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Abstract

Forecast of critical transitions in a dynamical system is one of the most important research problems in recent

time. In this short communication, we discuss a possible novel sign of critical transitions in nonlinear systems. We

have shown that the higher order terms of the Taylor series play an important role in determining critical transitions

in a system. Moreover, we explain our approach using the Logistic map.
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1. Introduction

Nonlinear phenomena like bifurcation, chaos, etc. are frequently observed in various dynamical systems. In

recent times, one of the most important and challenging research problems is the prediction of critical transitions in

such nonlinear systems. Research in this topic is still in its infancy. Only very few theories exist in the literature in

this regard. The most important among them is the theory of ‘critical slowing down’[1, 2, 3, 4, 5, 6]. This theory states

that the recovery rate from any external perturbation tends to zero as a system approaches some critical transition.

Although this theory is very simple to understand but at the same time it has been proven to be the most powerful

existing theory of predicting bifurcation or tipping points in complex systems. Besides, there are also some other

theories in the literature[1]. However, there are also some limitations of these existing theories[7]. The aim of this

communication is to reveal a new signature of critical transition in complex systems. In the next section, first we shall

discuss our theory and then we present an illustrative example.

2. Main theory

To study the dynamics of any nonlinear system, very often we analyse the dynamics of the corresponding linear

system in a sufficiently small neighbourhood of a point, as an approximation of the dynamics of the original system.

This is known as the method of linearization, i.e. we linearize the system about a given point and consider essentially the

dynamics of that linearised system. Although this linearization remains valid in some sufficiently small neighbourhood

of the point. Now a significant observation is that, as we change one or more system parameters continuously, the

nonlinearity of the system changes and as a result of that the volume or radius of the neighbourhood of linearization also

changes continuously. For example, if the nonlinearity increases continuously then the volume of the neighbourhood

of linearization about a point will become smaller and smaller. In either case, the volume is expanded.
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Therefore we ask an immediate question: “ Is it possible to forecast bifurcation or tipping points well in

advance, by measuring the change in the volume of the neighbourhoods of linealization in a dynamical

system?”

Let us first describe the issue mathematically. Consider a discrete dynamical system given by

Xn+1 = F (Xn;λ1, λ2, · · · , λp)

where F : Rn → Rm is a smooth function and λ1, λ2, · · · , λp are parameters. Let X = (x1, x2, · · · , xn). Again suppose

a = (a1, a2, · · · , am) be a stable fixed point, then we can expand F (X) in a Taylor series like

F (X) = F (a) +

n∑
i=1

Fxi
(a)(xi − ai) +

1

2

n∑
i,j=1

Fxixj
(a)(xi − ai)(xj − aj) + · · ·

+
1

k!

n∑
i1,i2,··· ,ik=1

Fxi1
xi2

···xin
(xi1 − ai1)(xi2 − ai2) · · · (xik − aik) + · · ·

where Fxi1
xi2

···xin
= ∂

∂xi1

∂
∂xi2
· · · ∂

∂xik
(F )

Let us call

Tk =
1

k!

n∑
i1,i2,··· ,ik=1

Fxi1
xi2

···xin
(a), k = 2, 3, · · ·

Then each Tk is function of the system parameters λ1, λ2, · · ·λp. Now in general, in a small neighbourhood Nδ(a) (this

is a neighbourhood of radius δ around the stable fixed point X = a) of X = a we can well approximate the dynamics

of the original nonlinear system by analysing the dynamics of the corresponding linearised system

F (X) = F (a) +

n∑
i=1

Fxi
(a)(xi − ai).

Here we introduce another approach of looking at the higher order neglected terms of the Taylor series which play a very

important role in the future dynamics of the system. The coefficients of these higher order terms i.e. Tk are functions

of the system parameters. Therefore as we change any system parameter these coefficients are also changed and due

to this change the volume (or the radius δ of Nδ(a)) of the neighbourhood of linearisation also changes. Actually this

change occurs due to the increasing or decreasing nonlinearity in the system determined completely by the coefficients

Tk of the higher order nonlinear terms of the Taylor series. In this case the radius δ of the neighbourhood Nδ(a)

simply becomes a function of the system parameter λ1, λ2, · · · , λp, i.e. δ = δ(λ1, λ2, · · · , λp). Therefore as we change

some system parameter λi, δ → δ0 (δ0 is some fixed number) as λi → λ0, where λi = λ0 is the critical value of the

parameter λi at which a critical transition occurs.

3. Example

Let us take a simple example. Consider the Logistic map

xn+1 = f(xn) = λxn(1− xn)

Here if we vary the value of the parameter λ inside the interval (0, 4), we observe period doubling root to chaos. x = 0

is a stable fixed point of this map in 0 ≤ λ < 1. Then we consider the Taylor series expansion of f(x) about x = 0

2



f(x) = f(x0) + λ(1− 2x0)(x− x0) +
1

2
(−2λ)(x− x0)2 = λx− λx2

Hence the coefficient of the second order term of the Taylor series expansion is −λ, which is a function of λ. Now

coefficient of the second order nonlinear term changes as λ moves from 0 to 4. As a result of that, the nonlinearity

increases and as a result of that, the neighbourhood, inside which the linear approximation remains valid, shrinks in

size gradually and ultimately tends to some critical value, as we vary the parameter λ.

Here we have considered fixed points only in our discussion. However this may be extended for stable higher

periodic orbits also as we know that any periodic orbit can be seen as a fixed point of higher composition of a map.

4. Discussion

Here we briefly summarize the whole idea. Suppose we have a complicated system of larger dimension involving

several parameters. Now the coefficients of the higher order terms of the Taylor series expansion are function of all

these system parameters, therefore as we change those parameter values, the volume of the neighbourhood of the

linear approximation will also changes. In other words, as some system parameters approaches a critical value, the

volume or radius of the neighbourhood of linearisation also changes and approaches towards some critical value. This

phenomena certainly gives an indication of the forthcoming critical transition in a system. Moreover, we can extract

some functional relationship between the parameters and volume of the neighbourhood of linearisation, which may

help us to draw some significant conclusion about the future dynamics of the system. One of the important issue

related to this proposed theory is that the mathematical description or the functional form of the system is needed,

which may not be available in every situation. So now the question is how to apply this theory where only a time

series is available. This question leads to a new direction of research regarding this theory. In such cases it may be

possible to apply the proposed theory if we can approximately figure out the functional form of the system from the

available time series.
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