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Abstract: The search for weak spectral lines with SNR ≈ 1 in noisy gravitational data is difficult, 
since the analysis methods used so far do not exploit all available information. The vector FFT 
presented here reduces the noise level and narrows the FWHM of all spectral lines by taking 
advantage of the phase information of the FFT.

Introduction
It is not particularly difficult to identify spectral lines, ie special frequencies in data series, as long 
as the signal-to-noise ratio exceeds 20 dB. The most commonly used method is called Fourier 
analysis, whereby the signal usually passes through several processing steps.

But how to discover unknown spectral lines in extremely noisy signals? Are all individual steps in a
standard FFT necessary? Do they improve the result or are they even harmful if the SNR is very 
bad? Most of all: Do they destroy or ignore valuable information and therefore make the search 
more difficult?

The following analyzes and suggestions for improvement relate only to the search for extremely 
weak spectral lines in the frequency range around 60 μHz in noisy geophysical data series. There 
are no considerations as to whether they are universally valid and can be applied unchanged to any 
problem. 

In the present question, some obstacles make it difficult to analyze the recorded data: The dynamic 
range is extremely large and amounts to about 120 dB. This means that the amplitude of the strong-
est tidal signals is at least 106 higher than the amplitude of the wanted spectral lines, the frequencies
are similar. At irregular intervals, impulse-like noise peaks are recorded, which are generated by 
earthquakes somewhere on the globe. Each impulse creates another broadband spectrum that can 
hardly be modeled. Add to this the inherent noise of the measuring instruments.

Here is not discussed how the background noise can be minimized. This topic will be discussed 
separately. It is all about improving the FFT method so that spectral lines of constant frequency can 
be identified with greater certainty, even in very noisy data streams. Extensive series of experiments
have shown that this goal can be approached by using the phase information, which is usually 
ignored in FFT. This will be discussed in detail below.

Comments on the usual procedural steps.
In a spectral analysis usually the following steps are performed:

Choice of a dataset that contains enough measurements. Accurate frequency measurement requires 
many (equidistant) readings because the Küpfmüller theorem must be satisfied. If you want to 
achieve a frequency uncertainty of Δf = 10 nHz, the formula Δf⋅Δt≥0.5 implies that the entire 
measurement period must be at least two years. In the field of geophysics, there are measurement 
series that span ten years or more and show few interruptions. Shortening the measurement period 
reduces the accuracy. From a mathematical point of view, it does not matter if data points are taken 
at intervals of seconds or minutes. It requires a great deal of effort to eliminate obvious disturbances
in the data record and to bridge data gaps in such a way that the noise floor is not substantially 
increased. Here is not the place to discuss the peculiarities of the known methods. The exceptionally
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high frequency resolution of only 10 nHz may seem exaggerated, but it is appropriate because 
vector FFT reduces the half width of spectral lines. If the frequency resolution is too low, the 
probability of overlooking narrow spectral lines increases.

The next steps in a spectral analysis are elimination of the constant bias of the signal and the atten-
tuation of the beginning and end of the measurement series by a pointwise multiplication with a 
bell-shaped function. If you do that, only the central part of the measurement series remains almost 
unchanged. This "windowing" means a loss of precious data points and a reduction of the frequency
resolution. Another consequence is that the generated spectrum refers to the middle part of the data 
series. Details near the beginning and end of the sample are more or less ignored. This process can 
also be described in terms of telecommunications: "Windowing" is a (very low-frequency) ampli-
tude modulation of all the signals contained in the data record. Each modulation generates addition-
al frequencies which broaden each spectral line (sidebands). The sum of all additionally generated 
sidebands raises the noise level. However, as we are looking for extremely weak signals, any 
worsening of the SNR should be avoided. Therefore, "windowing" should be avoided. This fact is 
also presented in window disadvantages. When reading noise bandwidth, it must also be considered 
that all examples assume an SNR = 20 dB or higher. The following discussion, however, deals with 
finding spectral lines when the SNR is estimated to be 0 dB or even lower. We do not need any 
additional noise.

The impact of "windowing" is best illustrated by
an example, the real recording of the super-
conducting gravimeter in Canberra in the years
1997 to 2000. The recording length includes
1,200,000 readings every 60 seconds. There are no
significant earthquakes during this period. Using a
"window", the spectrum preferably refers to the
central part of the sample. Without a window, all
measurement points contribute equally to the
result. More data points mean higher frequency
resolution. After the usual preparations, the
sampling rate of the data is decimated to 3600
seconds, sufficient for spectral analysis in the frequency range below 100 μHz.

Figure 1 shows the spectrum of a narrow frequency range after the data has passed through a 
Blackman filter (Zero-padding was added to smooth the presentation). Two spectral lines can be 
safely located, the other peaks are probably part of the background noise. The amplitude compari-
son with the environment gives the SNR = 7.3 = 17 dB.

Turning off the Blackman window results in the
spectrum shown in Figure 2. Since all data points
contribute equally to the result, the half-width of
the spectral lines decreases and it becomes easier
to separate them. Now a third spectral line is
clearly visible and the SNR has improved
slightly, it is now 9.9 or 19.9 dB. Conclusion: If
you look for weak spectral lines in very noisy
time series, the SNR can be improved, if you do
without "windowing".

Fig 1: Spectrum of a sample of 20,000 data 
points that have passed through a blackman 
filter.

Fig 2: Spectrum as in Fig 1, but without 
blackman filter.
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Vector-FFT
Every discovery of a spectral line stimulates the question: Are the corresponding oscillations 
invariable or can they only be measured during a certain period of time? In the above examples, all 
data points are processed as a single block, therefore no time dependence of the underlying 
oscillations (variable amplitude or frequency) can be determined. In order to discover a time 
dependence, the recording must be split into several smaller sections (called frames), which may 
overlap.

How many data points should one frame contain? If one chooses long sections, the time resolution 
decreases. If one chooses short sections, the frequency resolution decreases. Is it possible to keep 
these disadvantages down?

Yes. And the decisive hint can be seen by adding
many individual spectra, usually called "stack-
ing". The small number of data points in each
section causes insufficient frequency resolution.
Disturbing is the significant increase in the mean
noise level, which worsens the SNR. Stacking
the results gained by standard FFT is therefore
unsuitable for detecting extremely weak spectral
lines with SNR ≈ 1.

The spectra can also be summed up differently,
because the FFT of each frame provides a complex result for each individual frequency. The real 
part indicates the amplitude of the COS oscillation, the imaginary part the amplitude of the SIN 
oscillation. In standard FFT stacking, only the magnitudes are summed up and the phase is ignored. 
As shown in figure 3, this simplification significantly reduces the signal-to-noise ratio and the 
frequency of the spectral lines can be more guessed than measured.

A quick test provides clarity: one feeds the "FFT machine"
with noise, that is, with different sequences of random
numbers, and notes the complex results, which are
calculated successively for a freely chosen frequency. The
left column of the adjacent table shows a possible result, a
lot of complex numbers. The right column contains the
magnitude of the neighbor left.

After 1000 FFT transformations, the table contains 1000
rows. To get the mean amplitude of the chosen frequency,
you have to sum the values of a column. If the signal
consists only of noise, one would expect the result to be
zero. This almost applies to the left column, but is far
missed for the right column. The result of the right column
is getting more and more away from zero – regardless of
whether one feeds the "FFT machine" with pure noise or with a noisy signal. This is exactly what 
happens with the standard FFT method. It's hard to distinguish between noise and a weak spectral 
line.

This incessant increase in the sum (right column) is neither caused by the preprocessing of the data 
nor by the FFT method itself. The cause is the calculation of the absolute value (magnitude) of a 
complex number before the addition. That step should be avoided.

The result of the left column will not be far away from value 0 + 0i (mathematically precise: this is 
described by a random walk). The more rows the table contains, the more likely it will be that there 

Fig 3: The sum of 700 time shifted single spectra. 
Each section contains 120 data points.
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are two arrows that nearly equal each other. Or that three arrows yield a small sum when arranged 
like a Mercedes star.

Why is this method called Vector FFT? One can represent any complex number as an arrow in the 
complex plane. Each arrow can be described either by its real and imaginary component or by its 
magnitude and the angle with respect to the positive x-axis (argument).

If you draw all the arrows of the left column, you can distinguish three cases:

1. If the signal is pure noise, you get a star-like, more or less symmetrical figure. There is no 
discernible preferential direction and all vectors sum up to a rather small result.

2. This changes when we have a weak signal buried in noise and the selected frequency 
matches the oscillation frequency of the signal. Then there is a preferred direction, the arrow
lengths in some direction are longer than the arrows in other directions. It's almost as if a 
wind were trying to turn the arrows into a certain direction. The direction itself is not 
decisive, because at the very end the magnitude of the total is calculated. Summing up all 
vectors, the result devates markedly from zero. 

3. If you feed a noiseless signal into the "FFT machine" and if you chose the proper 
frequency , all the arrows point into the same direction and you get the maximum possible 
total result. 

It would be too nice if these simple cases fully described the vector FFT method.

Moving frames
Vector FFT requires that a long data record is divided into many short frames, which may overlap. 
For each frame, FFT calculates the complex amplitudes for a given set of frequencies. In contrast to
the usual method, the complex amplitudes are summed without magnitude calculation in order not 
to delete the phase information. Only at the very end, when the spectra of all frames are added, the 
magnitude is calculated to determine the relative strength of each given frequency. A hurdle must be
overcome for the procedure to work. If a frame is shifted by x data points, this means a phase shift 
Δp for each of the given frequencies. This is Δp=2 π x⋅T s⋅f .

 Ts is the time interval between successive measurements. In our case, 60 s or 3600 s.

 f is the desired spectral frequency.

After FFT has calculated the complex amplitudes of all predefined frequencies, the phase shift Δp 
must be subtracted before the complex amplitudes are summed. If one imagines the complex 
amplitude as an arrow, each arrow must be rotated clockwise by the angle Δp. With complex 
numbers, this can be done very easily by multiplying with a unit vector, whose argument is Δp.

Reduction of half-width
The FFT algorithm works with precisely defined frequencies, which can be calculated from the 
sampling frequency and the length of a sample incl. zero-padding (for example 215). It does not 
calculate results for intermediate frequencies. However, the actual frequencies occurring in the 
input data sets will generally deviate from this set of predefined frequencies. If one observes how 
the phase changes over time, one can determine whether a spectral line coincides with or deviates 
from one of the given frequencies. Figure 4 shows an example in which not the amplitudes, but the 
phases of three adjacent frequencies are registered as a function of time.
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Obviously, all three individual frequencies belong to a single spectral line whose phase (and 
frequency) fluctuates slowly. The phase of the green curve has the lowest drift and is therefore the 
best estimate of the spectral frequency. Of particular interest is that the phase of the red curve has 
decreased by about 2π within 1000 days. During this period 612 individual spectra were calculated. 
Chaining all 612 red arrows in a complex plane results in a deformed but closed circle. So the 
vector sum of all arrows is approximately zero and in the graphical representation of the spectral 
line this means a zero, which leads to a remarkable reduction of the half width of that spectral line. 
This is a peculiarity of the vector FFT, because with the usual FFT analysis it is impossible to get 
the value zero by adding up the magnitudes of many non-zero vectors.

If one discovers longer periods of time in which the phase is approximately constant, this is a more 
convincing proof for a weak spectral line than a weak relative maximum in the usual spectral 
representation.

The next two figures show the increase in resolution and the reduction of the noise level, when 
standard FFT is replaced by Vector-FFT.

Fig 4: The phase change as a function of time for three closely adjacent frequencies
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