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Abstract

A computer model of brain tumor metastasis is developed and
simulated using the language Mathematica. Diffusion of cancer cells
through regions of gray and white matter is differentiated resulting in
realistic asymmetric tumor growth. Applications include the precise
treatment of a patient’s “future tumor” with focused radiation, and
modelling the effects of chemotherapy.

1 Introduction

Cancerous tumors, or neoplasms, arise from the mutation of one or more cells
which undergo uncontrolled growth thereby impairing the functioning of sur-
rounding normal tissue. There are many different cancers each with their own
characteristics. This work shall only be concerned with brain tumors, and in
particular gliomas or glioblastomas, which make up about half of all primary
brain tumors diagnosed; they are particularly dreadful tumors with a dis-
mal prognosis for survival. Gliomas are highly invasive. The improvements
in computerized tomography (CT) and magnetic resonance imaging (MRI)
over the last decades have resulted in earlier detection of glioma tumors. De-
spite this progress, the benefits of early treatment have been minimal. For
example, even with surgical excision well beyond the grossly visible tumor
boundary, regeneration near the edge of resection ultimately results, even-
tually leading to death. This failure of resection is analogous to trying to
put out a forest fire from behind the advancing front. The action of the fire
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Figure 1: Cross-section of a human brain showing fibrous white matter and
the corpus callosum which connects the left and right cerebral hemispheres.

(tumor growth) is primarily at the periphery.

The brain basically consists of two types of tissue: gray matter and white
matter. Gray matter is composed of neuronal and glial cell bodies that con-
trol brain activity while the cortex is a coat of gray matter that covers the
brain. White matter fiber tracts are myelinated neuron axon bundles located
throughout the inner regions of the brain. These fibers establish pathways
between gray matter regions. The corpus callosum is a thick band of white
matter fibers connecting the left and right cerebral hemispheres of the brain.
Within each hemisphere, there are several white matter pathways connecting
the cortex to the nuclei deep within the brain.
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Figure 2: The cortex consists of gray matter and is connected to other gray
matter regions by white matter fiber bundles. The corpus callosum is a white
matter tract connecting the left and right cerebral hemispheres.
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Gliomas are neoplasms of glial cells (neural cells capable of division)
that usually occur in the upper cerebral hemisphere but which can be found
throughout the brain. Astrocytomas, originating from an abnormally multi-
plying astrocyte glial cell, are the most common gliomas. Depending on their
aggressiveness (grade), astrocytomas are further divided into several subcat-
egories. Astrocytomas are the least aggressive or lowest grade, anaplastic
astrocytomas are the more aggressive or mid-grade and glioblastomas are
the most aggressive or highest grade. Tumor grade indicates the level of ma-
lignancy and is based on the degree of anaplasia (deformity in behavior and
form) seen in the cancerous cells under a microscope. Gliomas often contain
several different grade cells with the highest grade or most malignant grade of
cells determining the grade, even if most of the tumor is lower grade. There
is still no general clinical agreement on the grading.

Generally, the higher-grade cancer cells are more capable of invading nor-
mal tissue and so are more malignant. However, even with their invasice
abilities, gliomas very rarely metastasize outside the brain.

The prognosis for patients with neoplasms affecting the nervous system
depends on many factors. A major element in the prognosis is the quanti-
tative evaluation of the spatiotemporal infiltration of the tumor, taking into
account the anatomic site of the tumor as well as the effectiveness of the
various treatments.

Since the modelling developed in this paper has a practical bearing on
patient treatment, it is necessary to give more detailed medical information
which is an important part of realistic medical modelling.

Difficulties in Treating Brain Tumors An enormous amount of exper-
imental and some theoretical work has been devoted to trying to understand
why gliomas are so difficult to treat. Unlike many other tumors, gliomas
can be highly diffuse. Experiments indicate that within seven days of tu-
mor implantation in a rat brain, glioma cells can be found throughout the
central nervous system. Most glioma treatments are directed locally to the
bulk mass when, in fact, the action of tumor growth and invasion is elsewhere.
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There are various, regularly used, treatments for gliomas, mainly chemother-
apy, radiation therapy and surgical intervention. Resection, the surgical re-
moval of an accessible tumor, has a poor history of success. Recurrence of
tumor growth at the resection boundary is well-documented. Most believe
that the distantly invaded cells are responsible for tumor regeneration follow-
ing surgery. Since the density of cancerous cells (remaining after resection)
is highest at the resection boundary, regrowth seems most probable at this
location. Silbergeld and Chicoine suggested the hypothesis that damaged
brain tissue at the resection site releases cytokines that recruit the diffusely
invaded tumor cells. Nevertheless, both explanations are consistent with the
argument that the diffuse nature of gliomas is fundamentally responsible for
tumor recurrence near the resection boundary. The difference is that the
former is a physical model and the later is more biochemical.

Chemotherapy essentially uses specialized chemicals to poison the tumor
cells. The brain is naturally defended from these and other types of chem-
icals by the intricate capillary structure of the blood-brain barrier. Water-
soluble drugs, ions and proteins cannot permeate the blood-brain barrier but
lipid-soluble agents can. Recently, agents have been devised to temporarily
disrupt the blood-brain barrier. Many chemotherapeutic treatments are cell-
cycle-dependent: the drugs are triggered by certain phases of the cell cycle.
Silbergeld and Chicoine have observed that motile cells distant from the bulk
tumor do not appear to enter mitosis so cell-cycle specific drugs and stan-
dard radiation therapy have limited effectiveness. Not only that, gliomas are
often heterogeneous tumors. Those drugs that do reach the cancerous cells
are hindered by drug resistance commonly associated with cancer cell het-
erogeneity. While one cell type is responsive to treatment and dies off, other
types are waiting to dominate. This phenomenon requires a model which
includes cell mutation to drug resistance cells, in other words a polyclonal
model.

The biological complexity of gliomas makes treatment a difficult under-
taking. For planning effective treatment strategies, information regarding
the growth rates and invasion characteristics of tumors is crucial. The
use of mathematical modelling can help to quantify the effects of resec-
tion, chemotherapy and radiation on the growth and diffusion of malignant
gliomas. In this work, some light is shed on certain aspects of brain tumor
treatment with the aim of helping to determine better, or even optimal, ther-
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apeutic regimes for patients. A major goal is the development of interactive
computer models with which the effects of various treatment strategies for
specific tumors could be examined. This work goes some way in achieving
this goal.

2 Basic Mathematical Model of Glioma Growth

and Invasion

Like all tumors, the biological and clinical aspects of gliomas are complex and
the details of thier spatiotemporal growth are still not well understood. In
constructing models therefore we have to make some major assumptions. We
start with as simple a model as is reasonable and build up from it. The sim-
plest theoretical models involve only the total number of cells in the tumor,
with growth of the tumor usually assumed to be exponential, Gompertzian,
or logistic. Such models do not take into account the spatial arrangement of
the cells at a specific anatomical location or the spatial spread of the cancer-
ous cells. These spatial aspects are crucial in estimating tumor growth since
they determine the invasiveness and the apparent border of the tumor. It
is necessary to try and determine the extent of infiltration of the tumor in
most treatment situations, such as estimating the likely benefit of surgical
resection. One of the surprising aspects of this work is how a very simple
deterministic model can provide meaningful and helpful clinical information
with a direct bearing on patient care.

In this section we develop a mathematical model for the spatiotemporal
dynamics of tumor growth. Importantly we can estimate the model parame-
ters, including the proliferation, or growth rate, and the diffusion coefficient
of the cells from clinical data obtained from successive CT scans of patients.

Once we have established the feasibility of reconstructing some of the
kinetic events in invasion from histological sections, it will be possible to
investigate other gliomas with different characteristic growth patterns, ge-
ometries and the effects of various forms of therapy using the same types of
data from other patients. The growth patterns essentially define the gross
and microscopic characteristics not only of the classical tumors of different
degrees of malignancy but also of mixed-gliomas.
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Previous mathematical modelling used a theoretical framework to de-
scribe the invasive nature of gliomas, both with and without treatment
regimes, by isolating two characteristics: proliferation and diffusion. Here
diffusion represents the active motility of glioma cells. These models showed
that diffusion is more important in determing survival than the proliferation
rate of the tumor. In vivo studies show that malignant glioma cells implanted
in rats quickly invade the contralateral hemisphere of the brain dispersing via
white matter tracts. The diffusion of glioma cells in white matter is different
from that in the gray matter and is included in a more realistic model.

The basic model considers the evolution of the glioma tumor cell popu-
lation to be mainly governed by proliferation and diffusion. Tumor cells are
assumed to grow exponentially. This is a reasonable reflection of the biol-
ogy for the timescale with which we are concerned, namely, the time to the
patient’s death. Silbergeld and Chicoine suggested that diffusion is a good
approximation for the tumor cell motility. A very good review of glioma
invasion is given by Giese and Westphal. It can be shown that diffusion rea-
sonably models the cell spreading dynamics observed in vitro.

Let c(x, t) be the number of cancer cells at a position x and time t. We
take the basic model as a modified diffusion equation

∂c

∂t
= ∇ · J + ρc

where ρ (time−1) represents the net rate of growth of cells including pro-
liferation and death (or loss). The diffusional flux of cells, J, we take as
proportional to the gradient of the cell density:

J = D∇c

where D (distance2/time) is the diffusion coefficient of cells in brain tis-
sue (and in our model will depend on tissue “whiteness”). The theoretical
models, referred to above, considered the brain tissue to be homogeneous so
the diffusion and growth rates of the tumor cells are taken to be constant
throughout the brain. This is not the case, of course, when considering tumor
invasion into white matter from gray. With constant diffusion the governing
equation is then
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∂c

∂t
= D∇2c+ ρc.

This model gives reasonable agreement with the CT scans on which the
model is based and has given surprisingly good results in predicting survival
times under various treatment scenarios. Although the models gave surpris-
ingly good results, they contain several basic simplifications which can now
be reconsidered. For example, givern a source of glioma cells at a given
location, for numerical simplicity, considered the ‘front’ of detectable cells
propagates symmetrically out from the source. They all knew that clinical
observation indicated that, in fact, symmetry in growth of the tumor is not
the case. The first model we discuss here deals with this aspect as well as
tissue heterogeneity.

White matter serves as a route of invasion between gray matter areas for
glioma cells. The diffusion coefficient for glioma cells is larger in the white
matter than in the gray matter. In vivo studies show that malignant glioma
cells implanted in rats quickly invade the contralateral hemisphere of the
brain dispersing via white matter tracts. The model we study now incorpo-
rates the effects of the heterogeneous tissue on the cell diffusion and tumor
growth rates to emulate more accurately the clinically and experimentally
observed asymmetries of the gross visible tumor boundaries.

Model with Spatial Heterogeneity We can account for spatial hetero-
geneity in our model by taking the diffusion coefficient D to be a function
of the spatial variable, x, thereby differentiating regions of gray and white
matter. This gives as our governing equation,

∂c

∂t
= ∇ · (D(x)∇c) + ρc.

We take zero flux boundary conditions on the anatomic boundaries of the
brain and the ventricles. So, if B is the brain domain on which the equation
is to be solved, the boundary conditions are

n ·D(x)∇c = 0 for x on ∂B,
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where n is the unit normal to the boundary ∂B of B. With the geometric
complexity of an anatomically accurate brain (which we shall in fact use)
it is clearly a very difficult analytical problem and a nontrivial numerical
problem, even in two dimensions.

3 A Computer Simulation of Brain Tumor

Growth

Here we model brain tumor growth using the language Mathematica. The
first step is to import an image of a brain scan clearly showing areas of gray
and white matter.

img2 = Import["~/Desktop/notebooks/brain-crop.jpg"]

Next we convert the image to grayscale and sharpen the image.

img3 = Sharpen[ColorConvert[img2, "Grayscale"]]
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The key realization is that the diffusion coefficient is proportional to and
can be gotten from the image data. The following command produces an
interpolating function.

diffcoeff =

ListInterpolation[ImageData[img3], InterpolationOrder -> 3]

It is important to know the dimensions of the data, which in this case
was 798× 654.

Dimensions[ImageData[img3]]

Next we define a region such that −y ≤ 0, −1 + y ≤ 0, −x ≤ 0 and
−1 + x ≤ 0.

boundaries = {-y, y - 1, -x, x - 1};

omega = ImplicitRegion[And @@ (# <= 0 & /@ boundaries), {x, y}];

Next we use NDSolveValue to produce an interpolating function sol[t,x,y]

that represents the density of cancer cells on the image. In practice we solve

Div
[

1

500
D4(x) ·Grad u(t, x, y)

]
+ 0.025u(t, x, y)− ∂u

∂t
== 0

with the initial condition

u(0, x, y) == Exp
[
−1000((x− 0.6)2 + (y − 0.6)2)

]
sols = NDSolveValue[{{Div[

1./500.*(diffcoeff[798.*x, 654*y])^4*

Grad[u[t, x, y], {x, y}], {x, y}] - D[u[t, x, y], t] +

0.025*u[t, x, y] ==

NeumannValue[0., x >= 1. || x <= 0. || y <= 0. || y >= 1.]},

{u[0, x, y] == Exp[-1000. ((x - 0.6)^2 + (y - 0.6)^2)]}},

u, {x, y} \[Element] omega, {t, 0, 20},

Method -> {"FiniteElement",

"MeshOptions" -> {"BoundaryMeshGenerator" -> "Continuation",

MaxCellMeasure -> 0.002}}]

Note that we start with an initially Gaussian distributed tumor and de-
scribe its growth from there. Also, I took the fourth power of the diffusion
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coefficient, which changes the relation between grayscale and diffusion rate.
You can change the coefficient to get different patterns for the growth.

That done, we can now compose the brain image with that of a contour
plot of the solution. Here we display the tumor at time t = 2.

ImageCompose[img3, {ContourPlot[

Max[sols[t, x, y], 0] /. t -> 2, {y, 0, 1}, {x, 0, 1},

PlotRange -> {{0, 1}, {0, 1}, {0.01, All}}, PlotPoints -> 100,

Contours -> 200, ContourLines -> False, AspectRatio -> 798./654.,

ColorFunction -> "Temperature"], 0.6}]

We can now simulate tumor growth in a series of images taken at succes-
sive times.

frames = Table[

ImageCompose[

img3, {ContourPlot[

Max[sols[d, x, y], 0] /. d -> t, {y, 0, 1}, {x, 0, 1},

PlotRange -> {{0, 1}, {0, 1}, {0.01, All}}, PlotPoints -> 100,
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Contours -> 200, ContourLines -> False, AspectRatio -> 798./654.,

ColorFunction -> "Temperature"], 0.6}], {t, 0, 11.5, 0.5}]

These frames can be exported into an animation.

ani = ListAnimate[frames, DefaultDuration -> 20,
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Paneled -> False] /.(AppearanceElements -> _) ->

(AppearanceElements -> {})

Export["animation1.avi", ani]
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