
Number of microstates of dark DNAs in extra dimensions for

normal and cancerous cells

Alireza Sepehri 1 ∗

1 Research Institute for Astronomy-Astrophysics of Maragha-RIAAM-Iran

Recently, Hargreaves ( New Scientist, Volume 237, Issue 3168, March 2018, Pages

29-31 ) has argued that some animal genomes seem to be missing certain genes, ones

that appear in other similar species and must be present to keep the animals alive.

He called these apparently missing genes by dark DNA. On the other hand, Sepehri

and his collaborations ( Open Physics, 16(1), pp. 463-475) has discussed that some

biological events like DNA teleportation and water memory may be due to existence

of some extra genes in extra dimensions. Collecting these results, we can conclude

that origin of some cancers may be evolutions of dark DNA in extra dimension. To

show this, we propose a model for calculating number of microstates of a DNA for

a chick embryo in extra dimension and compare with experimental data. We show

that number of microstates in extra dimension for a normal chick embryo is liss than

number of microstates for a cancerous chick embryo. In fact, extra microstates are

transformed to four dimensions.
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I. INTRODUCTION

Recently, Hargreaves and his colleagues have encountered a dark part of DNA when

sequencing the genome of the sand rat (Psammomys obesus), a species of gerbil that lives

in deserts. In particular they wanted to study the gerbils genes related to the production of

insulin, to understand why this animal is particularly susceptible to type 2 diabetes. But

when they looked for a gene called Pdx1 that controls the secretion of insulin, they found it
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was missing, as were 87 other genes surrounding it. Some of these missing genes, including

Pdx1, are essential and without them an animal cannot survive. The first clue was that, in

several of the sand rats body tissues, they found the chemical products that the instructions

from the missing genes would create. This would only be possible if the genes were present

somewhere in the genome, indicating that they werent really missing but just hidden [1, 2].

So where are they? We can response to this question in extra dimensions. Until now,

some investigations have bben done on the effects of extra genes in extra dimensions. For

example, it has been shown that DNA teleportation is possible if DNA, water and wave be

4 + n-dimensional objects [3]. Also, molecules of water could be able to store information

if they have DNA-like structures in extra dimensions. On the other hand, these genes in

extra dimension could act like the receiver or sender of waves and exchange information with

genes in four dimensions [4]. And finally in one of newest works, it has been shown that

compacting DNA with 7 meter long in a very small place leads to the emergence of curved

space-time around it. Then, using the concept of 11-dimensional black branes, the relation

between Tsallis -entropy of DNA-Branes exterior and interior of sheel for chick embryo has

been calculated [5]. Motivated by these researches, we conclude that origin of dark DNAs

could be explored in extra dimensions. These dark DNAs communicate with other genes in

four dimensions and control evolutions of body. If some of these genes in extra dimensions

become destroyed, some deseases like cancer may be emerged. To observe the effects of

these genes in extra dimensions, we consider evolutions of number of microstates of DNA

for normal and cancerous chick embryos. We show that for cancerous chick embryos, some

microstates are transformed from extra dimensions to four dimensions.

The outline of the paper is as follows. In section II, we will propose a mathematical

model for calculating number of microstates in extra dimensions. In section III, we propose

an experimental method for obtaining number of microstates of cancerous and normal DNAs

in extra dimensions for chick embryo.

II. NUMBER OF MICROSTATES OF DARK DNAS IN EXTRA DIMENSIONS

In this section, we will obtain the relation between non-linear fields, area of DNA and en-

tropy in four and extra dimensions. To this aim, we should consider evolutions of parameters

of DNA. Each DNA is constructed from hexagonal and pentagonal manifolds (See figure1).
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1.jpg

FIG. 1: A DNA is formed from joining hexagonal and pentagonal molecules.

We show that non-linear fields lead to the acceleration of DNA and emergence of two regions

of a Rindler space-time. Consequently, two DNAs are emerged that parameters of DNA in

each region acts reverse to parameters of DNA in another region (See figure 2). Previously,

it has been shown that the metric of a thermal DNA in 10-dimensional space-time is given

by [3–7]

ds2 = D−
1
2H−

1
2

(
dx22 + dx23

)
+D

1
2H−

1
2

(
− fdt2 + dx21

)
+D−

1
2H

1
2

(
f−1dr2 + r2dΩ2

5

)
(1)

where

f = 1− r40
r4

H = 1 +
r40 sinh2 α

r4
D = cos2 ε+ sin2 εH−1 (2)
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2.jpg

FIG. 2: Compacted DNA in a Rindler space-time.

and

cosh2 α =
3

2

cos δ
3

+
√

3 cos δ
3

cos δ
cos ε =

1√
1 + K2

r4

(3)

The angle δ is defined as:

cos δ = T̄ 4

√
1 +

K2

r4
T̄ =

( 9π2N

4
√

3TD3

) 1
2
T (4)

Now, we can obtain metrics of thermal DNAs in non-flat space-time. In fact, we want

to consider effects of non-linear fields on this metric. These non-linear fields lead to the

acceleration of DNA and emergence of a Rindler space-time. To this aim, we begin with the

action of three dimensional manifold:

S3 = −Ttri
∫
d3σ
√
ηabgMN∂aφM∂bφN + 2πl2sG(F ))
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G = (
3∑

n=1

1

n!
(−F1..Fn

β2
))

F = FµνF
µν Fµν = ∂µAν − ∂νAµ (5)

where gMN is the background metric, φM(σa)’s are scalar fields , σa’s are the DNA co-

ordinates, a, b = 0, 1, ..., 3 are world-volume indices of time dependent DNA and M,N =

0, 1, ..., 10 are eleven dimensional spacetime indices. Also, G is the nonlinear field [3] and A

is the photon which exchanges between charged particles. First, we describe a non-thermal

DNA in a flat space-time and use of below metric for bulk:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2θdφ2

)
+

6∑
i=1

dx2i (6)

Using this metric, we can write below relations between coordinates of bulk and DNA

[6]:

t(σ) = τ r(σ) = σ, x1(σ) = z (7)

Using above relations, for this DNA in flat space time, the action is given by [3, 4]:

S = −
∫
dσσ2

√
1 + z′2 − 2πl2sG(F ) (8)

For this action, it has been asserted that momentum density is given by [3, 4]:

Π =
2πl2sG

′(F )F01√
1 + z′2 − 2πl2sG(F )

(9)

where ′ denotes the derivative respect to the field (F ). On the other hand, it has been

asserted that there is a relation between momentum density and σ [3, 4]:

Π =
K

σ2
(10)

Using equations (9 and 10) and assuming (z′ << G(F )), we can obtain :
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σ = [

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 (11)

Above equation shows that coordinates of DNA depend on non-linear fields and increase

by increasing the strength of fields. We also obtain the acceleration, with taking derivative

of above coordinate respect to time:

a =
d2σ

dt2
= [

d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ] (12)

Above equation shows that acceleration of DNA has a direct relation with non-linear

fields which live on it. This acceleration leads to the emergence of a rindler space-time. In

these conditions, the relation between the world volume coordinates of the DNA (τ, σ) and

the coordinates of Minkowski space-time (t, r) are [3–5];

at = eaσ sinh(aτ) ar = eaσ cosh(aτ) In Region I

at = −e−aσ sinh(aτ) ar = e−aσ cosh(aτ) In Region II (13)

Now, we can obtain metric of a thermal DNA in non-flat space-time. Replacing acceler-

ation by non-linear fields in equation (12), we can rewrite equation (13) as:

[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]t = e

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh(aτ)

[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]r = e

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh(aτ) In Region I

[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]t = −e−[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh(aτ)

[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]r = e

−[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh(aτ) In Region II (14)

Above equation shows that non-linear fields change coordinates of space-time, leads to

the acceleration and produce two different regions in a new Rindler space-time. Thus, metric

changes and a new metrics in regions I and II are emerged.

Substituting equation (14) in equation (1), we obtain:
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FIG. 3: The hexagonal molecule of a DNA.

ds2I,A,thermal = D
1
2
I−AH

− 1
2

I−AfI−A ×(
e
2[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

+
1

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

(
dz

dτ
)2
)
dτ 2 −

D
− 1

2
I−AH

1
2
I−Af

−1
I−A ×(

e
2[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

+
1

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

(
dz

dσ
)2
)
dσ2 +

1

sinh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh([ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

(
dz

dτ

dz

dσ
)dτdσ +

D
− 1

2
I−AH

1
2
I−A

( 1

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]
e
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)2
×

(
dθ2 + sin2θdφ2

)
+

D
− 1

2
I−AH

− 1
2

I−A

5∑
i=1

dx2i (15)

ds2II,A,thermal = D
1
2
II−AH

− 1
2

II−AfII−A ×(
e
−2[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

+
1

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

(
dz

dτ
)2
)
dτ 2 −
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D
− 1

2
II−AH

1
2
II−Af

−1
II−A ×(

e
−2[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

+
1

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

(
dz

dσ
)2
)
dσ2 −

1

sinh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh(aτ)

(
dz

dτ

dz

dσ
)dτdσ +

D
− 1

2
II−AH

1
2
II−A

( 1

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]
e
−[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)2
×

(
dθ2 + sin2θdφ2

)
+D

− 1
2

II−AH
− 1

2
II−A

5∑
i=1

dx2i (16)

where

fI−A = 1−

(
e
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ0

cosh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

)4
(
e
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)4

HI−A = 1 +

(
e
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ0

cosh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

)4
sinh2 αI−A(

e
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)4
DI−A = cos2 εI−A + sin2 εI−AH

−1
I−A (17)

fII−A = 1−

(
e−aσ0 cosh(aτ0)

)4
(
e−aσ cosh(aτ)

)4
HII−A = 1 +

(
eaσ0 cosh(aτ0)

)4
sinh2 αII−A(

eaσ cosh(aτ)
)4

DII−A = cos2 εII−A + sin2 εII−AH
−1
II−A (18)

and

cosh2 αI−A =
3

2

cos δI−A
3

+
√

3 cos δI−A
3

cos δI−A
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cos εI−A =
1√√√√1 + K2(

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1e

−[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh(aτ)

)4

(19)

cosh2 αII−A =
3

2

cos δII−A
3

+
√

3 cos δII−A
3

cos δII−A

cos εII−A =
1√

1 + K2(
[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1eaσ cosh(aτ)

)4

(20)

The angles δI−A and δII−A are defined by:

cos δI−A = T̄ 4
0,I−A

√√√√√1 +
K2(

a−1e
−[ d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)4
T̄0,I−A =

( 9π2N

4
√

3TD3

) 1
2
T0,I−A (21)

cos δII−A = T̄ 4
0,II−A

√√√√1 +
K2(

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1eaσ cosh([ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)4
T̄0,II−A =

( 9π2N

4
√

3TD3

) 1
2
T0,II−A (22)

where T0 is the temperature of the DNA in non-Rindler space-time. Above equations show

that metric of thermal DNA depends on the evoltions of non-linear fields. In fact, evolutions

of non-linear fields have a direct effect on thermodynamics of DNA. Folowing the method in

[3–5], we can obtain the separation distances between center and molecules in a pentagonal

or hexagonal molecule (See figure 3):

dzI−A = dzII−B '
(
e
−4[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh2([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh2(aτ)

)
×

( FDBI,I,A(τ, σ)
(
FDBI,I,A(τ,σ)

FDBI,I,A(τ,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

FDBI,I,A(τ0, σ)
(
FDBI,I,A(τ0,σ)

FDBI,I,A(τ0,σ0)
− e−4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

−

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

sinh2(aτ)

)− 1
2

(23)
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or

dzI−B = dzII−A '(
e
4[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh2([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh2([

d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)
×

( FDBI,II,A(τ, σ)
(
FDBI,II,A(τ,σ)

FDBI,II,A(τ,σ0)
− e4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2(aτ)

)− 1
2

FDBI,II,A(τ0, σ)
(
FDBI,II,A(τ0,σ)

FDBI,II,A(τ0,σ0)
− e4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

−

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

sinh2(aτ)

)− 1
2

(24)

with the definition of FDBI,I,A given below:

FDBI,I,A = FDBI,II,B =
(

[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1e

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ ×

cosh([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)24 cosh2 αI−A − 3

cosh4 αI−A

FDBI,II,A = FDBI,I,B =
(
a−1e

−[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ ×

cosh([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)24 cosh2 αII−A − 3

cosh4 αII−A
(25)

These separation distances depend on the nonlinear magnetic fields and temperature.

When, the separation distance in one region grows, the separation distance in another region

decreases. Now, we calculate the area of a thermal DNA by using equations (23,24 and 14):

AI−A,5 = AII−B,5 =

∫
5

2
rI−AdzI−A =

∫
5

2
rII−BdzII−B =∫

dσ[[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1e

[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh(aτ)]×

(
e
−4[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh2([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh2(aτ)

)
×
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( FDBI,I,A(τ, σ)
(
FDBI,I,A(τ,σ)

FDBI,I,A(τ,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

FDBI,I,A(τ0, σ)
(
FDBI,I,A(τ0,σ)

FDBI,I,A(τ0,σ0)
− e−4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

−

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

sinh2(aτ)

)− 1
2

(26)

or

AII−A,6 = AI−B,6 =

∫
3rII−AdzII−A =

∫
3rI−BdzI−B =∫

dσ[[
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]−1e

−[ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

cosh(aτ)]×

(
e
4[ d

2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]σ

sinh2([
d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ) cosh2([

d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)
×

( FDBI,II,A(τ, σ)
(
FDBI,II,A(τ,σ)

FDBI,II,A(τ,σ0)
− e4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2(aτ)

)− 1
2

FDBI,II,A(τ0, σ)
(
FDBI,II,A(τ0,σ)

FDBI,II,A(τ0,σ0)
− e4[

d2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ](σ−σ0) cosh

2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

cosh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ)

)− 1
2

−

sinh2([ d
2

dt2
[

√
1−2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ]τ0)

sinh2(aτ)

)− 1
2

(27)

Above equation shows that area of thermal accelerating DNAs depend on the nonlinear

fields which live on them. These electromagnetic fields lead to the acceleration of DNA.

This acceleration produces a Rindler space-time with two regions. The area of a DNA in

region I expands, while, the area of a DNA in region II decreases.

To calculate total area of a DNA, we should sum over areas of hexagonal and pentagonal

manifolds in four and extra dimensions in region I and region II.

ADNA = AI−A,DNA + AII−A,DNA (28)

where

AI−A,DNA = ΣM
i=1

(
[AI−A,6,fourdimension + AI−A,5,fourdimension] +
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[AI−A,6,extradimension + AI−A,5,extradimension]
)

(29)

AII−A,DNA = ΣM
i=1

(
[AII−A,6,fourdimension + AII−A,5,fourdimension] +

[AII−A,6,extradimension + AII−A,5,extradimension]
)

(30)

where M is the number of molecules. This area depends on temperature and nonlinear

fields. In a biological system like a cell, DNA is compacted four times around various axises

and temperature is very large. This causes that total area of DNA grows and achieve to

large values.

Each rotating DNA radiates a wave which it’s frequency is equal to rotating velocity of

DNA. If this wave achieves to a metal, leads to the motion of it’s electrons and production

of a current. We can write:

Pradiation,DNA = ρI2Current,DNA =
d2σ

dt2
= [

d2

dt2
[

√
1− 2πl2sG(F )

2πl2sG
′(F )F01

]
1
2 ] (31)

By replacing above relation in equation (28),we can obtain area of a DNA in terms of

current. Above equation shows that area of a DNA has a relation wit current which is

produced by it’s wave in a metal. This help us to measure area f a DNA by evolutions of

currents in a lab. Also, Tsallis and Cirto have argued that the entropy of a gravitational

system such as a black brane could be extended to the non-additive entropy, which is given

by S = γAβ, where A is the horizon area [8]. We can write:

S̄I = γAβDNA (32)

Above equation shows that entropy of a DNA has a relation wit current which is produced

by it’s wave in a metal. This help us to measure entropy of a DNA by evolutions of currents

in a lab. On the other hand, entropy has a relation with number of microstates of a DNA:

S̄I = KBlog(ΩDNA) (33)

Using equations ( 2, 32 and 33),we obtain number of microstates of a DNA in terms of

current:
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ΩDNA =
1

KB

eγA
β
DNA =

1

KB

eγA
β
I−A,DNA,4−dimensionseγA

β
II−A,DNA,4−dimensions ×

eγA
β
I−A,DNA,extra−dimensionseγA

β
II−A,DNA,extra−dimensions =

ΩI−A,DNA,4−dimensionsΩII−A,DNA,4−dimensions ×

ΩI−A,DNA,extra−dimensionsΩII−A,DNA,extra−dimensions (34)

Above equation shows that total number of microstates depends on the number of mi-

crostates in four and extra dimensions and in region of I and II of DNA. This number helps

us to obtain the exact number of microstates of a DNA in term of currents in a lab. When

a DNA rotate, it radiates a wave. This wave leads to motion of electrons in a wire and a

current is emerged. This current gives exact information about evolution of a DNA.

FIG. 4: Connecting DNAs of chick embryos to scopes.
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III. EXPERIMENTAL RESULTS

FIG. 5: Number of microstates for DNAs of normal chick embryos.

To examine the model, we count number of microstates in terms of currents for two

types of chick embryos, one related to normal cells and another related to cancerous cells.

We connect chick embryos to an scope and analyze datas (See figure 4). In figure 5, we

show number of microstates in terms of currents for a normal chick embryo. It is clear

that number of microstates is low for lower and higher values of currents and has a pick

around middle currents. In figure 6, we show number of microstates in terms of currents for

a canceroous chick embryo. This number is more than number of microstates for normal

chick embryos. This is because that some nymbers are transformed from extra dimensions

into four dimensions.

IV. SUMMARY AND DISCUSSION

Recently, Hargreaves [1] discovered a new part of DNA which includes missing genes.

He called this part as a dark DNA and showed that this part is the main responsible for

producing chemical products which are essential and without them an animal cannot survive.
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FIG. 6: Number of microstates for DNAs of cancerous chick embryos.

In this paper, using the concepts of 4+n-dimensional DNA in [3], we have explored the origin

of dark DNA in extra dimension and proposed a model for it. We have shown that missing

genes that are needed for the continuity of the animal’s life may be discovered in extra

dimensions. In our model, total number of microstates of DNA on a 11-dimensional manifold

is constant, however by the emergence of cancer, some of microstates are transformed from

extra dimensions to four dimensional manifold. We test the model for normal and cancerous

chick embryo and found that it works.

[1] Adam Hargreaves, ”The hunt for dark DNA” - New Scientist, Volume 237, Issue 3168, March

2018, Pages 29-31 - https://doi.org/10.1016/S0262-4079(18)30440-8.

[2] Adam Hargreaves,”Introducing ’dark DNA’the phenomenon that could change

how we think about evolution” - Academic rigour. journalistic flair, 2017 -

https://theconversation.com/introducing-dark-dna-the-phenomenon-that-could-change-how-

we-think-about-evolution-82867.]

[3] Alireza Sepehri, Massimo Fioranelli,. 4 + n-dimensional water and waves on four and



16

eleven-dimensional manifolds. Open Physics, 16(1), pp. 463-475. Retrieved 11 Apr. 2019,

doi:10.1515/phys-2018-0063]

[4] Alireza Sepehri, A mathematical model for DNA ,Int. J. Geom. Methods Mod. Phys., 14,

1750152 (2017) ]

[5] Alireza Sepehri , Massimo Fioranelli , Maria Grazia Roccia , Somayyeh Shoorvazi , ”The

relation between Tsallis -entropy of DNA-Branes exterior and interior of shell”,Physica

A: Statistical Mechanics and its Applications Volume 524, 15 June 2019, Pages 73-

88.https://doi.org/10.1016/j.physa.2019.03.003]

[6] Alireza Sepehri, Somayeh Shoorvazi, Hossein Ghaforyan, The European Physical Journal Plus,

(2018) 133: 280. https://doi.org/10.1140/epjp/i2018-12127-6.

[7] Alireza Sepehri, Farook Rahaman, Salvatore Capozziello, Ahmed Farag Ali, Anirudh Pradhan,

Eur.Phys.J. C76 (2016) no.5, 231.

[8] C. Tsallis, L. J. L. Cirto, Eur. Phys. J. C73, 2487 (2013).


