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Abstract 
 

Polygenic scores (PGS) are being used to predict group-level traits across time and             
space, hence proving useful to detect recent selection. The aim of this study is to               
investigate the impact of different p value thresholds on signal to noise ratio and predictive               
validity of polygenic scores, using the largest GWAS of educational attainment and cognition             
to date.  
Signal to noise ratio linearly decreases with p value, but this phenomenon is limited to               
Eurasians. There is a linear degradation of validity and population differentiation in allele             
frequencies with higher p values. However, compounded polygenic scores have a quadratic            
relationship with p value. A thresholding at or below the conventional GWAS significance             
(p<5*10-8) seems to maximize validity, corroborating earlier results. 

The highest correlation with population IQ is achieved by the Highest Math Class             
completed and the EDU MTAG PGS (r= 0.90 and 0.89, respectively). Using random SNPs, it               
is shown that correlations of this magnitude occur only once out of 46k trials. A table                
provides an empirical estimate of the rarity of the correlation coefficients and it is shown that                
they are a function of PGS size. 
Finally, an analogy between the noise contained in polygenic scores and physical            
instruments is put forward. 
 
 
Introduction 
 

Systematic differences in allele frequencies between populations have been studied          
in relation to phenotypes and environmental variables. However, a main driver of allele             
frequency differences between populations is genetic drift, which is a random process due to              
sampling error. In the absence of strong selective forces, drift adds considerable noise to              
population-level polygenic scores. 
Recently, I showed that the predictive validity of polygenic scores for educational attainment             
is a function of both number of SNPs and significance value, so that increasing the number                
of SNPs improves the predictive validity only up to a certain threshold, and inclusion of               
low-significance SNPs adds too much noise to the data, resulting in lower predictive validity              
(Piffer, 2019). 

Predictive validity was measured as the correlation between population polygenic          
scores and average IQ. The aim of this study is to directly quantify the signal and noise in                  
the data by adopting methods commonly used in engineering (i.e. electrical currents). 
That is, by representing allele frequencies as signals, one can apply techniques used in              
engineering to detect patterns in the data, and to measure signal to noise ratio. 



A traditional way to quantify noise in the data is to calculate the standard deviation of the                 
samples of the signal; the mean is the average value of the signal and the signal to noise                  
ratio is equal to the mean divided by the standard deviation (Smith, 1999). 

A prediction of the polygenic model of the evolution of intelligence is that the              
signal-to-noise ratio (SNR) at the population level will be stronger for the SNPs that have               
higher GWAS significance, that is to say that are more likely to be predictive of cognitive                
abilities at the individual level. In fact, the standard deviation in a population of the               
frequencies of higher significance (i.e. lower p value) SNPs should have a lower relative              
value (mean/sd) compared to SNPs with lower significance. This is due to selective pressure              
on a phenotype acting homogeneously on the SNPs that influence it. The average frequency              
of thousands of alleles contains more signal than the average of a handful, which mostly               
consists of noise. 
This effect should also be stronger for the GWAS-reference population, and decay with             
genetic distance, and it can be quantified as the interaction term of population and SNP               
significance regressed on SNR. 
In turn, the correlation between SNPs and the degree of population differentiation in allele              
frequencies should increase with higher GWAS significance and SNR. 
 
Methods 
 

The lead SNPs (N=9034) from the multi-trait analysis of Edu Years, cognitive            
performance, self-reported math ability and highest math class taken (EA MTAG) were used             
to perform the analysis because of the high predictive validity (Lee et al., 2018) and the high                 
correlation with population IQ (r= 0.887). In total, 9001 SNPs were found in the 1000               
Genomes database for the 26 populations. 
 
One-way ANOVA will be used to measure the amount of differentiation in allele frequencies              
between populations. Four non-admixed populations (BEB= Bengali in Bangladesh, CEU=          
Northwestern Europeans from Utah, YRI= Yorubans in Nigeria, CHS= Southern Chinese). 
 
Results 
 

Since p values were extremely right-skewed, they were rank-transformed. The          
average correlation between SNP and population IQ was r= 0.0343. The corresponding Z             
score is 6.28 (mean(r_xIQ)/(sd(r_xIQ)/sqrt(9001)). The Spearman-rank correlation between        
SNP p value and the trait-increasing allele frequency was r= -0.03 (N= 9001, p= 0.0052),               
implying that the SNPs with lower p value (higher GWAS significance) have higher             
correlation with population IQ (figure 1). This replicates a previous finding using a different              
set of SNPs (Piffer, 2019). 
 
Figure 1. SNP’s correlation with population IQ by GWAS p-value. 
 



 
 
 
Polygenic scores divided into discrete quantiles 
 

The SNPs were divided into 20 quantiles according to p value. The correlation             
between quantile rank and population IQ was slightly negative but not significant            
(Spearman’s r= -0.2, p= 0.39).  
Only a minority of quantiles (3/20) had a negative correlation with IQ (figure 2). The average                
correlation coefficient was r= 0.533.  
 
Figure 2. Relationship between p-value quantile and population IQ. 
 



 
 
 
Signal to noise ratio 
 

The average frequency and SD of each quantile were calculated for CEU, YRI and              
CHS, and the SNR was computed (SNR= μ /σ). As a control, the SNPs were also randomly                 
shuffled so as to create quantiles with randomly distributed p-values. 
SNR and quantile were negatively correlated in CEU (r= -0.85, p<0.001, N=20). In the              
random group, the correlation with quantile was not significant (r= -0.14, p= 0.56, N= 20). 
This interaction can be visualized in figure 3. 
 
Figure 3. Signal to noise ratio by quantile for random quantiles and p-value quantiles. 
 



 
 

Multiple linear regression was used to compute the significance of this interaction by             
regressing SNR on quantile and group (Ordered by p value or random). A significant model               
emerged (F= 22.29; Adj. R-squared= 0.621, p= 2.478e-08). The interaction term (quantile:            
order) was significant (p= 7.75e-08). 
However, the correlation between quantile and SNR was significant for CHS too (r= -0.8, p=               
0, N=20) but it was not significant for YRI (r= -0.24, p= 0.31). In fact, the quantile: order                  
interaction in the regression model was not significant for YRI (p= 0.666). 
 

Another regression was run using the p-value ranked SNPs with SNR as the             
dependent variable and population (YRI, CEU) + quantile as the predictors. A significant             
model emerged (F= 74.7; Adj. R-squared: 0.8501; p= 1.581e-15). The interaction term was             
significant (p= 0.0001). This interaction can be visualized in figure 4.  
 
Figure 4. Signal to noise ratio by p-value quantile for YRI and CEU 
 



 
 
A similar analysis (not reported here) was carried out with East Asians and revealed a               
pattern closer to that of the CEU population. 
 

Another measure of selection pressure is population differentiation in allele          
frequencies. ANOVA was used to compute the difference in allele frequencies between four             
populations for each quantile.  
There was a negative correlation between quantile and F value (r= -0.64, p= 0.0026) (fig. 5). 
 
Figure 5. Correlation between F value and p-value quantile. 
 



 
 
 
 
 
Compounded Polygenic scores  
 

Polygenic scores were created starting from the lowest quantile (highest significance)           
and incrementally adding SNPs from the higher quantiles. The correlation with population IQ             
was tracked across quantiles, showing a quadratic pattern (figure 6). A polynomial            
regression model was fit to the data 
 
Figure 6. Relationship between p-value quantile and correlation with population IQ. 
 



 
 

The correlation with IQ peaks around the 4th quantile (p< 2.20E-10) to level off and               
then decrease again. This relationship was best explained by a 6th degree polynomial (F=              
72.29, Adjusted R-squared:  0.971, p=3.137e-09). 
Similarly, the relationship between quantile and F value in ANOVA best fit a 5th degree               
polynomial (F= 26.9, Adjusted R-squared:  0.8721,  p=1.035e-06) (figure 7).  
 
Figure 7. Relationship between p-value quantile and F value. 
 



 
 
 
 
 
Correlation between different polygenic scores for 1KG populations  
 

Figure 8 shows the correlation matrix ordered with hierarchical clusters of the            
different polygenic scores of cognitive abilities from the Lee et al. 2018 GWAS, weighted and               
unweighted, for whole set and GWAS significant SNPs (“sig8”). The PGS computed from the              
GWAS significant SNPs using Beta weights tend to be more similar to each other,              
suggesting higher reliability. Excluding phenotypic IQ, the PGS putatively causal SNPs are            
the most closely related to the others. However, including IQ, the Highest Math class and the                
EA MTAG (GWAS significant) PGS have the highest reliability (figure 9). 
 
Figure 8. Correlation matrix (Polygenic scores). 



 
 
 
 
Figure 9. Correlation matrix (Polygenic scores + IQ). 



 
 
 
 
The polygenic scores for the phenotypes with the highest reliability are reported in figure 10               
and 11. 
 
Figure 10. Polygenic scores (weighted) for EA MTAG (p<5*10-8). 



 
Figure 11. Polygenic scores (weighted) for Highest Math Class completed (p<5*10-8). 
 
 
 

 



With the exception of the CP PGS, the correlations among the PGS and of those with IQ are                  
mostly in excess of r= 0.8. 
 
Number of SNPs and significance of correlation. 
 

A simulation with 2.2 million randomly matched SNPs was run in order to compute              
the rarity of the correlation coefficients as a function of number of SNPs. Since polygenic               
scores consisting of fewer SNPs have higher sample noise, higher correlation coefficients            
occur more frequently as a result of chance. This can be seen in table 1. Sample noise goes                  
down with increasing number of SNPs in a quadratic fashion. 
 
Table 1. Rarity of correlation coefficients (r x IQ) for random SNPs as a function of                
PGS size. 
 
 
N SNPs r>0.6 r>0.65 r>0.7 r>0.75 r>0.8 r>0.85 r>0.9 N PGS 

50 1520 751 321 95 25 2 1 46386 

100 897 402 168 51 14 2 0 23193 

500 182 67 19 4 0 0 0 4639 

1000 82 25 19 2 1 0 0 2320 

1500 46 18 3 2 0 0 0 1547 

2000 40 10 2 1 0 0 0 1160 

2500 31 11 3 1 0 0 0 928 

3000 25 7 1 0 0 0 0 774 

3500 21 6 1 1 0 0 0 663 

5000 13 4 2 0 0 0 0 464 

10000 8 1 0 0 0 0 0 232 

 
 
The distribution of the random PGS’s correlation with population IQ is shown in figure 12. 
 
Figure 12. Correlation coefficients (with population IQ) for random PGS (size= 100). 
 



 
 
 
 
 
Discussion 
 

Dividing the SNPs into significance quantiles revealed two phenomena: 1) There is            
internal consistency, with the majority of polygenic scores (17/20) having positive           
correlations with population IQ (figure 2). The average correlation coefficient was 0.53,            
much smaller than the correlation between the polygenic score using the full set (r= 0.86) or                
the GWAS significant hits (r= 0.89): This is due to sample noise being higher for smaller                
sample sizes. 

There is a degradation of signal to noise ratio in allele frequencies with higher p               
value. This manifests across a range of metrics: 1) A traditional SNR metric, based on the                
mean/standard deviation ratio: higher p-value PGS have lower SNR, although this           
phenomenon is restricted to the European (reference) population and to East Asians, but not              
Africans; 2) The correlation of population IQ to individual SNP (rank ordered) p-value is              
significantly negative, and to the p-value quantile of polygenic scores (not significant for             
EA_MTAG but significant for EA (Piffer, 2019); 3) The allele frequency differences between             
populations are higher for low p-value SNPs (fig. 4). 

Applying different thresholds increases predictive accuracy up to the fourth quantile           
(fig. 5), to level-off and then decrease (p<2.2*10^-10). It is difficult to establish the optimal               
threshold solely on this criterion because the average IQ estimates are far from perfect, but               
the optimal threshold seems to lie not far off from the conventional GWAS significance              



threshold (p<5*10^-8). This corroborates previous studies which used PGS built with this            
threshold (Piffer, 2013, 2015, 2019). 

This process is explainable in terms of noise reduction with higher number of SNPs,               
but after some point adding more low p-value SNPs introduces too much noise and not               
enough signal. 

The pattern in noise across SNP number is similar to a phenomenon observed in              
clocks, oscillators and amplifiers, known as Allan variance. At very short observation time τ,              
the Allan deviation is high due to noise. After some time, it decreases because the noise                
averages out. At some point (called the “noise floor”) however, the Allan deviation starts              
increasing again due to nonstationary processess such as aging or random walk (NIST,             
2016). This can be seen in the example provided in figure 11. 
 
Figure 11. Example plot of the Allan Deviation of a clock           
(http://www.nist.gov/pml/div688/grp40/glossary.cfm) 

 
 
 

The reduction in sample noise is evident also for random SNPs (table 1). These              
provide a benchmark for the performance of GWAS SNPs. It can be seen that “smaller” (with                
lower N) polygenic scores tend to produce higher correlations due to noise alone. Hence, the               
same correlation coefficient has a higher statistical significance for “larger” polygenic scores.            
A correlation with population IQ equal to or higher than that yielded by the GWAS polygenic                
scores computed from the Lee et al. 2018 GWAS (r=> 0.85) occurs very rarely by chance                
alone. Specifically, using random PGS of size 50 (a conservative approach), a correlation             
coefficient equal to or higher than the EA MTAG GWAS significant PGS (r= 0.887) occurs               
once in 46,386 trials, corresponding to a Monte Carlo-corrected p= 4.31e-05. 
 
Supplementary files: https://osf.io/jhqc3/ 

https://osf.io/jhqc3/
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