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Abstract: In this paper, we show enhanced upper bounds of the nontrivial n 1 xn 2 xn 3
points problem for every n 1 <n 2 <n 3 < 6. We present new patterns that drastically
improve the previously known algorithms for finding minimum-link covering paths, solving
completely a few cases (e.g.,n 1=n 2=3 andn_3 =4).
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1 Introduction

The n; X n,X n3 points problem [12] is a three-dimensional extension of the classic nine dots
problem appeared in Samuel Loyd’s Cyclopedia of Puzzles [1-9], and it is related to the well
known NP-hard traveling salesman problem, minimizing the number of turns in the tour
instead of the total distance traveled [1-15].

Given n, - n, - nz points in R3, our goal is to visit all of them (at least once) with a
polygonal path that has the minimum number of line segments connected at their end-points
(links or generically /ines), the so called Minimum-link Covering Path [3-4-5-8]. In particular,
we are interested in the best solutions for the nontrivial n, X n,X n; dots problem, where (by
definition) 1 <n; < n, < nzandn; < 6.

Let h;(ny,ny,n3) < h(ny,n,,n3) < hy(ng,n, n3) be the length of the covering path with
the minimum number of links for the n; X n,X ns; points problem, we define the best known
upper bound as h,(ny,n,,n3) = h(ny,ny, ng) and we denote as
h;(ny,ny, n3) < h(ny,n,, n3) the current proved lower bound [12].

For the simplest cases, the same problem has already been solved [3-12].
Let n, =1 and n, < nz, we have that h(ny,n,n;) =hn,) =2-n, —1, while
h(n, =1, n, =ng = 3) = 2-n, — 2 [6]. Hence, for n; = 2, it can be easily proved that
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2X3X5 SOLUTION (trivial):
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Figure 1. A trivial pattern that completely solves the 2X3X5 points puzzle.

2X5X5 SOLUTION (trivial):
17 lines
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Figure 2. Another example of a trivial case: the 2X5X5 points puzzle.

Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases
where the current upper bound does not match the proved lower bound.



2 Improving the solution of the n; X n, X n3 points problem for
ns <6

In this complex brain challenge we need to stretch our pattern recognition [7-10] in order to
find a plastic strategy that improves the known upper bounds [3-13] for the most interesting
cases (such as the nontrivial nyXn,Xn, points problem and the n;xXn;x(n; + 1) set of
puzzles), avoiding those standardized methods which are based on fixed patterns that lead to
suboptimal covering paths, as the approaches presented in [2-8-11].

Let 3 < n; <n, <ny <5, alower bound of the n, X n,X n; problem is given by [12]

(2ny (N3 +1)-ny—1)-2
R e @)
The current best results are listed in Table 1, and a direct proof follows for each nontrivial
upper bound shown below.

n n n Best Lower Best Upper Discovered Gap
! ? 3 Bound (4) | Bound (k) by (hu—h)
2 2 3 7 7 trivial 0
2 3 3 9 9 trivial 0
Marco Ripa
3 3 3 14 14
= (proved in 2013 [14]) 0
2 2 4 7 7 trivial 0
2 3 4 11 11 trivial 0
2 4 4 13 13 trivial 0
Marco Ripa
3 3 4 1 1
> = (new result, 2019) 0
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3 4 4 17 19 o 2
(ibid.)
Marco Ripa
4 4 4 22 2 1
3 (NNTDM [13])
2 2 5 7 7 trivial 0
2 3 5 11 11 trivial 0
2 4 5 15 15 trivial 0
2 5 5 17 17 trivial 0
Marco Ripa
3 3 5 15 16 1
(new result, 2019)
Marco Ripa
3 4 5 18 20 iy 2
(ibid.)
Marco Ripa
3 5 5 20 24 o 4
(ibid.)
Marco Ripa
4 4 5 24 26 iy 2
(ibid.)
Marco Ripa
4 5 5 27 31 iy 4
(ibid.)
Marco Ripa
4
5 5 5 33 37 (NNTDM [13])

Table 1: Current solutions for the n, Xn, Xn; points problem, where n; < n, < n; < 5.




Figures 3 to 12 show the patterns used to solve the n,Xn,Xn; puzzle (case by case). In
particular, by combining the (2) with the original result shown in figure 4, we obtain a formal
proof for the 3xX3x4 points problem.

3X3X3 SOLUTION CONSIDERING TWO DIFFERENT PATHS:
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Figure 3. h,,(3,3,3) = h;(3,3,3) = 14. This solution has been proved to be optimal [12-13].



3X3X4 SOLUTION:
15 lines

NO INTERSECTION

START

Figure 4. The 3x3x4 puzzle has finally been solved. h,, = h; = 15 and no crossing lines.



3x4x4 best upper bound:
19 lines 19
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Figure 5. Best known upper bound of the 3x4x4 puzzle. 19 = h,, = h; + 2.
4x4x4 best upper bound: 17
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Figure 6. An original pattern for the 4x4x4 puzzle. 23 = h, = h; + 1 [13].



3X3X5 best upper bound:
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Figure 7. Best known upper bound of the 3x3x5 puzzle. 16 = h,, = h; + 1.

3x4x5 best upper bound:
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Figure 8. Best known upper bound of the 3x4x5 puzzle. 20 = h,, = h; + 2.




3x5x5 best upper bound:
24 lines
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Figure 10. Best known upper bound of the 4x4x5 puzzle. 26 = h,, = h; + 2.



4x5x5 best upper bound: 3
31 lines 17

Figure 11. Best known upper bound of the 4x5x5 puzzle. 31 = h,, = h; + 4.

5X5X5 best upper bound: 24
37 lines 117
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Figure 12. Best known upper bound of the 5x5x5 puzzle. 37 = h, = h; + 4 [13].

Finally, it is interesting to note that the improved h,(ny,n,,n3) can lower down the upper
bound of the generalized k-dimensional puzzle too. As an example, we can apply the
aforementioned 3D patterns to the generalized n;X n,X ...X n; points problem using the
simple method described in [12].

Letk > 4, givenn, < ni_; < -+ <ny < ny <n, < nz, we can conclude that

hy(ny,ny,ng, ..., ny) = (hy(ng,ny,n3) + 1) - H;'C=4 n—1 3)



3 Conclusion

In the present paper we have drastically reduced the gap h, (ny,n,,n3) — h;(ny,n,,n3) for
every previously unsolved puzzle such that n; < 6. Moreover, we can easily disprove
Bencini’s claim that h,(3,3,4) =17 = h;(3,3,4) (see [2], page 7, lines 2-3), since
h,(3,3,4) = 15 = h;(3,3,4), as shown by combining (2) with the upper bound from figure 4.
We do not know if any of the patterns shown in figures 5 to 12 represent optimal solutions,
since (by definition) h;(n,, n,, n3) < h(ny, n,, n3). Therefore, some open questions about the
ny X ny, X nz points problem remain to be answered, and the research in order to cancel the
gap h, (ny,n,,n3) — hy(ny, ny, n3), at least for every ny < 5, is not over yet.
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