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Abstract: In this paper, we show enhanced upper bounds of the nontrivial n_1 × n_2 × n_3 
points problem for every n_1 ≤ n_2 ≤ n_3 < 6. We present new patterns that drastically 
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completely a few cases (e.g., n_1 = n_2 = 3 and n_3 = 4). 
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1 Introduction 

 
The 𝑛(×	𝑛)×	𝑛* points problem [12] is a three-dimensional extension of the classic nine dots 
problem appeared in Samuel Loyd’s Cyclopedia of Puzzles [1-9], and it is related to the well 
known NP-hard traveling salesman problem, minimizing the number of turns in the tour 
instead of the total distance traveled [1-15]. 
Given 𝑛( ∙ 	𝑛) ∙ 	𝑛* points in ℝ*, our goal is to visit all of them (at least once) with a 
polygonal path that has the minimum number of line segments connected at their end-points 
(links or generically lines), the so called Minimum-link Covering Path [3-4-5-8]. In particular, 
we are interested in the best solutions for the nontrivial 𝑛(×	𝑛)×	𝑛* dots problem, where (by 
definition) 1 ≤ 𝑛( ≤ 	𝑛) ≤ 	𝑛* and 𝑛* < 6. 
Let		ℎ2 𝑛(, 𝑛), 𝑛* ≤ ℎ 𝑛(, 𝑛), 𝑛* ≤ 	ℎ4 𝑛(, 𝑛), 𝑛*  be the length of the covering path with 
the minimum number of links for the 𝑛(×	𝑛)×	𝑛* points problem, we define the best known 
upper bound as ℎ4 𝑛(, 𝑛), 𝑛* ≥ ℎ 𝑛(, 𝑛), 𝑛*  and we denote as 	
ℎ2 𝑛(, 𝑛), 𝑛* ≤ ℎ 𝑛(, 𝑛), 𝑛*  the current proved lower bound [12]. 
For the simplest cases, the same problem has already been solved [3-12].  
Let 𝑛( = 1 and 	𝑛) < 	𝑛*, we have that ℎ 𝑛(, 𝑛), 𝑛* = ℎ 𝑛) = 2 ∙ 𝑛) − 1, while 
ℎ 𝑛( = 1, 	𝑛) = 𝑛* ≥ 3 = 2 ∙ 𝑛) − 2 [6]. Hence, for 𝑛( = 2, it can be easily proved that 
 

 ℎ 2, 𝑛), 𝑛* = 2 ∙ ℎ 1, 𝑛), 𝑛* + 1 = 4 ∙ 𝑛) − 1								𝒊𝒇𝒇				𝑛) < 𝑛*
4 ∙ 𝑛) − 3									𝒊𝒇𝒇			𝑛) = 𝑛*

  (1) 



 
 

Figure 1. A trivial pattern that completely solves the 2×3×5 points puzzle. 
 
 

 
Figure 2. Another example of a trivial case: the 2×5×5 points puzzle. 

 
 

Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases 
where the current upper bound does not match the proved lower bound. 



2 Improving the solution of the 𝒏𝟏	×	𝒏𝟐	×	𝒏𝟑 points problem for 
𝒏𝟑 < 𝟔 

 
In this complex brain challenge we need to stretch our pattern recognition [7-10] in order to 
find a plastic strategy that improves the known upper bounds [3-13] for the most interesting 
cases (such as the nontrivial 𝑛(×𝑛)×𝑛) points problem and the 𝑛(×𝑛(×(𝑛( + 1) set of 
puzzles), avoiding those standardized methods which are based on fixed patterns that lead to 
suboptimal covering paths, as the approaches presented in [2-8-11]. 
 
Let 3 ≤ 𝑛( ≤ 𝑛) ≤ 𝑛* ≤ 5, a lower bound of the 𝑛(×	𝑛)×	𝑛* problem is given by [12] 
 
   ℎ2 𝑛(, 𝑛), 𝑛* = BC∙ )∙BD∙(BEF()GBCG( G)

BEFBDG)
− 1     (2) 

 
The current best results are listed in Table 1, and a direct proof follows for each nontrivial 
upper bound shown below. 
 

n1 n2 n3 
Best Lower 
Bound (hl) 

Best Upper 
Bound (hu) 

Discovered 
by 

Gap 
(hu−hl) 

2 2 3 7 7 trivial 0 

2 3 3 9 9 trivial 0 

3 3 3 14 14 
Marco Ripà 

(proved in 2013 [14]) 
0 

2 2 4 7 7 trivial 0 

2 3 4 11 11 trivial 0 

2 4 4 13 13 trivial 0 

3 3 4 15 15 
Marco Ripà  

(new result, 2019) 
0 



3 4 4 17 19 
Marco Ripà 

(ibid.) 
2 

4 4 4 22 23 
Marco Ripà 

(NNTDM [13]) 
1 

2 2 5 7 7 trivial 0 

2 3 5 11 11 trivial 0 

2 4 5 15 15 trivial 0 

2 5 5 17 17 trivial 0 

3 3 5 15 16 
Marco Ripà  

(new result, 2019) 
1 

3 4 5 18 20 
Marco Ripà  

(ibid.) 
2 

3 5 5 20 24 
Marco Ripà  

(ibid.) 
4 

4 4 5 24 26 
Marco Ripà  

(ibid.) 
2 

4 5 5 27 31 
Marco Ripà  

(ibid.) 
4 

5 5 5 33 37 
Marco Ripà 

(NNTDM [13]) 
4 

 
Table 1: Current solutions for the 𝑛(×𝑛)×𝑛* points problem, where 𝑛( ≤ 𝑛) ≤ 𝑛* ≤ 5. 

 



Figures 3 to 12 show the patterns used to solve the 𝑛(×𝑛)×𝑛* puzzle (case by case). In 
particular, by combining the (2) with the original result shown in figure 4, we obtain a formal 
proof for the 3×3×4 points problem. 
 
 

 
 

Figure 3. ℎ4(3,3,3) = ℎ2(3,3,3) = 14. This solution has been proved to be optimal [12-13]. 
 



 
Figure 4. The 3×3×4 puzzle has finally been solved.  ℎ4 = ℎ2 = 15 and no crossing lines. 

 



 
Figure 5. Best known upper bound of the 3×4×4 puzzle. 19 = ℎ4 = ℎ2 + 2. 

 
 
 

 
Figure 6. An original pattern for the 4×4×4 puzzle. 23 = ℎ4 = ℎ2 + 1 [13]. 

 
 



 
Figure 7. Best known upper bound of the 3×3×5 puzzle. 16 = ℎ4 = ℎ2 + 1. 

 

 
Figure 8. Best known upper bound of the 3×4×5 puzzle. 20 = ℎ4 = ℎ2 + 2. 



 
Figure 9. Best known upper bound of the 3×5×5 puzzle. 24 = ℎ4 = ℎ2 + 4. 

 

 
Figure 10. Best known upper bound of the 4×4×5 puzzle. 26 = ℎ4 = ℎ2 + 2. 



 
Figure 11. Best known upper bound of the 4×5×5 puzzle. 31 = ℎ4 = ℎ2 + 4. 

 

 
Figure 12. Best known upper bound of the 5×5×5 puzzle. 37 = ℎ4 = ℎ2 + 4 [13]. 

 
Finally, it is interesting to note that the improved ℎ4 𝑛(, 𝑛), 𝑛*  can lower down the upper 
bound of the generalized k-dimensional puzzle too. As an example, we can apply the 
aforementioned 3D patterns to the generalized 𝑛(×	𝑛)×…×	𝑛M points problem using the 
simple method described in [12]. 
Let 𝑘 ≥ 4, given 𝑛M ≤ 𝑛MG( ≤ ⋯ ≤ 𝑛P ≤ 𝑛( ≤ 𝑛) ≤ 𝑛*, we can conclude that 
 

  ℎ4 𝑛(, 𝑛), 𝑛*, … , 𝑛M = ℎ4 𝑛(, 𝑛), 𝑛* + 1 ∙ 𝑛QM
QRP − 1   (3) 



3 Conclusion 

 
In the present paper we have drastically reduced the gap ℎ4(𝑛(, 𝑛), 𝑛*) − ℎ2(𝑛(, 𝑛), 𝑛*) for 
every previously unsolved puzzle such that 𝑛* < 6. Moreover, we can easily disprove 
Bencini’s claim that ℎ4 3,3,4 = 17 = ℎ2(3,3,4) (see [2], page 7, lines 2-3), since 
ℎ4 3,3,4 = 15 = ℎ2(3,3,4), as shown by combining (2) with the upper bound from figure 4. 
We do not know if any of the patterns shown in figures 5 to 12 represent optimal solutions, 
since (by definition) ℎ2(𝑛(, 𝑛), 𝑛*) ≤ ℎ(𝑛(, 𝑛), 𝑛*). Therefore, some open questions about the 
𝑛(×	𝑛)×	𝑛* points problem remain to be answered, and the research in order to cancel the 
gap ℎ4 𝑛(, 𝑛), 𝑛* − ℎ2(𝑛(, 𝑛), 𝑛*), at least for every 𝑛* ≤ 5, is not over yet. 
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