchy-waved matrix. 

 

Definition: 

Let x be a vector, k be a natural number and dim(x) = n ≡ 0 (mod k).  

Then W[k](x) ∶= (xT)⋆(01k
T ,…,(

n

k
−1)1k

T) 

where 1k
T denotes the k-sequence all whose entries are 1. 

 

      Definition: for a vector y, we denote 

Van[k](y) ∶=

(

 

(yT)⋆0

(yT)⋆1

…
(yT)⋆(k−1))

  

and we also denote the transposed Vandermonde matrix of y as 

 Van(y): = Van[dim (y)−1](y) = W[1](y). 

Definition: let x, y be two vectors. Then we denote  𝐩𝐨𝐥(𝐱, 𝐲) ∶= ∏ ∏ (𝐱𝐢 − 𝐲𝐣)
𝐝𝐢𝐦 (𝐲)
𝐣=𝟏

𝐝𝐢𝐦 (𝐱)
𝐢=𝟏  . 

Theorem III.3 (The Borchardt formula, in any characteristic): 

Let dim(y) = dim(z). Then per(C(y, z)) =  
det (C⋆2(y,z))

det (C(y,z))
  . 

Lemma III.4 (about square Cauchy-waved matrices, in characteristic zero if not 

specified otherwise): 



1) for dim(x) > 2: ham (C̃(x)) = 0 

2) for dim(y) = dim(z) > 0:  

  ham (C̃(x, y, z)) = ham(C(y, z)) ∏ ( ∑
1

yj − xi

dim (y)

j=1

− ∑
1

zk − xi

dim (z)

k=1

)

dim(x)

i=1

 

3) for dim(y)=dim(z):  

per (C̃(x, y, z)) = per(C(y, z))per(C̃(x) + Diag({∑
1

yj−xi

dim(y)

j=1 − ∑
1

zk−xi

dim(z)
k=1 }

dim(x)

))  

4) for dim(y) = dim(z): 

det (C̃(x, y, z)) =   det(C(y, z))det(C̃(x) − Diag({∑
1

yj−xi

dim(y)

j=1 −  ∑
1

zk−xi

dim(z)
k=1 }

dim(x)

))  , 

 det(C(y, z)) =
det (Van(y))det (Van(z))

pol(y,z)
 

5)    for dim(x) = 2n: 

Pf(C̃(x)) =
∑ det 2(Van(xI))det 

2(Van(x\I))I⊂{1,…,2n},|I|=n

2ndet (Van(x))
 

det(C̃(x)) = (−1)nper(C̃(x)) =
∑ det 4(Van(xI))det 

4(Van(x\I))I⊂{1,…,2n},|I|=n

2ndet 2(Van(x))
= haf(C̃⋆2(x)) 

6)             Pf(C̃(x)) =  
per2(W[2](x))

det (Van(x))
          in characteristic 3 

                          Pf(C̃(x)) =  
per(W[4]((

x
x
)))

det (Van(x))
         in characteristic 5 

7) in a prime characteristic p, for dim(y) = (p-1)dim(x): 

per(C(x ⊗ 1⃗ p−1, y)) =
detp−1 (Van(x))per(W[p−1](y))

pol(x,y)
     

   Proof: 

The proofs of all the lemma’s statements can be based on the first of them (which is 

well-known) and the second one for dim(x) = dim(y) = 1, as well as on the Borchardt 

identity.  

The statement (2), provable by the induction on dim(x), is a key result that implies the 

statements (3) and (4): we use the fact that the determinant of a square matrix is the 

sum, over all its transversals, of the product of the transversal’s entries multiplied by 

(−1)|C1|+⋯+|Ck|+k where |C1|, … , |Ck| are the lengths of its cycles. 



The first identity of the statement (5) follows from the relation 

  Pf(C̃(x)) =
∑ σ(π(I))det (C(xI,I,|I|=n x\I))

2n
  where for I = {i1, … , in}, 1 ≤ i1 < ⋯ < in ≤ 2n,

σ(π(I)) is the sign of the 2n-permutation π(I) = (
1…n n + 1…2n
 i1… in       î1   …   în

) where Î =

{1, … ,2n}\I = {î1, … , în}, 1 ≤ î1 < ⋯ < în ≤ 2n (this formula is a partial case of the 

identity for a skew-symmetric 2n×2n-matrix A  Pf(A) =
∑ σ(π(I))det (A(I,\I)I,|I|=n )

2n
 ) because 

σ(π(I)) is also the ratio  
det (Van(xI))pol(xI,x\I)det (Van(x\I))

det (Van(x))
 

and its second identity follows from the relation det (C̃(x)) =
∑ det2 (C(xI,I,|I|=n x\I))

2n
 (that is 

a partial case of the identity for a skew-symmetric 2n×2n-matrix A  det(A) =
∑ det2 (A(I,\I)I,|I|=n )

2n
). 

The statement (6) for characteristic 3 is due to the identity (for this characteristic) 

per2 (W[2](x)) = per((
0n×n (W[2](x))T

W[2](x) 0n×n
)) = 

= 2n ∑ det 2(Van(xI))det 
2(Van(x\I))

I⊂{1,…,2n},|I|=n

 

that is implied by the formula for an m×m-matrix A proven earlier in the article: 

per(A) = (−1)m∑ det (A(I,I))det (A({1,…,m}\I,{1,…,m}\I))I⊆{1,…,m}   in characteristic 3. 

  And for characteristic 5 it follows from the fact that in this characteristic there holds 

the identity lim
ε→0
(ε

per(W[4](

(

 
 

y
u
u+ε
y
u
u+ε)

 
 
))

det (Van((
y
u
u+ε

)))

 ) =   
per(W[4]((

y
y)))

det (Van(y))
   and  Pf(C̃(x)) satisfies the same 

functional equation, while Pf(C̃(x)) is a fraction whose denominator is det (Van(x)) and 

whose numerator is a homogenous polynomial in x of degree 
dim2(x)−2dim(x)

2
  that is the 

degree of the homogenous polynomial per(W[4]((
x
x
))). 

The statement (7) can be received via multiplying the j-th column of C(x ⊗ 1⃗ p−1, y) by 

∏ (xi − yj)
dim (x)
i=1  and turning this matrix, via linear operations with (p-1)-tuples of rows 

C(x𝑖1⃗ p−1, y), into W[p−1](y). 



Lemma III.5 (about rectangular Cauchy matrices)  

1) In characteristic zero:  

per(C(y, z)) = det(C̃(y) + Diag({∑
1

yj−yk
k,k ≠j − ∑

1

yj−zk

dim(z)
k=1 }

dim(y)

))  

2) In characteristic 3: per(C(y, z)) = (−1)dim (y)per(C(y, x)) for any vector 

(
x
y
z
) such that 

𝜕2

𝜕ν2
pol(ν, (

x
y
z
)) ≡ 0 (identically as a polynomial in the 

formal scalar variable ν). 

 

 

Proof: 

 

The statement (1) follows directly from the Borchardt formula in the case  

dim(y) = dim(z) because 

 per(C(y, z)) =  
det (C⋆2(y,z))

det (C(y,z))
= det(C⋆2(y, z)C−1(y, z)) =  

= det(C̃(y) + Diag({ ∑
1

yj − yk
k,k ≠j

− ∑
1

yj − zk

dim(z)

k=1

}

dim(y)

)) 

And when dim(y) < dim(z), in the generic case there is a dim(y)-vector ẑ such that  

∑
1

yj−zk
=

dim(z)
k=1 ∑

1

yj−ẑk

dim(z)
k=1   for j = 1,…,dim(y). 

The statement (2) follows from the statement (1) because in characteristic 3  

the condition  
𝜕2

𝜕ν2
pol(ν, (

x
y
z
)) ≡ 0  implies for j = 1,…,dim(y) 

 ∑
1

yj−yk
k,k ≠j − ∑

1

yj−zk

dim(z)
k=1 = −(∑

1

yj−yk
k,k ≠j − ∑

1

yj−xk

dim(x)
k=1 )  

and 

det(C̃(y) − Diag({ ∑
1

yj − yk
k,k ≠j

− ∑
1

yj − zk

dim(z)

k=1

}

dim(y)

)) = 

= (−1)dim (𝑦)det(C̃(y) + Diag({ ∑
1

yj − yk
k,k ≠j

− ∑
1

yj − zk

dim(z)

k=1

}

dim(y)

)) 

due to the skew-symmetry of  C̃(y). 

 

Definition: 



Let A be a square matrix, then perλ(A) ∶= ∑ λc(π)∏ aij
n
i=1π∈Sn  

where c(π) is the number of cycles in the permutation π . 

 

Theorem III.6 (in any prime characteristic p > 2):  

                 (∏ (1 + di
∂

∂xi
))per1

4

(C̃⋆2(x) + Diag(a))n
i=1 =

1

2n
Pf(K(x, d, a))  

Proof: 

first let’s prove the validness of this identity for the case of a = d = 0⃗ n. In an arbitrary 

prime characteristic p, let’s consider the expression 

(*)    lim
ε→0

∑ (−1)|I|/(p+1)det
p+1
2 (εC̃((

x1
x1+ε
…
xn
xn+ε

))(𝐼,𝐼))I⊆{1,…,2n}

ε2n
   

that, due to the anti-symmetry of the matrix C̃((

x1
x1 + ε
…
xn

xn + ε

)) and the well-known fact that 

the determinant of a skew-symmetric matrix is the square of its Pfaffian, is identical to 

the expression  

 (**)   lim
ε→0

∑ (−1)|I|/(p+1)Pfp+1(εC̃((

x1
x1+ε
…
xn
xn+ε

))(𝐼,𝐼))I⊆{1,…,2n}

ε2n
= Pf (K(x, 0⃗ 𝑛, 0⃗ 𝑛)). 

 Let’s show that the former expression (*) is 2nper1
4

(C̃⋆2(x)). 

First of all, we know that for any vector z  det(C̃(z)) = haf(C̃⋆2(z)) and, hence, we can 

re-write the expression (*) as 

(***)   lim
ε→0

∑ (−1)|I|/(p+1)haf
p+1
2 (ε2C̃⋆2((

x1
x1+ε
…
xn
xn+ε

))(𝐼,𝐼))I⊆{1,…,2n}

ε2n
    

Secondly, due to the summation and the limit lim
ε→0

 (producing a “weight” O(ε2 ) for each 

infinitely-close pair xi, xi + ε),  



for i = 1,…,n,  among the  
p+1

2
  multipliers each of whom is haf(ε2C̃⋆2((

x1
x1 + ε
…
xn

xn + ε

))(𝐼,𝐼) 

there should be exactly one where the term 
ε2

(xi−xi−ε)
2
= 1  isn’t to be taken what hence 

implies the appearance (exactly in one of the multipliers) of a cycle ℭ connecting (by the 

taken terms 
ε2

(xi−xj+O(ε))
2
) those “untaken singularities” associated with pairs xi, xi + ε. 

The limit lim
ε→0
  and the denominator of the fraction  

∑ (−1)|I|/(p+1)haf
p+1
2 (ε2C̃⋆2((

x1
x1+ε
…
xn
xn+ε

))(𝐼,𝐼)I⊆{1,…,2n}

ε2n
  turn the product of ℭ’s terms into the product 

of the corresponding terms 
1

(xi−xj)
2
. The whole expression (***) hence turns into 

∑ ∏ haf(A(Iq,Iq))
(p+1)/2
q=1I1,…,I(p+1)/2  where A is the matrix C̃⋆2((

x1
x1 + ε
…
xn

xn + ε

)) with all the 

“infinitely big” entries 
1

(xi−xi−ε)
2
 replaced by zeros and each Iq is a subset of the set of 

pairs {(2i − 1,2i), i = 1, … , n}, while the 
p+1

2
-tuple I1, … , I(p+1)/2 runs over all its 

partitions (possibly including empty sets). Besides, the cycle ℭ can be considered as 

directed and is, in fact, the corresponding directed cycle in per1/4(C̃
⋆2(x)) with its 

coefficient ¼ that is multiplied, in (*), by 2𝑙  (where 𝑙 is its length considered as the 

number of singularities it connects) because: 

 (with each denominator-value xi or  xi + ε we’ll further associate a vertex in the 

corresponding weighted graph with the weighted adjacency matrix A; such a vertex is to 

“appear” exactly in one of haf(A)′s  (p+1)/2 copies)  

for 𝑙 > 2 ℭ’s direction is determined by the connection of the vertex xmin (ℭ) of ℭ’s  

lexicographically minimal  ε-close pair xmin (ℭ), xmin (ℭ) + ε (i.e. by the ε-close pair whose 

vertex is connected with xmin (ℭ) in ℭ), while for each direction (including the case of 𝑙 = 

2 when there is only one direction) there are 2𝑙−1 variants of ℭ-forming systems of 

connections (as in the pair xmin (ℭ), xmin (ℭ) + ε we already cannot choose a vertex, while 

in all the other ε-close pairs of ℭ we choose one vertex from a pair when coming to it 

from the preceding pair while traversing ℭ). Besides, there are 
p+1

2
≡
1

2
(mod p) variants 

of locating ℭ (independently of other connecting cycles) in one of the multipliers what, 



altogether, gives the overall combinatorial coefficient 2𝑙−1
1

2
=
1

4
2𝑙  for each connecting 

cycle. We just should add that we hence built a natural bijection between the 

singularity-connecting directed cycles and the directed cycles of per1/4(C̃
⋆2(x)). 

And, as well, it’s easy to realize that the expression (**) is Pf(K(x, 0⃗ n, 0⃗ n )) because in 

the multiplier Pfp(εC̃((

x1
x1 + ε
…
xn

xn + ε

))) we should take all the singularity terms 
εp 

(xi−xi−ε)
p
 due 

to obtaining, in the numerator of (**), “at least” the “weight” O(ε2p−1 ) otherwise for 

each singularity where it’s not taken. Let’s explain it even in the “best” case when in 

Pf(εC̃((

x1
x1 + ε
…
xn

xn + ε

))) we take the term 
ε

xi−xi−ε
 for this singularity: those untaken 

singularities of Pfp(εC̃((

x1
x1 + ε
…
xn

xn + ε

))) would also form cycles with connecting terms of the 

type O(εp ) and, besides, in each untaken singularity in Pfp(εC̃((

x1
x1 + ε
…
xn

xn + ε

))) the edge 

corresponding to xi + ε should be replaced by its differential on ε to prevent the 

“resulting” Pfaffian from having a pair of identical rows and a pair of identical columns, 

while in the numerator of (**) for each singularity we’re supposed to get, due to the 

limit and the denominator ε2n,  the “weight” not “smaller” than O(ε2 ) (because each 

singularity necessarily produces it due to the summation).   

And now let’s prove the theorem’s identity for arbitrary a, d. 

For i = 1,…,n, differentiating Pf(K(x, 0⃗ n, 0⃗ n )) on the variable xi is equivalent, due to the 

Pfaffian’s general nature, to differentiating (with the differentiation weight coefficient 

di) the corresponding (i.e. containing the term xi) blocks of K(x, 0⃗ n, 0⃗ n ) on this variable 

as it’s shown in the theorem’s formula (due to receiving the Pfaffian of a matrix having a 

pair of identical rows and a pair of identical columns otherwise). And putting ai in the 

corresponding diagonal block of K(x, 0⃗ n, 0⃗ n ) generates the case of “removing” (with 

the absence-weight coefficient ai) all the terms containing xi from the Pfaffian’s sum 

expansion. 



 

 

Sparse compressions in characteristic 5 

 

Corollary III.7:  

in characteristic 5,  

(@)         (∏ (1 + di
∂

∂xi
))det(C̃⋆2(x) + Diag(a))n

i=1 =
1

2n
Pf(K(x, d, a)) 

Theorem III.8:  

Let G be an n×m-matrix of a rank unexceeding k, dim(x) = n, dim(y) = m. Then in the 

matrix G ⋆ C(x, y) the Schur complement of the block lying on a set of rows I and a set 

of columns J such that |I|=|J| is a matrix of the form Ğ ⋆ C(x\I, y\J)  where Ğ is an (n-

|I|)×(m-|J|)-matrix of a rank unexceeding k.  

Proof: 

This theorem can be easily proven by the induction on |I| because the Schur 

complement of any block can be represented as the result of a chain of consequent 

elementary Schur complement compressions for blocks of size 1×1.  

Indeed, let’s consider, for i = 2,…,dim(x) and j = 2,…,dim(y), the determinant 

det (

α1
Tβ1

x1−y1

α1
Tβj

x1−yj

αi
Tβ1

xi−y1

αi
Tβj

xi−yj

)  where α1, β1, αi, βj are k-vectors. We can represent it as 

  αi
Tβ1α1

Tβjdet(

1

x1−y1

1

x1−yj

1

xi−y1

1

xi−yj

) +
α1
Tβ1αi

Tβj−αi
Tβ1α1

Tβj

x1−y1

1

xi−yj
= 

= αi
Tβ1α1

Tβj
(xi − x1)(yj − y1)

(xi − y1)(x1 − y1)(x1 − yj)

1

xi − yj
+
α1
Tβ1αi

Tβj − αi
Tβ1α1

Tβj

x1 − y1

1

xi − yj
= 

                                                   =
1

(x1−y1)

αi
Tβ1

xi−x1

xi−y1
∙
yj−y1

x1−yj
α1
Tβj+αi

T(α1
Tβ1Ik−β1α1

T)βj

xi−yj
  . 



Thus we receive  Schur{1},{1}((

α1
Tβ1

x1−y1

α1
Tβj

x1−yj

αi
Tβ1

xi−y1

αi
Tβj

xi−yj

)) =

det

(

 
 
α1
Tβ1

x1−y1

α1
Tβj

x1−yj

αi
Tβ1

xi−y1

αi
Tβj

xi−yj)

 
 
 

α1
Tβ1

x1−y1

=  

=
1

α1
Tβ1

αi
Tβ1

xi − x1
xi − y1

∙
yj − y1
x1 − yj

α1
Tβj + αi

T(α1
Tβ1Ik − β1α1

T)βj

xi − yj
= 

=

uivj + αi
T(

1
α1
Tβ1

(α1
Tβ1Ik − β1α1

T))βj

xi − yj
 

                                          where ui =
αi
Tβ1

√α1
Tβ1

xi−x1

xi−y1
, vj = 

yj−y1

x1−yj

α1
Tβj

√α1
Tβ1

 

Since the rank of the matrix 
1

α1
Tβ1
(α1
Tβ1Ik − β1α1

T) doesn’t exceed k-1 and we hence can 

represent it as A1B1 where A1 is a k×(k-1)-matrix and B1 is a (k-1)×k-matrix, we get 

αi
T(

1

α1
Tβ1
(α1
Tβ1Ik − β1α1

T))βj = αi
TA1B1βj and, therefore, the compressed matrix’s 

entries are  
uivj+αi

TA1B1βj 

xi−yj
   (where αi

TA1 is a (k-1)-row and B1βj is a (k-1) column) what 

completes the proof.  

Definition: 

We’ll call two elements of a field’s extension by the infinitesimal 𝜀 infinitely close on 𝜀 

(or, shortly, 𝜀-close) if their difference’s order on 𝜀 is bigger than zero. 

Definition: let’s call an n×m-matrix A that can be represented in the form G ⋆ C(x, y) 

where G is an n×m-matrix of rank k, dim(x) = n, dim(y) = m, a matrix of Cauchy-rank k; 

and we also define, for this representation, G as A’s numerator-matrix and x,y as A’s 

row and column (or left and right) denominator-value vectors (or sets) correspondingly. 

If G = LR, where L is an n×k-matrix and R is a k×m-matrix, we’ll call the i-th row of L its i-

th numerator-row and the j-th column of R its j-th numerator-column, while xi, yj will 

be called its i-th row and j-th column denominator-values correspondingly (for i = 1,…n, 

j = 1,…,m). In case if n = m and for each i = 1,…,n its i-th row-numerator equals its 

transposed column-numerator right-multiplied, optionally, by an k×k-matrix M that 

we’ll call the multiplication matrix, the i-th numerator-column will be further called its 

i-th numerator-vector. 



The above theorem hence tells us that the class of matrices of a Cauchy-rank 

unexceeding k is closed under the Schur complement compression operator.  

We’ll also consider the following generalization of a matrix of Cauchy-rank k:  

Definition: let 𝜀 be an infinitesimal the ground field is extended by, L be a dim(x)×k-

matrix and R be a k×dim(y)-matrix and in LR ⋆ C(x, y) some row and column 

denominator-values form 𝜀-close families, hence forming row- and column-disjoint 

blocks whose entries have denominators of 𝜀-order 1, i.e. of the type 𝑂(𝜀) (let’s call 

them singular entries), while all the denominator-values, numerator-rows and 

numerator-columns are of 𝜀-order 0 or bigger. In case if the matrix LR ⋆ C(x, y) has no 

entries of 𝜀-order smaller than zero (infinitely big entries) then we’ll call its entry-wise 

limit on 𝜀 lim
𝜀→0
(LR ⋆ C(x, y))  a singularized matrix of Cauchy-rank k.  

Theorem III.8.1 Each Schur complement compression turns a singularized matrix of 

Cauchy-rank k into a singularized matrix of a Cauchy-rank unexceeding k, and in such a 

matrix any numerator-row and any numerator-column corresponding to equal row and 

column denominator-values correspondingly are orthogonal. 

A polynomial-time algorithm for computing the permanent in characteristic 5  

 

Definition: 

Let A be a 2n×2n-matrix. Then its alternate determinant is 

altdet(A) ≔ ∑ det(A(I∪{n+1,…,2n}\Î,{1,…n}\I∪Î)

I⊆{1,…n}

) 

where Î is the subset of {n+1,…,2n} received via adding n to each element of I. 

Definition: let P, P̂ be 4×n-matrices, z, g(11), g(12), g(21), g(22) be n-vectors. Then   

in the matrix (
PTMP ⋆ C̃(z) + Diag(g(11)) PTMP̂ ⋆ C̃(z) + Diag(g(12))

P̂TMP ⋆ C̃(z) + Diag(g(21)) P̂TMP̂ ⋆ C̃(z) + Diag(g(22))
)  

we’ll call, for j = 1,…,n, the j-th columns of P and  P̂ (pj and p̂j correspondingly) the 

numerator-vector and alternate numerator-vector correspondingly and gj
(12)

+ gj
(21)

 

the absence-weight of the denominator-value zj. 

Theorem III.9 (in characteristic 5): 



Let P, P̂ be 4×n-matrices, t, g be n-vectors, M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

). Then  

a)     altdet((
PTMP ⋆ C̃(t⋆5) PTMP̂ ⋆ C̃(t⋆5)

P̂TMP ⋆ C̃(t⋆5) + Diag(g) P̂TMP̂ ⋆ C̃(t⋆5)
)) = 

=
1

2n
coefλnPf(K((

x
t
) , (

0⃗ m

λ1⃗ n
) , (

α
β))) 

where 

 for i = 1,2,3,4, j = 1, … , n 

        

{
 
 

 
 

  

1

Δ
det (C̃⋆2(x, vi, tj) + Diag((

α
0
))) = ri

TMpj/(vi − tj)
5

1

Δ

∂

∂tj
det (C̃⋆2(x, vi, tj) + Diag((

α
0
))) = ri

TMp̂j/(vi − tj)
5

1

Δ

∂

∂tj
det (C̃⋆2((

x
tj
)) + Diag((

α
tjβj
))) = gj

      

for i1, i2 = 1,2,3,4 

1

Δ
det (C̃⋆2(x, vi1 , vi2) + Diag((

α
0
))) = ri1

TMri2/(vi1 − vi2)
5     if     i1 ≠ i2 

where pj, p̂j are the j-th rows of P, P̂ correspondingly, v1, v2, v3, v4 are generic scalars, 

r1, r2, r3, r4 are some 4-vectors, Δ =  det (C̃⋆2(x) + Diag(α)) 

b) the set of functions in x, α, β that are the left parts of the above system of 

equations is a system of functions whose algebraic rank is 11n + 6 and it implies 

that the entries of p1, p̂1… , pn, p̂n is a system of functions maximally algebraically 

independent under the condition pj
TMp̂j = 0 for j = 1,…,n (fulfilled for any x, α, β).  

Proof: 

Part (1). According to Corollary III.7, the right side of the theorem’s first part’s equality is 

(∏
∂

∂tj
)det (C̃⋆2((

x
t
)) + Diag((

α
β)))

n
i=1 = 

=∑det (

C̃⋆2(x) + Diag(α) C⋆2(x, t) C⋆2(x, t)D

C⋆2(t, x) C̃⋆2(t) C̃⋆2(t)D

DC⋆2(t, x) DC̃⋆2(t) + Diag(β) DC̃⋆2(t)D

)

(\I,\I̅)

I∈ℐ

 



where  ℐ = {m + 1,m + n + 1} × …× {m + n,m + 2n}, I̅  is the set received from I via 

taking the other element from each set {m + k,m + n + k} for k = 1,…,n, D =

Diag({
∂

∂tj
}n). 

and it’s equal to  

 Δaltdet(Schur{1,…,m},{1,…,m}(

C̃⋆2(x) + Diag(α) C⋆2(x, t) C⋆2(x, t)D

C⋆2(t, x) C̃⋆2(t) C̃⋆2(t)D

DC⋆2(t, x) DC̃⋆2(t) + Diag(β) DC̃⋆2(t)D

)) = 

= Δaltdet(Schur{1,…,m},{1,…,m}(

C̃⋆2(x) + Diag(α) C⋆2(x, t) C⋆2(x, t)D

C⋆2(t, x) C̃⋆2(t) C̃⋆2(t)D

DC⋆2(t, x) DC̃⋆2(t) DC̃⋆2(t)D

) + 

+(
0n×n 0n×n
Diag(β) 0n×n

)) 

where Δ = det (C̃⋆2(x) + Diag(α)). 

The matrix (

C̃⋆2(x) + Diag(α) C⋆2(x, t) C⋆2(x, t)D

C⋆2(t, x) C̃⋆2(t) C̃⋆2(t)D

DC⋆2(t, x) DC̃⋆2(t) DC̃⋆2(t)D

) is symmetric and of Cauchy-

rank 4 for the denominator-value set (

{xk
5}m
{tj
5}n

{tj
5}n

) because for two independent 

indeterminates u, v there holds (for M defined in the theorem) 

1

(u−v)2
=
(u−v)3

(u−v)5
=

(1  u   3u2  u3)M(

1
v
3v2

v3

)

(u−v)5
   

∂

∂u

1

(u−v)2
 =   

∂

∂u
(1  u   3u2  u3)M(

1
v
3v2

v3

)

(u−v)5
    

∂

∂v

1

(u−v)2
 =   

(1  u   3u2  u3)M
∂

∂v
(

1
v
3v2

v3

)

(u−v)5
    



∂

∂u

∂

∂v

1

(u−v)2
 =   

∂

∂u
(1  u   3u2  u3)M

∂

∂v
(

1
v
3v2

v3

)

(u−v)5
   . 

Hence its Schur complement on {1,… ,m}, {1, … ,m} is also symmetric and of a Cauchy-

rank unexceeding 4 for the same denominator-value set and, accordingly, has the form 

(
PTMP ⋆ C̃(t⋆5) + D11 PTMP̂ ⋆ C̃(t⋆5) + D12
P̂TMP ⋆ C̃(t⋆5) + D21 P̂TMP̂ ⋆ C̃(t⋆5) + D22

) where D11, D12, D21 , D22 are diagonal, 

D12 = D21, and the diagonal entries of PTMP, PTMP̂,  P̂TMP, P̂TMP̂ are zeros (as it’s 

supposed in matrices of any Cauchy-rank for entries with equal row and column 

denominator-values). 

Part (2). As, according to Corollary III.7, the right side of the theorem’s first part’s 

equality is (∏
∂

∂tj
)det(C̃⋆2((

x
t
)) + Diag((

α
β)))

n
i=1 , let’s consider the following two 

identities: 

1) lim
ε→0
det(C̃⋆2((

x(0)
y

y + ε1⃗ dim (y)
t

)) + Diag(

(

 
 

α(0)

ε−21⃗ dim (y) + ε
2α(1)

ε−21⃗ dim (y)
β )

 
 
)) = 

=  det(DC̃⋆2((
x(0)

y
t

))D + Diag((
α(0)

γ
β
))) 

                                                               where D = Diag((

Im0

Diag({
∂

∂yk
}dim (y))

In

)) 

and 

2)   det(ĎC̃⋆2((

x(0)

x(1)

x(2)

t

))Ď + Diag((

α(0)

α(1)

α(2)

β

))) = 



= lim
ε→0
(ε2m2det(DC̃⋆2(

(

 
 

x(0)

x(1)

x(2)

x(2) + ε1⃗ m2
t )

 
 
)D + Diag(

(

 
 
 

α(0)

α(1)

ε−41⃗ m2 + ε
2α(2)

ε−41⃗ m2
β )

 
 
 
))) 

                         where Ď = Diag(

(

 
 
 

Im0

Diag({
∂

∂x
k
(1)}m1)

Diag({
∂2

∂(x
k
(2)
)2
}m2)

In )

 
 
 
), D = Diag(

(

 
 
 
 
 

Im0

Diag({
∂

∂x
k
(1)}m1)

Diag({
∂

∂x
k
(2)}m2)

Diag({
∂

∂(x
k
(2)
+ε)
}m2)

In )

 
 
 
 
 

).  

                                                                   dim(x(q)) = dim(α(q)) = mq for q = 0,1,2 

Hence, for proving the theorem’s second part, it’s sufficient to replace, as by a partial 

case of 𝑥, α (yielding a generalization, though), its first part’s system of equations by the 

following system: 

for i = 1,2,3,4,  j = 1,… , n 

        

{
 
 
 
 
 
 

 
 
 
 
 
 

  

1

Δ
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi, tj)Ď + Diag((

α(0)

α(1)

α(2)

0

))) = ri
TMpj/(vi − tj)

5

1

Δ

∂

∂tj
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi, tj)Ď + Diag((

α(0)

α(1)

α(2)

0

))) = ri
TMp̂j/(vi − tj)

5

1

Δ

∂

∂tj
det (ĎC̃⋆2((

x(0)

x(1)

x(2)

tj

))Ď + Diag((

α(0)

α(1)

α(2)

tjβj

))) = gj

      

for i1, i2 = 1,2,3,4 

1

Δ
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi1 , vi2)Ď + Diag((

α(0)

α(1)

α(2)

0

))) = ri1
TMri2/(vi1 − vi2)

5     if     i1 ≠ i2 

  



where Ď = Diag(

(

 
 
 

Im0

Diag({
∂

∂x𝑘
(1)}𝑚1)

Diag({
∂

∂x𝑘
(2)}𝑚2)

In )

 
 
 
) ,  pj, p̂j are the j-th rows of P, P̂ 

correspondingly, v1, v2, v3, v4 are generic scalars, r1, r2, r3, r4 are generic 4-vectors, Δ =

 det (ĎC̃⋆2((
x(0)

x(1)

x(2)
))Ď + Diag((

α(0)

α(1)

α(2)
))) 

Now let’s choose a partial case of the vectors (sets) α(0), α(1), α(2) where all of them can 

be partitioned into subvectors (subsets) of sizes divisible by 5 each of whom consists of 

entries (elements) λk/(εdk,r) (with λk distinct for different subsets), where ε is a formal 

infinitesimal, k is the index of the subset and r is the index of the element in the subset. 

We’ll call each λk a uniting value, while by U(λk) = {xk,1, … , xk,|U(λk)|} we’ll denote the 

subvector (subset) of (
x(0)

x(1)

x(2)
) corresponding to λk and we’ll call it the family of 

denominator-values united by λk (thus each xk,r is an entry of either x(0) or x(1) or x(2)). 

Let’s show that this partial case turns, for a generic fixed  (
x(0)

x(1)

x(2)
),  the left parts of our 

system of equations into a system of functions in the uniting values λk and the entries 

of β whose algebraic rank is 11n + 6. Because the absence-weight equation for the 

variable βj 

 
1

Δ

∂

∂tj
det (ĎC̃⋆2((

x(0)

x(1)

x(2)

tj

))Ď + Diag((

α(0)

α(1)

α(2)

tjβj

))) = gj  

is solvable for any fixed (
x(0)

x(1)

x(2)
), (

α(0)

α(1)

α(2)
) such that Δ ≠ 0, it’s sufficient to prove that the 

algebraic rank of the system of functions received from the above-mentioned system 

via excluding all the absence-weights 
1

Δ

∂

∂tj
det (ĎC̃⋆2((

x(0)

x(1)

x(2)

tj

))Ď + Diag((

α(0)

α(1)

α(2)

tjβj

))) is 7n + 

6. 



Due to the divisibility of each united family’s size by 5, the derivatives of the functions 

fi,j(λ) = 
1

Δ
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi, tj)Ď + Diag((

α(0)

α(1)

α(2)

0

)))   , 

f̂i,j(λ) = 
1

Δ

∂

∂tj
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi, tj)Ď + Diag((

α(0)

α(1)

α(2)

0

))) 

 and  hi1,i2(λ) =
1

Δ
det (ĎC̃⋆2((

x(0)

x(1)

x(2)
) , vi1 , vi2)Ď + Diag((

α(0)

α(1)

α(2)

0

))) 

on any uniting value λk are of ε-order 1 or bigger. Hence it’s sufficient to prove the 

equality rank(lim
ε→0

(ε−1 𝔍((

𝑓

𝑓
ℎ

) , λ))) = 7n + 6  where 𝔍((

𝑓

𝑓
ℎ

) , λ) is their Jacobian 

matrix on the uniting values.  

We’ll say that a uniting value λk is of auxiliary differentiation order q if U(λk) is a 

subset of x(q), for q = 0,1,2. Then we receive for λk of auxiliary differentiation order q, 

for i = 1,2,3,4, j = 1,…,n:                               

 lim
ε→0

∂

∂λk
(ε−1fi,j(λ)) = ∑ dk,r(

∂q

∂x
k,r
q

1

(vi−xk,r)
2
)(

∂q

∂x
k,r
q

1

(xk,r−tj)
2)

|U(λk)|
r=1  

                    

lim
ε→0

∂

∂λk
(ε−1f̂i,j(λ)) =

∂

∂tj
∑ dk,r(

∂q

∂x
k,r
q

1

(vi−xk,r)
2
)(

∂q

∂x
k,r
q

1

(xk,r−tj)
2)

|U(λk)|
r=1  

lim
ε→0

∂

∂λk
(ε−1hi1,i2(λ)) = ∑ dk,r(

∂q

∂xk,r
q

1

(vi1 − xk,r)
2
)(
∂q

∂xk,r
q

1

(xk,r − vi2)
2
)

|U(λk)|

r=1

 

For i = 1,2,3,4, j = 1,…,n, the first two above sums are linear combinations of the sums 

∑
dk,r

(vi−xk,r)
w

|U(λk)|
r=1   and ∑

dk,r

(tj−xk,r)
w

|U(λk)|
r=1  for w = 2,3,4,5, while the third one is a linear 

combination of ∑
dk,r

(vi1−xk,r)
w

|U(λk)|
r=1   and ∑

dk,r

(vi2−xk,r)
w

|U(λk)|
r=1  for w = 2,3,4,5. Let’s consider 

the case when for each uniting value λk   ∑
dk,r

(vi−xk,r)
w

|U(λk)|
r=1 = ∑

dk,r

(tj−xk,r)
w

|U(λk)|
r=1 = 0 for all 



i, j except either exactly one index i(λk) or exactly one index j(λk) and for all w except 

exactly one degree w(λk). Let’s call such a uniting value λk a vi,w-supporting and tj,w-

supporting uniting value correspondingly. We additionally put ∑
dk,r

(c−xk,r)
w

|U(λk)|
r=1 = 1 and 

∑
dk,r

(vi−xk,r)
w

|U(λk)|
r=1 = 1  if  λk supports  tj,w and vi,w correspondingly. Then, for j = 1,…n, 

we take 

one tj,w-supporting uniting value of auxiliary differentiation order q for each of the 

following pairs (w,q): (5,2), (4,1), (3,0), (1,1), (2,1), (1,0), (2,0);  

 one v1,w-supporting uniting value of auxiliary differentiation order 1 for each of w = 

1,2,3; 

 one v2,1-supporting uniting value of auxiliary differentiation order 0 for each of w = 

1,2; 

one v3,1-supporting uniting value of auxiliary differentiation order 0.  

Then, upon multiplying its columns by non-zero constants from the set {1,2,3,4}, 

lim
ε→0
(ε−1 𝔍((

𝑓

𝑓
ℎ

) , λ))  will be the block-triangular matrix  

(

 
 
 
 
 

Diag({T(tj)}n) 𝑃

06×7𝑛

(

 
 
 
 
{

1

(vi − v1)
5−s}𝑖=2,3,4

𝑠=1,2,3

𝐵12 𝐵13

02×3 {
1

(vi − v2)
3−s
}𝑖=3,4
𝑠=1,2

𝐵23

01×3 01×2
1

(v3 − v4)
3)

 
 
 
 

)

 
 
 
 
 

 

where for j = 1,…,n T(tj) = (

{
1

(vi−tj)
5−s
}i=1,2,3,4
s=1,2,3

Aj

04×3 {
1

(vi−tj)
5−s
}i=1,2,3,4
s=1,2,3,4

), Aj is a 4×4-matrix, 

P is an 7n×6-matrix, B12 is a 3×2-matrix, 𝐵13 is a 3×1-matrix, 𝐵23 is a 2×1-matrix.  

Taking into account the fact that each of the above matrix’s first n diagonal 8×7-blocks 

is of rank 7 and the last 3 ones are of ranks 3,2,1 correspondingly, we complete the 

theorem’s proof. 

 



The above theorem implies that in characteristic 5 we can polynomial-time reduce 

computing the alternate determinant of a symmetric singularized matrix of Cauchy-rank 

4 such that all its denominator-values are alternate-wise doubled and pj
TMp̂j = 0 for j = 

1,…,n to computing a Pfaffian via the use of the neighboring computation principle 

(because the alternate determinant of such a matrix is a polynomial in the entries of its 

numerator-vectors, alternate numerator-vectors and its alternate-wise block-diagonal 

entries) and, hence, the alternate determinant of such a matrix is computable in 

polynomial time. 

Definition: 

We’ll call proper a directed cycle that isn’t a loop.  

Definition: let dim(y) = dim(g) = n, A be an n×n-matrix, B(1), … , B(n) be m×m-matrices. 

Then we define the trace-determinant of A on  B(1), … , B(n) as 

dettr (A, {B
(i)}

n
) := ∑ ∏ ((−1)|𝒞|+1tr(∏ B(iq(𝒞))

|𝒞|

q=1
)

𝒞∈PC(π)

)∏ai,πi

n

i=1π∈S𝑛

 

 

where PC(π) is the set of π’s proper cycles, while for each proper cycle 𝒞 =

(i1(𝒞), … , i|𝒞|(𝒞)) ∈ PC(π) (represented with the lexicographically minimal starting 

vertex i1(𝒞)) the multiplication order in the matrix product ∏ B(iq(C))
|𝒞|
q=1 =

B(i1(𝒞))…B(i|C|(𝒞)) is 𝒞’s order. 

In case if A = C̃(x) + Diag(g), we’ll call B(i) the matrix-weight and 𝑔𝑖  the absence-

weight of the denominator-value 𝑥𝑖. Further we’ll often consider, when dealing with the 

trace-determinant, any denominator-value together with these two parameters as the 

triple (xi, B
(i), gi), while assuming the notions of infinitesimal-closeness and limit on an 

infinitesimal only for the values of 𝑥𝑖  themselves when speaking about infinitesimal-

close denominator-values or/and their limit.  

 

Theorem III.10: Let P, P̂ be 4×n-matrices, t, g be n-vectors, M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

). 

Then    

dettr (C̃(t) + Diag(g), {(pip̂i
T + p̂ipi

T)M}
n
) = 



= altdet((
PTMP ⋆ C̃(t⋆5) PTMP̂ ⋆ C̃(t⋆5)

P̂TMP ⋆ C̃(t⋆5) + Diag(g) P̂TMP̂ ⋆ C̃(t⋆5)
)) 

As a corollary, due the fact that for any 4×2-matrix such that FTMF = 02×2  the matrix 

FFT can be represented as pp̂T + p̂pT for some 4-vectors p, p̂ such that pMp̂T = 0, we 

get 

Theorem III.10.1: 

dettr (C̃(t) + Diag(g), {F
(i)(F(i))TM}

n
) is polynomial-time computable for any 4×2-

matrices F(1), … , F(n) such that (F(i))TMF(i) = 02×2 for i = 1,…,n. 

Definition: let dim(y) = dim(g) = n, A be an n×n-matrix, B(1), … , B(n) be m×m-matrices.  

Then we define the open trace-determinant of A on  B(1), … , B(n) as 

det̆tr (A, {B
(i)}

n
) := 

∑(
(−1)|𝒫π|+1

ai|𝒫π|(𝒫π),i1(𝒫π)
∏ B(iq(𝒫π))

|𝒫π|

q=1
) ∏ ((−1)|𝒞|+1tr(∏ B(iq(𝒞))

|𝒞|

q=1
)

𝒞∈PC̆(π)

)∏ai,πi

n

i=1π∈S̆n

 

where S̆n is the set on n-permutations where exactly one cycle is considered as broken 

and turned into a path 𝒫𝜋 = (𝑖1(𝒫𝜋), … , 𝑖|𝒫𝜋|(𝒫𝜋)) (including, as an option, the case of a 

loop 𝒫𝜋 = (𝑖1(𝒫𝜋)) ),  PC̆(π) is the set of π’s unbroken proper cycles, while the 

multiplication order in the matrix product ∏ B(iq(C))
|𝒞|
q=1 = B(i1(𝒞))…B(i|C|(𝒞)) is 𝒞’s 

order for each unbroken proper cycle 𝒞 = (i1(𝒞), … , i|𝒞|(𝒞)) ∈ PC̆(π) (represented 

with the lexicographically minimal starting vertex i1(𝒞)) and the multiplication order in 

the matrix product ∏ B(iq(𝒫𝜋))
|𝒫𝜋|
q=1  is 𝒫𝜋’s order. 

Comment: the above definition remains actual also in the case ai1(𝒫π),i|𝒫π|(𝒫π) = 0 due to 

the presence of the term ai1(𝒫π),i|𝒫π|(𝒫π) in ∏ ai,πi
n
i=1 . 

Theorem III.10.2 (in an arbitrary characteristic) 

For i = 1,…,n, let xi be a scalar, χi, hi be ki-vectors and L(i,1),…, L(i,ki) be m×m-matrices  

of ε-order 0 or bigger such that lim
ε→0

dettr(C̃(χi)+Diag(ε
−1hi),(

L(i,1)

…

L(i,ni)
))

ε−ki
= 0 for i =1,…n. Then 

dettr(C̃(x) + Diag({gi}𝑛), {B
(i)}𝑛) =                                     



= lim
      𝜀→0

dettr(C̃({xi1⃗ ni + εχi}n
) + Diag({ε−1hi}n), {(

L(i,1)

…
L(i,ki)

)}n)

ε𝑛−(k1+⋯+kn)
 

where for i = 1,…,n      g𝑖 = lim
ε→0

dettr  (C̃(χi)+Diag(ε
−1hi),(

L(i,1)

…

L(i,ki)
))

ε1−ki
  , 

                                     B(i) = det̆tr(C̃(χi) + Diag (lim
𝜀→0
 hi) , lim

 𝜀→0
(
L(i,1)

…
L(i,ni)

)) 

Proof: 

This statement follows from the definitions of the trace-determinant and the open 

trace-determinant because the “common” limit  lim
 𝜀→0

  provides, for i = 1,…,n, the 

“opening” of the weighted sub-digraph corresponding to the ε-close denominator-value 

family xi1⃗ ni + εχi (whose arcs are of ε-order -1, while all the matrix-weights are of ε-

order 0) , while the i-th absence weight g𝑖  is obtained under the “common” limit as the 

limit of this sub-digraph’s trace-determinant divided by ε1−ki  (i.e. via the case of this 

sub-digraph remaining “closed” in the trace-determinant’s transversals). 

 

By the above theorem, we hence introduced one more type of compression (actual for 

the trace-determinant) when a family of pair-wise infinitesimal-close denominator-

values contracts, via the limit on the infinitesimal, into a new denominator-value that is 

their common limit on the infinitesimal and, accordingly, this family generates its limit’s 

matrix-weight and absence-weight. Therefore it’s also a compression of a family of 

m×m-matrices into another m×m-matrix. Hence, given a family of m×m-matrices, it 

contracts (for all the possible “accompanying” families of denominator-values and 

absence-weights providing the corresponding matrix’s trace-determinant’s equality to 

zero, i.e. the “opening” of the trace-determinant) into a set of new m×m-matrices 

(depending on the chosen families of denominator-values and absence-weights). Let’s 

call it the open trace-determinant compression of a family of m×m-matrices. Hence, 

given a class of m×m-matrices, it generates, via the open trace-determinant 

compression of its subsets (families), a wider class and accordingly we can also speak, 

once again, about the compression-closure of the class for this operator. 



Comment: in the above theorem, the ε-orders can also be considered fractional or/and 

yield a non-existing (infinitely big) expression. 

 

Theorem III.11 (in characteristic 5): 

 

Let B(1), … , B(n) be symmetric 4×4-matrices such that for i = 1,…,n B(i)M has not more 

than two eigenvalues, M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

),  F(i), F(n+i) be 4×2-matrices for i = 

1,…n, t, g be n-vectors. Then 

1)  dettr (C̃(x) + Diag(g), {B
(i)M}

n
)= lim

ε→0

dettr(C̃((
x
x+⃛ε

))+Diag((
ε−1/2g

ε−1/21⃗⃗ n
)),(

{F(i)(F(i))TM}
n

{F(n+i)(F(n+i))TM}
n

))

ε−n
 

where for i = 1,…,n    

{
 
 

 
 Y(i) (

02×2 Z(i)

(Z(i))T 02×2
) (Y(i))T = B(i)

(Y(i))TMY(i) = (
02×2 −Z(i)

(Z(i))T 02×2
)

Y(i) = (F(i)   F(n+i))

  

for a 2×2-matrix Z(i) such that  tr(Z(i)(Z(i))T) = 0. 

The above system of equations for the variables Y(i), Z(i), F(i) is solvable for an arbitrary 

symmetric 4×4-matrix B(i) such that B(i)M has not more than two eigenvalues. 

2)  this theorem’s Part (1)’s conditions imply  (F(i))TMF(i) = 02×2 for i = 1,…,2n and, 

accordingly, dettr (C̃(x) + Diag(g), {B
(i)M}

n
) is polynomial-time computable for 

arbitrary symmetric 4×4-matrices B(1), … , B(n) such that for i = 1,…,n B(i)M has 

not more than two eigenvalues (including the partial case of B(i)M = F(i)(F(i))TM 

having exactly one eigenvalue equal to zero when (F(i))TMF(i) = 02×2). 

 

Proof: 

The main formula of this theorem (in Part (1)) is a direct implication of Theorem 

III.10.2 as its conditions imply the “opening” of the corresponding weighted sub-

digraph for each ε-close pair of denominator-values xi, xi + ε. And now let’s 

prove the theorem’s statements on solvability and computability.  



Let’s use the fact that the system of equations {YAY
T = B

YTǍY = B̌
 for the m×m-matrix 

variable Y, where A, B are symmetric m×m-matrices and Ǎ, B̌ are skew-symmetric 

m×m-matrices, is solvable if and only if AB̌ and BǍ have equal eigenvalue 

spectrums, while the product of a symmetric matrix and a skew-symmetric one 

(of the same size) has the eigenvalue spectrum of a skew-symmetric matrix, i.e. 

partitionable into pairs of opposite eigenvalues.  

 

We hence conclude that the eigenvalue spectrums’ equality for the matrices  

(
02×2 Z(i)

(Z(i))T 02×2
)(

02×2 −Z(i)

(Z(i))T 02×2
) = (

Z(i)(Z(i))T 02×2
02×2 −(Z(i))TZ(i)

) and B(i)M  

is equivalent to the solvability of the system of equations  

{
 
 

 
 Y(i) (

02×2 Z(i)

(Z(i))T 02×2
) (Y(i))T = B(i)

(Y(i))TMY(i) = (
02×2 −Z(i)

(Z(i))T 02×2
)

Y(i) = (F(i)   F(n+i))

   

for the variables Y(i), Z(i), F(i), while the condition tr(Z(i)(Z(i))T) = 0 implies that 

(
Z(i)(Z(i))T 02×2
02×2 −(Z(i))TZ(i)

) has not more than two eigenvalues. 

 

Theorem III.11.1 (in characteristic 5): 

Let B(1), … , B(n) be symmetric 4×4-matrices such that for i = 1,…,n B(i)M has not more 

than two eigenvalues, M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

),  F(1), … , F(n) be 4×2-matrices, t, g be 

n-vectors. Then 

dettr (C̃(x) + Diag(g), {(B
(i) + F(i)(K(i) − tr(K(i))I2)(F

(i))T)M}
n
) =

= lim
ε→0

lim
ε1→0

dettr(C̃((
x+⃛ε
x

x+⃛ε1

)) + Diag((

−g

ε−11⃗ n

−ε−11⃗ n

)), (

{B(i)M}
n

{F(i)(F(i))TM}
n

{F(i)(F(i))TM}
n

))

ε−2n
 

 

where  for i = 1,…,n K(i) = (F(i))TMB(i)MF(i) 



 

Proof: 

This statement follows from Theorem III.10.2 for the same reasons as Theorem III.11, 

with the only difference that first we take lim
ε1→0

 for to receive, for i =1,…,n, the pair of 

equal denominator-values xi, xi with equal matrix-weights and opposite absence-

weights that “make” them to be present and absent only “together”. And, when 

“appearing” together, they “join” the denominator-value xi + ε  for to form an ε-close 

denominator-value family (with two identical “twin”-members) whose trace-

determinant “opens”. 

 

Theorem III.11.2 (in characteristic 5): 

 

1) dettr (C̃(x) + Diag(g), {(−B
(i) + F(i)(K(i) − tr(K(i))I2)(F

(i))T)M}
n
), where for i = 

1,…,n K(i) = (F(i))TMB(i)MF(i), is polynomial-time computable if for i = 1,…,n  B(i) is an 

arbitrary symmetric 4×4-matrix such that B(i)M has not more than two eigenvalues 

and F(i) is an 4×2-matrix such that (F(i))TMF(i) = 02×2, M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

). 

2) dettr (C̃(x) + Diag(g), {G
(i)M}

n
) is polynomial-time computable for arbitrary  

symmetric 4×4-matrices G(1), … , G(n). 

 

  Proof: 

Part (2). This statement follows from Theorem III.11.1 and the fact that any symmetric 

4×4-matrix G can be represented as  −B + F(K − tr(K)I2)F
T where B is a symmetric 

4×4-matrix such that B(i)M has not more than two eigenvalues, F is an 4×2-matrix such 

that FTMF = 02×2, and K = FTMBMF. 

 

Let’s also notice that the class of matrices of the form BM, where B is a symmetric 4×4-

matrix and M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

), is closed under the open trace-determinant 

compression operator. Hence above we’ve proven that its subclass of matrices of the 



form FFTM, where F is an 4×2-matrix such that FTMF = 02×2 , generates the whole 

class via this operator’s closure.   

Theorem III.12 (in characteristic 5): let dim(x) = n, dim(y) = dim(λ) = m. Then 

per(C⋆2(x, y)Diag(λ)) = 

= (∏λj

m

j=1

)dettr(C̃((
x
y)) + Diag((

0⃗ n
λ⋆(−1)

)), (
{GM}n
{ĜM}m

)) 

                        where 

       M = (
02×2

0 1
−1 0

0 1
−1 0

02×2

), G = (
02×2

0 1

√−1 0

0 √−1
1 0

02×2

), Ĝ = (
02×2

0 −1

√−1 0

0 √−1
−1 0

02×2

) 

  Proof: 

  This identity follows from the fact that the matrices GM and ĜM are diagonal and hence 

commute under the matrix multiplication what makes the sum of the trace-weights of all the 

cycles covering a vertex set K equal to the trace of the product of its vertices’ matrix-weights 

multiplied by ham(C̃((
x
y)K
)), while the latter expression isn’t zero if and only if |K| = 2 and, 

in the meantime, tr((GM)2) = tr((ĜM)2) = 0,  tr(GMĜM) = 1. 

 

This theorem hence provides, due to the previous theorem regarding the polynomial-time 

computability of dettr (C̃(x) + Diag(g), {G
(i)M}

n
) for any symmetric matrices G(i) in 

characteristic 5, the polynomial-time computability of per(C⋆2(x, y)Diag(λ)) in 

characteristic 5. Further, in Theorem III.32, we’ll prove its #5P-completeness. 

 

Lemma III.12.1 (in a prime characteristic p): 

Let ω be a p-vector whose entries are all the elements of GF(p). Then 

1) Let f(u1, … , up−k) be a symmetric homogeneous polynomial in p-k variables of 

degree q. Then ∑ det (C̃(ωI)) f(ω\I) = 0I⊆{1,…,p},|I|=k  if q ≤ k < p-1; 

2) ∑ det (C̃(ω\i))ωi
qp

i=1 = [
−1, q = p − 1
0, q < p − 1

   , for q = 0,…,p-1 



Proof: 

Part (1). This lemma can be proven via the use of Lemma III.4 as in characteristic p 

det (C̃(ωI)) = det (C̃(ωI) + Diag({∑
1

ωi−ωj
j∈I,j≠i − (p − 1) ∑

1

ωi−ωj
j∉I }i∈I)) = 

= per(C(ωI, ω\I⊗ 1⃗ p−1) 

where {∑
1

ωi−ωj
j∈I,j≠i − (p − 1)∑

1

ωi−ωj
j∉I }i∈I is the |I|-vector indexed by the elements 

of I and having, for i ∈ I, its i-th entry equal to ∑
1

ωi−ωj
j∈I,j≠i − (p − 1) ∑

1

ωi−ωj
j∉I  . This 

vector is zero if ω is a p-vector whose entries are all the elements of GF(p).  

Let’s also take into account the fact that for independent indeterminates  

u1, … , um there hold the identities 

(*) ∑
ur
d

∏ (ur−uw)w,w≠r

m
r=1 = 0  if d < m− 1  

and  

(**) ∑
ur
m−1

∏ (ur−uw)w,w≠r

m
r=1 = 1.  

For proving the lemma’s first part it’s sufficient to consider just a symmetric polynomial 

of the form 
∑ uπ1

q1…uπp−k

qp−k
 π∈Sp−k

(−1)qq1!…qp−k!
 , where q1, … , qp−k are non-zero integers such that q1 +

⋯+ qp−k = q, because any symmetric polynomial is a linear combination of such 

polynomials. Hence for proving Part (1) it’s sufficient to show that the identity 

∑ per(C(ωI, ω\I⊗ 1⃗ p−1) ∑ ωπ1
q1 …ωπp−k

qp−k  

π∈SGF(p)\I

= 0

I⊆{1,…,p},|I|=k

 

(where for a set J SJ denotes the set of permutations on it) 

holds for q ≤ k < p − 1. 

Due to the above-mentioned facts, for q < k it equals zero because of (*) and for q = k, 

because of (**), it’s the number of GF(p)’s partitions into subsets of cardinalities q1 +

1,… , qp−k + 1 that is zero when k < p-1. 

(Part 2) . It follows from (**). 

 

Theorem III.14 (in characteristic 5): 

let P, P̂ be 4×n-matrices, 5dim(u) + dim(v) + dim(w) = n. Then 

 



φ5,2(u,w, v,γ) =
(−1)

dim (w)

2dim (u)
( ∏ γj

dim(v)

j=1

)lim
ε→0
 coef

λ
dim(v)−dim (w)

 

dettr(C̃((
u+⃛εω

v
w
)) + Diag((

−C(u⨂1⃗ 5, w)1⃗ dim(w)

λγ⋆(−1)

0dim(v)

)), {(pip̂i
T + p̂ipi

T)M}
n
) 

where: ω =

(

 
 

0
1
2
3
4)

 
 

; M = (
02×2

0 1

−1 0
0 1

−1 0
02×2

); 

all the numerator-vectors corresponding to u+⃛εω are f and all the alternate 

numerator-vectors corresponding to u+⃛εω are f̂; all the numerator-vectors 

corresponding to w and v are equal to their alternate numerator-vectors and for 

w they are f, for v they are f̂, where f, f̂ are arbitrary 4-vectors satisfying the 

relation fTMf̂ = 1   

 

 

Proof: 

 

In the present proof, with the considered trace-determinant we’ll associate a weighted 

digraph whose vertices will be associated with the denominator-values x = (
u+⃛εω

v
w
), 

while by the weight of a proper cycle 𝒞 = (xi1 , … , xi|𝒞|) we’ll understand the cycle’s 

trace-weight (−1)|𝒞|+1tr (∏ B
(iq(𝒞))|𝒞|

q=1 ))∏
1

𝑥iq−𝑥πiq

|𝒞|
q=1 , by a loop (xi1)’s weight -- the 

corresponding absence-weight gi (i.e. the corresponding diagonal entry of the matrix 

C̃((
u+⃛εω

v
w
)) + Diag((

−C(u⨂1⃗ 5, w)1⃗ dim(w)

λγ⋆(−1)

0dim(v)

))), and by a cycle system’s weight -- the 

product of its cycles’ weights. We’ll also call a vertex absent (in a spanning cycle system) 

if it’s covered by its loop, and present otherwise.  

 

As we have B(i) = pip̂i
T + p̂ipi

T, the considered trace-determinant is the corresponding 

alternate determinant 

    altdet((
PTMP ⋆ C̃(t⋆5) PTMP̂ ⋆ C̃(t⋆5)

P̂TMP ⋆ C̃(t⋆5) + Diag(g) P̂TMP̂ ⋆ C̃(t⋆5)
) = 



with the numerator-vectors and alternate numerator-vectors pi and  p̂i correspondingly 

and the absence-weights gi. 

 

Let’s call the denominator-values (as well as the corresponding vertices of the weighted 

digraphs we’re going to build in this proof) of û = u+⃛εω regular, of w active, of v 

passive.  

 

In each transversal summand of the considered matrix, let’s consider its proper cycle 

system spanning its set of present vertices. We’ll call a regular vertex busy if it’s located 

in a cycle having not only regular vertices (and we’ll call such a cycle non-regular), and 

free otherwise (and we’ll accordingly call a cycle regular if it consists of regular vertices 

only). Besides, a pair of vertices whose denominator-values’ difference’s ε-order is 

bigger than zero will be called 𝛆-close (of a specified ε-order, if necessary to detail).  

 

First of all, let’s notice that we can consider only regular cycles of length 2 because the 

sum of the weights of all the regular cycles covering a set of regular vertices of a 

cardinality bigger than 2 equals zero due to the fact that, for each regular vertex, its 

numerator-vector is f and its alternate numerator-vector is f̂ and hence, due to the 

theorem’s condition fTMf̂ = 1, the weight of a cycle 𝒞 covering a regular vertex set ûI 

equals ((f̂TMf)𝑙 + (f̂MfT)𝑙)∏
1

ûi1−ûi2
(i1,i2)∈𝒞  (where 𝑙 is the cycle’s length) and hence it 

is zero when 𝑙 > 2 because of the earlier proven fact that ham (C̃(x)) = 0 if dim(x) > 2.  

Besides, due to the identity ham (C̃(x, y, z)) =
1

y−z
∏ (

1

y−xi
−

1

z−xi
)

dim(x)
i=1  for dim(y) = 

dim(z) = 1 (that is a partial case of Lemma III.4) and the values of the numerator-vectors 

and alternate numerator-vectors given in the theorem (providing that active and 

passive vertices should alternate in any cycle of a non-zero weight if we don’t take into 

account the regular vertices between them), any non-regular cycle of a non-zero weight 

should contain equal quantities of active and passive vertices and its weight equals the 

weight of the cycle received from it by removing all its regular vertices multiplied by 

∏ (∑
2

wk−ûi
k∈K − ∑

2

vj−ûi
j∈J )i∈I  where I, J, K are the sets of its regular, passive and active 

vertices correspondingly. The latter relation will remain true if we replace the word 

“cycle” by “cycle system”.  Altogether, due to the given absence-weights of our 

denominator-values and upon taking the given coefficient at  λdim(v)−dim (w)  (providing 

exactly dim(w) present passive vertices, while all the active ones are present due to 

having zero absence-weights), we receive the expression 



lim
ε→0
∑2

dim(û\K)

2 det (C̃(û\K)) ∑ (∏( ∑
2

wk − ûi

dim (w)

k=1

−∑
2

vj− ûij∈J

)
i∈I

)
J,|J|=dim (w)K

∙ 

∙ det2 (C(w, vJ)) ∏
1

γl
l∈{1,…,dim(v)}\J

 

 

Let’s now show that, in the above expression, for each i = 1,…,dim(u) the family of 

denominator-values ui1⃗ 5 + εω yields, under this limit, the Cauchy-base multiplier  

∑
1

(ui−vj)
5j∈J  multiplied by −1. It follows from Theorem III.12.1 because the minimal ε-

order we receive for this family is zero and we get it either when four denominator-

values of the family are free and one is busy or when all its denominator-values are busy 

-- and those two cases together give us the multiplier ∑
1

(ui−wk)
5

dim(w)
k=1 − ∑

1

(ui−vj)
5j∈J  , -- 

or when all of them are absent, i.e. covered by their loops each of whom has the weight  

−∑
1

(ui−wk)
5

dim(w)
k=1 . 

We hence obtain, altogether, the expression 

∑ (∏(−∑
1

(ui − vj)
5

j∈J

)

i∈I

)

J,|J|=dim (w)

det2 (C(w, vJ)) ∏
1

γr
r∈{1,…,dim(v)}\J

 

          what completes the proof. 

 

 

Theorem III.15 (in a prime characteristic p): 

Let A be an n×n-matrix, h be an even number. Then per(A) =

φp,h(z⨂1⃗ pq−1 , w, v, γ) = φ1,h(z⨂1⃗ pq , w, v, γ) 

                                 where: dim(w) = dim(z) = n, dim(v) = dim(γ) > h(n2 + n)  

                                               C⋆p
q
(z, v)Diag(γ)C⋆s(v,w) = 0n×n for s = 1,…,h-1 

                                               C⋆p
q
(z, v)Diag(γ)C⋆h(v, w) = A 

                                               C⋆s(w, v)Diag(γ) = 0⃗ n  for s = 1,…,h 

while the above system of linear equations for γ is nonsingular in the generic case 

if pq > h(n2 + n) . 

Comment: φp,h(z⨂1⃗ pq−1 , w, v, γ) can be polynomial-time computed  

as lim
ε→0

 φp,h(z⨂1⃗ pq−1 + εζ, w, v, γ)  where ζ is an arbitrary pq−1dim (z)-vector 

with pair-wise distinct entries. 

 

Proof: 



This theorem is based on the following generalization of the Cauchy-Binet identity 

(about the determinant of the product of two matrices), valid in an arbitrary 

characteristic: 

 

Let A(1), … , A(h) be n×m-matrices, h be non-zero even, B be a k×m-matrix. Then 

(∏ det ((A(v))({1,…,n},J))h
v=1 )∏ ∑ br,jj∈J

k
r=1 = 

= ∑ σ(π(2)…π(h))

π(2),…,π(h)∈Sn,
(R1,…,Rn)∈𝒫n({1,…,k})

∏∑ai,j
(1)

m

j=1

n

i=1

a
πi
(2)
,j

(2)
…a

πi
(h)
,j

(h)
∏br,j
r∈Ri

 

where 𝒫n({1,… , k}) is the set of partitions of the set {1, … , k} into n subsets (some of 

them possibly empty) and  σ(π(2)…π(h)) is the sign of the permutation π(2)…π(h). 

 

In our case we have, by the definition,   φp,h(z⨂1⃗ 5q−1 , w, v, γ) = 

= ∑ det ((C(w, v))({1,…,n},J))… det ((C(w, v))({1,…,n},J))J⊆{1,…,m}
|J|=n

∏ ∑
γj

(zr−vj)
pqj∈J

k
r=1  . 

Hence, while considering the entries of the vectors w, z as “constants” and the entries 

of the vectors v, γ as “variables”, we can say that in our case each expression 

∑ a1,j
(1)
a
πi
(2)
,j

(2)
…a

πi
(n)
,j

(h) ∏ br,jr∈Ri
m
j=1  is a linear combination of the sums ∑

γj

(wi−vj)
s

m
j=1   with  

i = 1,…,n, s = 1,…,h and ∑
γj

(zr−vj)
s

m
j=1   with r = 1,…,n, s = 1,…,pq . Due to the fact that, 

according to the theorem’s conditions, all the former ones are equal to zero, in our case 

each  ∑ a1,j
(1)
a
πi
(2)
,j

(2)
…a

πi
(n)
,j

(h) ∏ br,jr∈Ri
m
j=1  is a linear combination of the sums ∑

γj

(zr−vj)
s

m
j=1   

only and isn’t zero only if Ri isn’t empty; hence we can consider only partitions 

(R1, … , Rn) where all the subsets Ri are of cardinality 1. Therefore we can consider only 

the expressions   ∑
γj

(wi1−vj)…(wih−vj)(zr−vj)
pq

m
j=1   that are linear combinations of the sums 

∑
γj

(wi−vj)
s(zr−vj)

pq
= ∑

(−s)…(−s−t+1)

t!(wi−zr)
s+t

∑
γj

(zr−vj)
pq−t

m
j=1

pq−1
t=0

m
j=1   with s =1,…,h, i = 1,…,n,  

r = 1,…,n and form a non-singular system of hn2 linear functions in the sums 

∑
γj

(zr−vj)
pq−t

m
j=1  with r = 1,…,n, t = 1,…, pq − 1.  According to the theorem’s conditions, 

the sum  ∑
γj

(wi−vj)
s(zr−vj)

pq
m
j=1   is zero when s < h and equals ai,r when s = h. The latter 

case implies wi1 = ⋯ = wih and hence we can consider only the case π(2) = ⋯ =

π(h) = (
1, … , n
1, … , n

) and, because σ(π(2)…π(h)) = 1 in such a case, we eventually get 

per(A), while the sums ∑
γj

(zr−vj)
pq−t

m
j=1   and  ∑

γj

(wi−vj)
s

m
j=1   with r, i = 1,…,n and t = 



0,…,pq − 1 generically form a nonsingular system of linear functions in γ1, … , γm 

provided pq > h(n2 + n). 

 

We’ve hence proven the #pP-completeness of the Cauchy determinant base-sum for 

any odd prime p and the Cauchy base-degree 1. In fact, a similar proof can be arranged 

for any natural Cauchy base-degree. 

 

Let’s also formulate the Cauchy-Binet identity’s generalization we used in this proof, 

even in a wider form:  

 

Theorem III.15.1 (in any characteristic): 

Let A(1), … , A(h), A(h+1), … , A(h+d) be n×m-matrices, h be non-zero even, B be a k×m-

matrix. Then 

∑ (∏det ((A(v))({1,…,n},J))

h

v=1

)( ∏ per ((A(v))({1,…,n},J))

h+d

v=h+1

)
J⊆{1,…,m}
|J|=n

∏∑br,j
j∈J

k

r=1

= 

= ∑ σ(π(2)…π(h))

π(2),…,π(h+d)∈Sn,
(R1,…,Rn)∈𝒫n({1,…,k})

∏∑ai,j
(1)

m

j=1

n

i=1

a
πi
(2)
,j

(2)
…a

πi
(h+d)

,j

(h+d)
∏br,j
r∈Ri

 

where 𝒫n({1,… , k}) is the set of partitions of the set {1, … , k} into n subsets (some of 

them possibly empty) and  σ(π(2)…π(h)) is the sign of the permutation π(2)…π(h). 

 

 

Additionally, we can also formulate 

Theorem III.16 (in characteristic 5): let dim(z) = n, dim(y) = m. Then 

(∏ (1 + di
∂

∂zi
))det({

αi−αj + (βi + βj)(zi − zi)

(zi − zj)5
}
n×n

+ Diag(h))
n

i=1

= coefλn lim
ε1→0

lim
ε→0

Pf(K((y+⃛ (
0
ε
) +⃛ (

0
ε1
)

z
) , (0⃗

 
4m

d
) , ((εε1)

2(λg)⋆(−1)+⃛(ε−2 +
ε2

2 ε1
−4)1⃗ 4

h
)))

(−2)n+4mε1
−2m  

where αi = α(zi) = ∑
gk

(yk−zi)
3
  , βi = β(zi) = 

m
k=1 ∑

gk

(yk−zi)
4

m
k=1     for  i = 1,…,n 

 

 

***************************************************** 



 

Theorem III.17 (in characteristic 5): Let dim(x) = n, A be a nonsingular skew-

symmetric 4n×4n-matrix, dim(ζ) = m .Then 

per(C(x ⊗ 1⃗ 4, ζ ⊗ 1⃗ 2)Diag(d⊗ (
1
−1
))) =

=

coef𝛾4𝑛det
4(Van(x))Pf((

γDC̃(ζ)D In

−In (Van[4n] (ζ))
T
AVan[4n] (ζ)

))

Pf(A)
 

where  D = Diag({√
−dj

pol(ζj,x)
}
m

) 

Proof: 

This statement is due to Lemma III.4. The numerator of the theorem’s equality’s 

right side is 

 det4(Van(x)) ∑ Pf(C̃(ζJ))Pf(Van
[4n] (ζJ))

T
AVan[4n] (ζJ)J,|J|=2n ∏

−dj

pol(ζj,x)
𝑗∈𝐽 = 

= det4(Van(x)) ∑ Pf(C̃(ζJ))Pf(Van(ζJ))
T
AVan(ζJ)

J,|J|=2n

∏
−dj

pol(ζj, x)𝑗∈𝐽

 

                                       = det4(Van(x)) ∑ Pf(C̃(ζJ))det (Van(ζJ))J,|J|=2n Pf(A)∏
−dj

pol(ζj,x)
j∈J = 

= det4(Van(x)) ∑

det(W[4]((
ζJ
ζJ
)))

det (Van(ζJ))
det (Van(ζJ))

J,|J|=2n

Pf(A) ∏
−dj

pol(ζj, x)j∈J

= 

= Pf(A) ∑ det4(Van(x))det(W[4]((
ζJ
ζJ
)))

J,|J|=2n

 ∏
−dj

pol(ζj, x)j∈J

= 

                           = Pf(A)∑ per(C(x ⊗ 1⃗ 4, ζj⊗ 1⃗ 2)J,|J|=2n  ∏ (−dj)j∈J   , 

while the left side is ∑ per(C(x ⊗ 1⃗ 4, ζj⊗ 1⃗ 2)J,|J|=2n  ∏ (−dj)j∈J    

 

 

 

******************************************************** 



Theorem III.18 (the Binet-Minc identity, for any characteristic) 

Let A be an n×m-matrix, then 

per(A) = (−1)n ∑ ∏(−(|I| − 1)!∑ ∏aij
i∈I

)
m

j=1
I∈PP∈Part({1,…,n})

 

where Part({1,,…,n}) is the set of partitions of the set {1,…,n} into non-empty subsets. 

 

Sparse compressions in characteristic 3 

Theorem III.19 (in any characteristic). Let dim(z) = 2dim(x). Then 

det(C⋆(1,2)(x, z))  = (−1)dim (x)
det4(Van(x)) det(Van(z))

pol2(x, z)
 

Theorem III.20 (in any characteristic). Let dim(z) = 2dim(x). Then 

det(C⋆(2,3)(x, z))  = (1/2)dim (x)per(C((
x
x
) , z)det(C⋆(1,2)(x, z)) 

Proof:  

This statement follows directly from the Borchardt identity as  

det(C⋆(2,3)(x, z)) = lim
𝜀→0

det(C⋆2((
x
𝑥+⃛𝜀

) , z))

(−2𝜀)dim (x)
= lim
𝜀→0

det (C((
x
𝑥+⃛𝜀

) , z))per (C((
x
𝑥+⃛𝜀

) , z))

(−2𝜀)dim (x)
= 

=
per(C((

x
x
) , z)(−1)dim (x)det(C⋆(1,2)(x, z))

(−2)dim (x)
 

 

A conjectured polynomial-time algorithm for computing the permanent in 

characteristic 3 

 

Theorem III.21 (in characteristic 3): 

 Let A be a nonsingular skew-symmetric 2n×2n-matix, dim(x) = n, dim(y) = m. Then 



per3(C((
x
x
) , y)Diag(d)) = 2𝑛

coefγnPf((
γDC̃(y)D Im
−Im (C⋆(2,3)(x, y))TAC⋆(2,3)(x, y) 

))

Pf(A)
 

where   D = Diag3(d) . 

Proof:  

The proof of this theorem is based on Lemma III.4 as Pf(C̃(yJ)) =
per2(W[2](yJ))

det (Van(yJ))
  and 

Pf((C⋆(2,3)(x, y𝐽))
TAC⋆(2,3)(x, yJ)) = det(C

⋆(2,3)(x, yJ))Pf(A) = 

= 2nper(C((
x
x
) , yJ)det(C

⋆(1,2)(x, yJ))Pf(A) = 

                                          = per(C((
x
x
) , yJ)

det4(Van(x)) det(Van(yJ))

pol2(x,yJ)
Pf(A)  , 

while the numerator of the theorem’s equality’s right side is 

∑ Pf(C̃(yJ))Pf((C
⋆(2,3)(x, yJ))

TAC⋆(2,3)(x, yJ))∏ dj
3

j∈J =J,|J|=2n  

= ∑
per2(W[2](yJ))

det (Van(yJ))
per(C((

x
x
) , yJ)

det4 (Van(x))det (Van(yJ))

pol2(x, yJ)
 ∏dj

3

j∈JJ,|J|=2n

 

Taking into account the fact that, according to Lemma III.4, per2(C((
x
x
) , yJ) =

det4(Van(x))

pol2(x,yJ)
per2(W[2](yJ)), we complete the proof. 

 

Accordingly, via the reduction 

 lim
𝜀→0
(𝜀dim(𝑥)per(C((

x
x
) , (𝑥 + 𝜀1⃗

 
dim (𝑥)

𝑧
))Diag((1⃗

 
dim (𝑥)

λ
)))) =  

= 2dim (𝑥)per(C(x, z)Diag(λ)), we receive also  

Theorem III.22 (in characteristic 3): 

per(C(x, z)Diag(λ)) is computable in polynomial time for arbitrary . 

Definition: for dim(x) = dim(d) = dim(𝑎),  

ρ(x, d, a) ≔ (∏ (1 + di
∂

∂ri
))det (C̃(x) + Diag(a))

n

i=1
 



Theorem III.23 (in characteristic 3):  ρ(x, d, a) = per(C(x⋆3, z)Diag(λ)) 

where C(x⋆3, z)λ⋆q = δ(q − 1)a − δ(q − 2)(x + d) for q = 1,2,3 and this system of 

equations for z, λ is generically algebraically nonsingular. 

Theorem III.24 (in characteristic 3): 

 (∏
∂

∂ti
)det (C̃((

x
t
)) + Diag (

α
t ⋆ β))

dim(t)
i=1 = det (C̃(x) + Diag(α)) ∙ 

∙ altdet(SchurT,T(

C̃(x) + Diag(α) C(x, t) C⋆2(x, t)

C(t, x) C̃(t) + D11 C⋆2(t) + D12
−C⋆2(t, x) −C⋆2(t) + D21 C⋆3(t)+D22

)) = 

= altdet (
P1
TP2 ⋆ C̃(t

⋆9) + Ď11 P1
TP̂2 ⋆ C̃(t

⋆9) + Ď12
P̂1
TP2 ⋆ C̃(t

⋆9) + Ď21 P̂1
TP̂2 ⋆ C̃(t

⋆9) + Ď22
) = 

= dettr(C̃(t) + Diag(g), {p1,ip̂2,i
T + p̂1,ip2,i

T }
n
) 

where T={1,…,dim(x)} , P1, P̂1, P2, P̂2 are some n×9-matrices such that for i = 1,…n 

p1,i
T p2,i = p̂1,i

T p2,i = p1,i
T p̂2,i = p̂1,i

T p̂2,i = 0; for k, l = 1,2 Dk,l, Ďk,l are diagonal, 

D12 + D21 = Diag(β), Ď12 + Ď21 = Diag(g). 

 

Conjecture III.25: let T={1,…,dim(v)}, Dk,l be diagonal matrices for k, l = 1,2. Then the 

class of matrices of the form  

Schur{1,…,dim(x)},{1,…,dim(x)} (

C̃(x) + Diag(α) C(x, t) C⋆2(x, t)

C(t, x) C̃(t) + D11 C⋆2(t)+D12
−C⋆2(t, x) −C⋆2(t)+D21 C⋆3(t)+D22

))  

(where Dk,l are diagonal for k, l = 1,2) 

is generically the class 

 (
P1
TP2 ⋆ C̃(t

⋆9) + Ď11 P1
TP̂2 ⋆ C̃(t

⋆9) + Ď12
P̂1
TP2 ⋆ C̃(t

⋆9)+Ď21 P̂1
TP̂2 ⋆ C̃(t

⋆9) + Ď22
)  

(where P1, P̂1, P2, P̂2 are n×9-matrices, Ďk,l are diagonal for k, l=1,2) 

of singularized matrices of Cauchy-rank 9 all whose denominator-values are alternate-

wise doubled and p1,i
T p2,i = p̂1,i

T p2,i = p1,i
T p̂2,i = p̂1,i

T p̂2,i = 0 for i = 1,…,n. 



The above conjecture is an analogue of Theorem III.9 in characteristic 5 and it’s based 

on Theorem III.23. If it’s true we can, analogically, generate certain families of 

infinitesimal-close denominator-values with their non-symmetric (due to the considered 

matrix’s non-symmetry in this case) matrix-weights and absence-weights, while using 

Theorem III.10.2 for compressing those families into denominator-values whose matrix-

weights and absence-weights can be conjectured arbitrary. If the later conjecturing 

doesn’t fail too then we can use the fact that in any characteristic we have an exact 

analog of Theorem III.14 for left and right numerator-vectors and alternate numerator-

vectors (row- and column-numerators and alternate ones) of dimension 9, with any 

nonsingular multiplication matrix M. There holds also an analog of Theorem III.12 

providing polynomial-time generating, by the trace-determinant of C̃(t) + Diag(g) on 

arbitrary 9×9-matrix-weights, per (
C⋆2(y(1), y)Diag(λ(1))

…
C⋆2(y(4), y)Diag(λ(4))

) that is reducible, as it will 

further be shown in Theorem III.31, to per (
C⋆3(y(1), y)Diag(λ(1))

…
C⋆3(y(4), y)Diag(λ(4))

) and #3𝑃-complete. 

Thus we come to the following conclusion: 

Theorem III.26:  

Over fields of characteristic 3, computing the trace-determinant of (C̃(t) + Diag(g)) on 

arbitrary 9×9-matrix-weights #3-P-complete. 

We can comment, however, that in fact Theorem III.14 can be re-formulated even for  

2×2-matrix-weights (i.e. numerator-vectors and alternate numerator-vectors of 

dimension 2, with any non-singular skew-symmetric multiplication 2×2-matrix).  

Theorem III.28 (in characteristic p):  

Let h be an even natural number bigger than 2 that isn’t a square modulo p. Then 

φp,h(u,w, v, γ) = lim
ε1→0

lim
ε→0

φ0,h(∅, (
w
û
) , (

v

û+⃛ε (
1
−1
)) , (

γ

1⃗ dim (û)⨂(
1
−1
) + εhС(û,w)1⃗ dim (w)⨂(

1
0
)))

(2h)dim (u)εdim (û)
 

where û = u+⃛ε1(

0
1
…
p − 1

) 



Proof: 

The proof of this theorem is based on Theorem III.12.1 and Lemma III.4. 

The first limit lim
ε→0

 turns the fraction in the theorem’s equality’s right side into 

 
1

(2h)dim (u)
∑ ∑ (∏ (hС(ûi, w)1⃗ dim(w)))i∈I (∏ deth (C̃h

q=1I,I(1),…,I(h) (ûI(q) , w, vJ)))∏ γ
jj∈JJ⊆{1,…,dim(v)}

|J|=dim(w)

 

where the summation is over all the (h+1)-tuples  I, I(1), … , I(h) that are partitions of the 

set {1,…,dim(û)} into h+1 subsets, some of them possibly empty. 

According to the statement (3) of Lemma III.4, this expression is equal to 

1

(2h)dim (u)
∑ ∑ h

dim(û)−|I|

2 det (C̃(û\I))(∏ ∑
h

ûi−vj
j∈Ji∈I )K⊆{1,…,dim(û)} deth (C̃(w, vJ))∏ γ

jj∈JJ⊆{1,…,dim(v)}
|J|=dim(w)

  . 

Therefore, due to the structure of the vector û, the second limit lim
ε1→0

 provides the 

correctness of the theorem’s identity because of the same argument (referring to 

Theorem III.12.1) that was applied in the proof of Theorem III.14. 

Corollary III.30: 

For an arbitrary prime characteristic p, φ0,h(∅, w, v, β) is #pP-complete for any 

even h > 2 that isn’t a square modulo p. 

Proof: this corollary from Theorem III.28 is based on Theorem III.15 proving the 

#pP-completeness of  φp,h(u,w, v, γ). 

 

Theorem III.31: let p be a prime number bigger than 5.  Then computing 

per(C(x, z)Diag(λ)) over fields of characteristic p is #pP-complete. 

 

Proof: 

For the case when −1 isn’t a square modulo p, it follows immediately from Corollary 

III.30 and the fact that  

φ0,p−1(∅,w, v, λ
⋆(p−1)) = per(C(w⨂1⃗ p−1, v⨂1⃗ p−1)Diag(λ⨂(

1
…
p − 1

))) 

However, this theorem can be proven in a different way (common for all the prime 

characteristics bigger than 5) based on the Binet-Minc identity. 

 

We’ll say that the left denominator-value xi is of multiplicity mult(xi) if it’s repeated 

mult(xi) times in the vector x. Then, according to the Binet-Minc identity for 



characteristic p, per(C(x, z)Diag(λ)) is a polynomial in the values ∑
λj
r

(xi−zj)
s
, s =

dim (z)
j=1

1, … ,mult(xi) , r = 1, … , p, that are a system of algebraically independent functions in 

z,λ upon excluding those of them where r and s are both divided by p. Let’s call the sum 

∑
λj
r

(xi−zj)
s

dim (z)
j=1   the r,s-row-weight of the left denominator-value xi and the maximum 

set {x1, … , xm} of pair-wise distinct left (row) denominator-values the left denominator-

value spectrum of C(x, z). When the vectors  z, λ are presented as (z
(1)

z(2)
) and 

(λ
(1)

λ(2)
) , dim(z(1)) = dim (λ(1)), we’ll call z(1), λ(1) the main parts of z, λ correspondingly 

and  z(1), λ(1) the prolonged parts, while a row-weight will accordingly be the sum of its 

main part ∑
(λj
(1)
)r

(xi−zj
(1)
)s

dim (z)
j=1   and its prolonged part ∑

(λj
(2)
)r

(xi−zj
(2)
)s

dim (z)
j=1 , and the latter we’ll 

also call the prolonged row-weight.  

Hence, upon putting ∑
(λj
(2)
)mult(xi)

(xi−zj
(2)
)mult(xi)

dim (z)
j=1 =

1

di
 and all the other prolonged row-weights 

equal to zero, we receive the relation 

 per (C({xi1⃗ mult(xi)}i∈I, z)Diag(λ)) =
∑ (∏ dii∈I )per(C({xi1⃗⃗ mult(xi)

}i∈I,z
(1))Diag(λ(1))) I⊆{1,…,m}

∏ di
dim (𝑥)
𝑖=1

   

where di  we’ll call the summation weight of xi. If p > 5 this expression polynomial-time 

yields, upon taking a number of infinitely close (on some infinitesimal) pairs of left-

spectral denominator-values of multiplicity p-2 and their summation weights of 

infinitesimal-order -1, the expression    

(∏
∂

∂xt
t∈T

)per(C(x⨂1⃗ p−2, z)Diag(λ)) 

 where T is a subset of {1,…,m}. Let’s now consider, as a generalization of the above 

expression (up to multiplying its rows by constants), the expression:   

per((
C⋆γ1(x1, z)

…
C⋆γm(xm, z)

)Diag(λ)) 

where γ1, …, γm are natural sequences (Hadamard vector-degrees) which we’ll call the 

valences of the left-spectral denominator-values x1,…,xm correspondingly.  

Particularly, the already above-considered expression  

(∏
∂

∂xt
t∈T )per(C({x⨂1⃗ p−2, z)Diag(λ)) can be written as the expression 



per((
C⋆γ1(x1, z)

…
C⋆γm(xm, z)

)Diag(λ)) (multiplied by a constant) where some valences are 

(1⃗ p−2
T ) and others (i.e. those from the set T) are (1⃗ p−3

T , 2).  

Given a ∈ F(ε), where F is the ground field and ε is an infinitesimal, let’s further say that 

we apply the limit technique to a  when we compute lim
ε→0

a

eorderεa
 . 

If p > 5 then, due to the algebraic independence of all the r,s-row-weights  where r and s 

are not both divided by p, we can transform the valence (1⃗ p−3
T , 2) into (2) via taking the 

prolonged 1,1-row-weights of those “differentiated” left denominator-values equal to a 

formal variable (while taking all the other prolonged row-weights equal to zero) and 

calculating the coefficient at its power of the maximal degree. Then, via the limit 

technique, we can polynomial-time receive (for an arbitrary subset of the left 

denominator-value spectrum) the valence (21⃗ p−1
T , … , q1⃗ p−1

T ), q = 2,…,p, (via taking 

infinitely close denominator-value families of sizes (q-1)(p-1)) which, in turn, can 

correspondingly polynomial-time generate the valences (2), (3), …, (5) (via taking, for 

the valence (q), the prolonged  2,(q+1)-weight equal to a formal variable and all the 

other prolonged row-weights equal to zero). Each of the above-mentioned steps is 

provided by one polynomial-time reduction via calculating either the limit on a new 

infinitesimal of the expression multiplied by an appropriate power of the infinitesimal 

(i.e. via using the limit technique) or the maximal degree power’s coefficient of a new 

formal variable. Eventually, taking into account the non-differentiated denominator-

values whose valences are (1⃗ 4
T) which we can turn into (1) via taking the corresponding 

prolonged (p-2),(p-2)-row-weights equal to a formal variable, we can polynomial-time 

compute, for any left denominator-value spectrum x = {x1,…, xm}, the expression 

per((
C⋆γ1(x1, z)

…
C⋆γm(xm, z)

)Diag(λ))  for any valences whose elements are taken from the set 

{1,…,p}.  

Let’s consider its partial case when the denominator-value spectrum-vector x can be 

partitioned into subvectors y(1), … , y(p) of valences (1),…,(p) correspondingly and y of 

valence (p) such that for j = 1,…,dim(y) the 1,p-row-weight of yj is 1 and its 2,s-row-

weight is λj
(s)
ω, s = 1,…,p (where ω is another formal variable), while all the other row-

weights of all the left denominator-values are zeros (hence y(1) , … , y(p) have all their 

row-weights equal to zero). Then, upon calculating the coefficient at ω’s power of the 



minimal degree, we’ll polynomial-time get the permanent per (
C(y(1), y)Diag(λ(1))

…
C(y(p), y)Diag(λ(p))

) 

which, in turn, generates (upon taking infinitely close families of left denominator-

values of size p) per (
C(y(1), y)Diag(λ(1))

…
C(y(p), y)Diag(λ(p))

)

⋆(1⃗⃗ p−1
T ,2)

. If we take y(1) = ⋯ = y(p) = 𝑣 

then we’ll obtain per (
C(v, y)Diag(λ(1))

…
C(v, y)Diag(λ(p))

)

⋆(1⃗⃗ p−1
T ,2)

 that is a polynomial in the sums  

∑
(λj
(1)
)r1…(λj

(p)
)rp

(vi−yj)
s

dim (y)
j=1   (let’s call such a sum, by analogy, the 𝒓𝟏, … , 𝒓𝒑, 𝒔-row-weight of 

vi, while correspondingly defining the prolonged r1, … , rp, s-row-weight). We can also 

analogically notice that the set of row-weights such that not all of the numbers 

r1, … , rp, s are multiples of p is an algebraically independent system of functions. And, at 

last, upon taking, for a formal variable ω,  the vi-th prolonged 1,…,1,2p-row-weight 

equal to αiω
p and all the prolonged r1, … , rp, (p + 1) −row-weights where one of the 

numbers r1, … , rp is p and all the others are zeros equal to ω (while all the other 

prolonged row-weights are to be taken equal to zero), we’ll obtain, after calculating the 

coefficient at ω’s power of the maximal degree, the sum 

∑ (∏ αii∈I )I per (
C(vI, y)Diag(λ

(1))
…

C(vI, y)Diag(λ
(p))
)

⋆(1⃗⃗ p−1
T )

 . 

For any prime characteristic, by the limit technique this sum yields, via taking pairs of 

infinitely close denominator-values and summation-weights of infinitesimal-order -2 

(opposite for each pair), the partial derivative 

(∏
∂

∂vt

dim (𝑣)
𝑡=1 )per (

C(v, y)Diag(λ(1))
…

C(v, y)Diag(λ(p))
)

⋆(1⃗⃗ p−1
T )

which is equal (due to Lemma III.4, and the 

next passage is due to it too) to the expression 

∑ per(
C(v, yJ)Diag(λ

(1))
…

C(v, yJ)Diag(λ
(p))
)

⋆(1⃗⃗ p−1
T )

∏ ∑
1

vi−yj
j∈J

dim (v)
i=1J,|J|=p(p−1)dim (v) =   



=

∑ per

(

 
 
C(v(1), yJ)Diag(λ

(1) ⋆ {
pol(v(1), yj)
pol(v, yj)

}dim (y))

…

C(v(p), yJ)Diag(λ
(p) ⋆ {

pol(v(p), yj)
pol(v, yj)

}dim (y))
)

 
 

⋆(1⃗⃗ p−1
T )

∏ ∑
1

vi − yjj∈J
dim (v)
i=1J,|J|=p(p−1)dim (v)

(∏ detp−1(Van(v(q)))
p
q=1 )/detp(p−1)(Van(v))

 

= ∑ per(
C(v(1), yJ)Diag(λ̂

(1))
…

C(v(p), yJ)Diag(λ̂
(p))
)

⋆(1⃗⃗ p−1
T )

∏ ∑
1

vi − yj
j∈J

dim (v)

i=1J,|J|=p(p−1)dim (v)

 

(for arbitrary dim(v)-vectors v(1) , … , v(p) and, because of the arbitrariness of 

λ(1), … , λ(p), arbitrary λ̂(1), … , λ̂(p)). The latter expression is easy to turn, via taking, for 

an infinitesimal 𝜀, y of the generic form 

(

  
 

w

v\{1,…,dim (u)}
(1)

⊗ 1⃗ p−1

v(2)⊗ 1⃗ p−1
…

v(p)⊗ 1⃗ p−1 )

  
 
+ O(ε) (with no other 

indeterminates involving 𝜀 ) and applying the limit technique, into  

∑ per(C(u, wJ)Diag(α))
⋆(1⃗⃗ p−1

T )
∏ ∑

1

vi −wj
j∈J

dim (v)

i=1J,|J|=(p−1)dim (u)

 

where u = v{1,…,dim (𝑢)}
(1)

 , α is the first dim(w) entries of λ̂(1),  

∑ ∑
1

vi−v𝑗
(𝑞)

dim (𝑣)
𝑗=1

𝑝
𝑞=1 − ∑

1

vi−u𝑘
= 0

dim (𝑢)
𝑘=1  for i = 1,…,dim(v). 

Upon putting w = ŵ⨂1⃗ p−1 and α = α̂⨂(
1
…
p − 1

), the latter expression eventually 

turns into φ1,p−1(v, u, ŵ, α̂
⋆(p−1)) (for arbitrary v, u, ŵ, α̂) what completes the proof due 

to Theorem III.15 regarding the Cauchy determinant base-sum’s #pP-completeness for 

the Cauchy base-degree 1. 

 

We can also add that all the above proof’s polynomial-time reductions from 

per (
C(y(1), y)Diag(λ(1))

…
C(y(p), y)Diag(λ(p))

) to the very end remain valid in characteristics 3 and 5 as 



well what makes this permanent #pP-complete for any odd prime. This fact is 

equivalent to the #pP-completeness of the permanent of a rectangular matrix of 

Cauchy-rank p in any odd prime characteristic p.  

Hence we’ve shown that the permanent of a “column-weighted” rectangular Cauchy 

matrix is polynomial-time computable in characteristic 3 and #pP-complete for any 

prime p > 5. In the case of all the column-weights equal to unity (i.e. of a “non-column-

weighted” rectangular Cauchy matrix) this permanent is polynomial-time computable in 

any characteristic according to Lemma III.1. The question also arises whether in 

characteristic 3 there is a likewise polynomial-time manipulation with denominator-

values’ grouping and row-weights that generates the valence (2).  

Besides, as it was said earlier, Theorem III.12 provides the polynomial-time 

computability of per(C⋆2(x, y)Diag(λ)) in characteristic 5.  In this regard, let’s prove 

the following theorem: 

Theorem III.32. 

per(C⋆2(x, y)Diag(λ)) is #5P-complete 

Proof: 

The expression per(C⋆2(x, y)Diag(λ)) polynomial-time generates 

per (
C(y(1), y)Diag(λ(1))

…
C(y(4), y)Diag(λ(4))

)  via a process analogical to the one described in the 

above proof of Theorem III.31: first we receive, likewise, 

 per(

(

 
 
 
 

C⋆2(y(1), z)

C⋆3(y(2), z)

C⋆4(y(3), z)

C⋆5(y(4), z)

C⋆5(y, z) )

 
 
 
 

Diag(λ)) = coefωdper(C

(

 
 
 
 

C⋆2(y(1), ž)

C⋆(21⃗⃗ 4
T ,3)(y(2), ž)

C⋆(21⃗⃗ 4
T ,31⃗⃗ 4

T ,4)(y(3), ž)

C⋆(21⃗⃗ 4
T ,31⃗⃗ 4

T ,41⃗⃗ 4
T ,5)(y(4), ž)

C⋆(21⃗⃗ 4
T ,31⃗⃗ 4

T ,41⃗⃗ 4
T ,5)(y, ž) )

 
 
 
 

Diag(λ̌)) =  



= coefωd lim𝜀→0

per(C⋆2(

(

 
 
 

y(1)

y(2)+⃛εα

y(3)+⃛εβ

y(4)+⃛εγ

y+⃛εγ )

 
 
 
, ž)Diag(λ̌))

pern2((εαT)⋆(01⃗⃗ 4
𝑇 ,1))pern3((εβT)⋆(01⃗⃗ 4

𝑇 ,1⃗⃗ 4
𝑇 ,2))pern3+m((εγT)⋆(01⃗⃗ 4

𝑇 ,1⃗⃗ 4
𝑇 ,21⃗⃗ 4

𝑇,3))
 

where α, β, γ are arbitrary 5-, 9-, 14-vectors correspondingly, ž = (
z
ẑ
), λ̌ = (

λ
λ̂
), d =

4n2+8n3+16n4 + 16m , 

for q =1,2,3,4  ∑
λ̂j
r

(y
i
(q)
−ẑj)

s

dim (ẑ)
j=1 = [

ω, r = 2, s = 3 + q 
0 , else

 for i = 1, … , nq, dim(y(q)) = nq, 

  ∑
λ̂j
r

(yk−ẑj)
s

dim (ẑ)
j=1 = [

ω  if  r = 2, s = 3 + q 
0 , else

  for k = 1 ,…,m, dim(y) = m;  

and then we get 

per (
C(y(1), y)Diag(λ(1))

…
C(y(4), y)Diag(λ(4))

) = coef
ω
𝑚−∑ 𝑛𝑞

4
𝑞=1  per(

(

 
 
 
 

C⋆2(y(1) , z)

C⋆3(y(2) , z)

C⋆4(y(3) , z)

C⋆5(y(4) , z)

C⋆5(y, z) )

 
 
 
 

Diag(λ))   

where 

 for q = 1,2,3,4  ∑
λ𝑟

(y
i
(q)
−zj)

s

dim (z)
j=1 = 0  for i = 1,… , nq, 

∑
λ𝑟

(y𝑘−zj)
s

dim (z)
j=1 = [

λk
(q)
 if  r = 2, s = q 

ω  if  r = 1, s = 5
 

0 , else

   for k = 1, … ,m 

The expression per (
C(y(1) , y)Diag(λ(1))

…
C(y(4) , y)Diag(λ(4))

)  generates, also by the technique shown 

in Theorem III.31’s proof while replacing p by p-1 (i.e. through considering its partial 

case per(
C(v, y)Diag(λ(1))

…
C(v, y)Diag(λ(4))

)

⋆(1,1,1,1,2)

= lim
ε→0

per(
C(v+⃛β,y)Diag(λ(1))

…
C(v+⃛β,y)Diag(λ(4))

)

per4dim (v)((εβT)⋆(0,0,0,0,1))
 , where β is an 



arbitrary 5-vector, and putting all its 5,0,0,0,6-, 0,5,0,0,6-, 0,0,5,0,6- and 0,0,0,5,6-

row-weights equal to ω and, for i = 1,…,dim(v), its i-th 1,1,1,1,8-row-weight equal to 
αi

−3!
ω4 for computing the coefficient at ω4dim (v), where ω is a formal variable), the 

sum ∑ (∏ αii∈I )I per (
C(vI, y)Diag(λ

(1))
…

C(vI, y)Diag(λ
(4))
)

⋆(1⃗⃗ 4
T)

 . This sum generates, via its 

denominator-values’ grouping into infinitesimal-close pairs and applying the limit 

technique, the sum ∑ (∏
αi ∂

∂vt
t∈I )I per (

C(vI, y)Diag(λ
(1))

…
C(vI, y)Diag(λ

(4))
)

⋆(1⃗⃗ 4
T)

  where we can put all 

the prolonged 1,1,1,1,5-row-weights equal to a formal variable for computing its 

maximal degree power and receive ∑ (∏ αit∈I )I per(
C(vI, y)Diag(λ

(1))
…

C(vI, y)Diag(λ
(4))
)

⋆(1⃗⃗ 3
T)

. This 

sum, in turn, generates (also via its denominator-values’ infinitesimal-close pairing 

and applying the limit technique, like it was done for the valence 1⃗ 4
T) the partial 

derivative (∏
∂

∂vt

dim (v)
t=1 )per (

C(v, y)Diag(λ(1))
…

C(v, y)Diag(λ(4))
)

⋆(1⃗⃗ 3
T)

. The latter expression is the 

sum of Cauchy-like permanents where for each of the denominator-values its 

multiple valence (for λ(1), λ(2), λ(3), λ(4)) is one of the following four: 

((1,1,2),(1,1,1),(1,1,1),(1,1,1)),    

((1,1,1),(1,1,2),(1,1,1),(1,1,1)),  

((1,1,1),(1,1,1),(1,1,2),(1,1,1)),  

((1,1,1),(1,1,1),(1,1,1),(1,1,2)), 

what allows to receive the multiple valence ((1,1,2),∅, ∅, ∅) (via taking, as a formal 

variable, the prolonged 0,1,0,0,1-, 0,0,1,0,1- and 0,0,0,1,1-row-weights and 

computing the coefficient at its maximal degree power) that, in turn, generates 

either ((1),∅, ∅, ∅) or ((2), ∅, ∅, ∅) via taking, as a formal variable, either the 

prolonged 2,0,0,0,3-row-weight or the prolonged 1,0,0,0,1-row-weight 

correspondingly (while choosing one of these two options for each denominator-

value) and computing the coefficient at its maximal degree power. Thus we obtain 



the expression per (
C⋆γ1(v1, y)Diag(λ

(1))
…

C⋆γm(vm, y)Diag(λ
(4))
) for the left denominator-value 

spectrum {v1,…,vm} whose valences are either (1) or (2) and this expression 

polynomial-time generates, according to the scheme of Theorem III.31’s proof we 

already referred earlier in the present proof, per (
C(y(1), y)Diag(λ(1))

…
C(y(p), y)Diag(λ(5))

) that is, as it 

also was shown in the referred proof, #5P-complete.  

 

We hence can conclude that the above theorem implies once more, independently 

of Theorem III.14, the #5P-completeness of the trace-determinant dettr (C̃(x) +

Diag(g), {G(i)M}
n
) (where M = (

02×2
0 1
−1 0

0 1
−1 0

02×2

))  for arbitrary symmetric 

G(1), … , G(n) and absence-weights and, eventually, the permanent’s polynomial-time 

computability in characteristic 5.  

Definition: 

Let x1, … , xn  be independent variables, A = A(x) = {ai,j(xi, xj)}n×n be an n×n-

matrix such that for k = 1,…,n its k-th row and column are functions in the variable xk 

and for k = 1,…,n αk = {αk,u}dim (αk), βk = {βk,v}dim (βk) be non-decreasing 

sequences (optionally empty) of natural numbers of lengths dim (αk) and dim (βk) 

correspondingly.  

Then we define the  𝜶, 𝜷-valence power of 𝐴 as the (∑ dim (αi)
n
i=1 ) ×

(∑ dim (β𝑗)
n
j=1 )-matrix  A〈α,β〉:=

{{
1

(αi,u−1)!(βj,v−1)!

∂
αi,u−1

∂x
i

αi,u−1

∂
βj,v−1

∂x
j

βj,v−1
ai,j(xi, xj)}u=1,…,dim(αi)

v=1,…,dim (βj)

}i=1,…,n
j=1,…,n

   

and we’ll call αk and βk the row and column (or left and right) valences of xk (or just 

the k-th row and column valences) correspondingly, while the pair val(xk) ∶=

(αk, βk) will be called the valence of xk, the vectors α = {αk}𝑛 and β = {βk}𝑛 – the 

left and right valence-vectors correspondingly, and the vector {(αk, βk)}𝑛 – the 

valence-vector. 



 

This definition implies that all the Cauchy-like matrices we considered in the present 

article’s chapter III are in fact either the α, β-valence powers of a Cauchy-wave 

matrix for some left and right valence-vectors α, β or can be expressed through them 

via the operations of the left- and right-multiplication by diagonal matrices and 

vector-composition. 

Definition: 

Let for k = 1,…,n αk
(1)
, … , αk

(tk), βk
(1)
, … , βk

(tk) be non-decreasing sequences of natural 

numbers, dk
(1)
, … , dk

(tk) be elements of the ground field and A = A(x) = {ai,j(xi, xj)}n×n 

be an n×n-matrix.  

Then we define for variables x1, … , xn: 

the formal sum 𝔳k ∶= valsum(xk) ∶= ∑ dk
(rk)(αk

(rk), βk
(rk))

tk
rk=1

 as the valence-sum of xk 

(or the k-th valence-sum) where dk
(rk) will be called the summation-weight of the 

valence (αk
(rk), βk

(rk))  

and  

the expression  per𝔳(A) ≔ per𝔳1,…,𝔳n(A) ≔ 

≔ ∑ …
t1
r1=1

∑ d1
(r1). . . dn

(rn)δ(∑ (dim(αk
(rk)) − dim (βk

(rk)n
k=1 ))

tn
rn=1

per(A〈{αk
(rk)}n,{βk

(rk)}n〉)  

where for a real number m  δ(m) = [
0,m ≠ 0
1,m = 0

 (and hence the summation is over all the 

possible n-tuples r1, … , rn making the matrix A〈{αk
(rk)}n,{βk

(rk)}n〉 square) as the 𝖛-sum 

permanent of A (or the valence-sum permanent of A on the vector 𝔳 that we’ll call the 

valence-sum vector of this permanent). 

According to the two latter definitions, we can state that per𝔳(C̃((
y
z
))) is a 

polynomial in the row-weights ∑
λj
r

(yi−zj)
s

dim (z)
j=1   if for j = 1,…,dim(z) valsum(zj) =

λj(∅, (1)) + (∅, ∅). This fact provides the opportunity of taking those row-weights 

(due to their algebraic independence in characteristic p for all the pairs r,s that are 

not both divisible by p) equal to polynomials in a formal variable and receiving, upon 

computing the formal variable’s maximal degree power’s coefficient of per𝔳(C̃((
y
z
))) 



(as this permanent would become, in such a case, a polynomial in this formal 

variable as well), per�̂�(C̃(y)) where the new valence-sum vector �̂� is obtained from 

the subvector of 𝔳 corresponding to y via transforming, for i = 1,…,dim(y), the old 

valence-sum of yi in the accordance with the polynomials in the formal variable the 

corresponding (i.e. having the denominator-value yi) row-weights are equal to. We 

can call such a transformation a prolongation derivative and its partial cases were 

actually applied in the proofs of Theorems III.31 and III.32 for left-sided (having only 

empty right parts in all their valences) valence-sums. Taking into account the fact 

that per𝔳(A) = per𝔳∗(A
T) where 𝔳∗ denotes the valence-sum vector where all the 

left and right valences exchanged places in each involved valence, we receive an 

option to apply a prolongation derivative to any valence-sum on “both its sides”.  

Besides, grouping the denominator-values (i.e. the variables) into infinitesimal-close 

families generates, accordingly, a contraction of a family of valence-sums into a new 

valence-sum analogical to the contraction occurring in families of matrix-weights for 

the trace-determinant of a Cauchy-wave matrix via the open trace-determinant 

compression operator that was discussed earlier. Let’s call such a contraction an 

infinitesimal-close contraction and we can also notice that quiet a number of partial 

cases of this contraction were applied in the proofs of Theorems III.31 and III.32.  

If we speak about characteristic 3, we can notice that the above-proven polynomial-

time computability of per(C(x, z)Diag(λ)) allows, in this characteristic, to 

polynomial-time compute the valence-sum permanent of a Cauchy-wave matrix 

where the valence-sum vector can contain any singleton (i.e. having just one valence 

in its sum) left-sided valence-sum ((1,1,… , k, k), ∅) for any natural k that is able to 

generate, via its various prolongation-derivatives, quiet a complex variety of valence-

sums including a number of two-sided and non-singleton ones. However, as it was 

shown in Theorem III.31’s proof, computing the valence-sum permanent of a 

Cauchy-wave matrix on a valence-sum vector whose entries are arbitrarily taken 

from a set including the singleton valence-sums ((1), ∅) and ((2), ∅) is #3-P-

complete and this fact arises the question of determining the closure of the valence-

sum set {((1,1, … , k, k), ∅), k ∈ N} by all the existing prolongation-derivative and 

infinitesimal-close contraction operators. 
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