
 1 

Why recessive lethal alleles have not disappeared? 
Jorma Jormakka 

jorma.o.jormakka@gmail.com 

 

Lethal recessive alleles are gene alleles, which either are lethal for a homozygote, or were so 

in past centuries. They cause rare serious diseases including Cystic Fibrosis (carrier frequency 

1/24 in Northern Europeans, see [1]), Tay-Sachs disease (1/30 Ashkenazi Jews), Gaucher 

disease (1/15 Ashkenazi Jews), α-Thalessemia (1/25 Chinese and SE Asians), β-Thalessemia 

(1/30 Greeks and Italians). Most of these diseases can be caused by several different 

mutations, but the disease is expressed by a homozygote of a single mutated allele. In the past 

a homozygote of a lethal allele died before reaching the reproductive age, thus two mutated 

alleles carried by a homozygote were removed from the gene pool in every generation. We 

would expect that such deadly diseases became less frequent in each generation and they 

would vanish after a certain time and consequently the lethal alleles we now can observe must 

have been created relatively recently. Yet this is not the case: the age of the most common 

allele causing Cystic Fibrosis is estimated as 52,000 years. There must be some mechanism 

keeping these extremely harmful alleles in the gene pool.  

One proposal is that a heterozygote of the mutated allele has a selective advantage. 

The classical case of a heterozygote advantage is the Sickle Cell disease. This disease is not 

quite lethal for a homozygote but causes a serious illness. The disease has the carrier 

frequency 1/12 in African Americans and relatively higher carrier frequencies in areas where 

malaria occurs than in areas without this infective disease. It has been demonstrated that a 

heterozygote of the Sickle Cell disease has partial immunity towards malaria. However, 

heterozygote advantage has not been sufficiently well demonstrated for any of the mentioned 

recessive lethal alleles, though it has been suggested, for instance, that Cystic Fibrosis gives 

partial protection against cholera [2] and the Ashkenazi Jewish diseases may offer a cognitive 

advantage for a heterozygote [3]. The explanation of the persistence of recessive lethal alleles 

by a heterozygote advantage is weak, and in this analysis it will be shown that this 

explanation cannot be correct since it would lead to a different ratio between the disease 

prevalence and the carrier frequency than what is observed.  

The second proposal for an explanation is a founder effect followed by a genetic drift. 

It is of course possible that among a small number of founders several have the same rare 

disease and in this way the mutated alleles become enriched in the population. A genetic drift, 

especially in small populations, can still increase the frequency of mutated alleles. The 

problem with this explanation is that such a process would be very unlikely e.g. in the case of 

the main allele of Cystic Fibrosis (CF). It will be shown in this analysis that a recessive lethal 

allele would vanish from the population in 50 generations unless there is a mechanism 

keeping it in the population. A generation is about 30 years. The main allele of CF is 52,000 

years old. That is about 30 times longer than the time for the allele to disappear. We should 

assume that a founder effect occurred some 30 times. As such a founder effect must be a quite 

rare event it cannot have a probability very close to 1. This probability, what-ever it is, raised 

to power 30 gives a number very close to zero.  There is a nano-scale chance that a sequence 

of 30 founder effects could be the correct explanation why the CF allele still is there.          

 After discarding these two common proposals a “new” mechanism is proposed. There 

is nothing especially new in this mechanism as such: it is just that certain family lineages tend 

to have many children and this alone can in about 8-10 generation produce observed carrier 

frequencies for recessive lethal alleles in the population. Still in the present context the 

proposal seems to be new as the only mechanisms that usually are suggested are heterozygote 

advantage or founder effect with a genetic drift. 
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Genetics of such a system is easy: every mutated allele can be considered separately as 

a system of two alleles: the original allele A and the mutated allele a. If the mutated allele 

brings neither selective benefits not disadvantages, the relation between the frequency of 

homozygote (aa) of allele a and heterozygote (aA) can be calculated from Hardy-Weinberg 

equilibrium [4][5]: assuming that the probability of allele a is x , then the probability of A is 

)1( x . Thus the probability of two alleles a is 2x  and it is the probability of a homozygote 

aa. In a similar way the probability of a homozygote AA is 2)1( x and consequently the 

probability of a heterozygote is )1(2)1(1 22 xxxx  . Denoting the probability of a 

homozygote by q  and of heterozygote by p we get 2xq  , )1(2 xxp   and the probability 

of homozygotes AA is 2)1(1 xqp  . Eliminating x  yields qpqp  12  whence 
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This is the steady state solution of a two allele system assuming that the mutated allele gives 

neither advantage not disadvantage, but with a lethal recessive allele homozygote aa naturally 

have a major disadvantage. We can model a system, which is not in a steady state by using 

recursion formulas. Let np  and nq  be the frequencies of heterozygote aA and homozygote aa 

respectively in a generation n , thus np  is the carrier frequency and nq  is the disease 

prevalence as a function of time given as number n  of generations from the beginning.  

Two AA parents will have only AA children. This occurs with probability 
2)1( nn qp   as each parent comes from a pool of AA homozygotes, which has the 

probability ).1( nn qp   Similarly, two aa parents have only aa children and this event has 

the probability 
2

nq . The probability of the case of aA having children with AA is 

)1(2 nnn qpp  . Half of the children will be AA and half aA. Similarly aA-aa has the 

probability nnqp2 . Half of the children are aA, half aa. Two aA parents producing children 

has the probability 2

np . Half of these children will be aA, one fourth AA and one fourth aa. 

The final case is AA-aa. This event has the probability nnn qqp )1(2   and all children are 

heterozygotes aA. 

Let us insert two nonnegative parameters   and   to describe heterozygote 

advantage and homozygote disadvantage respectively. These parameters increase or decrease 

the number of children for a couple having certain combination of alleles a and A. For a lethal 

allele a no heterozygote aa can have children. Thus aa-aa have children of type aa with the 

probability 
2

nq  in the generation 1n  where 0 . Likewise, aa-AA have children, all aA, 

with the probability nnn qqp )1(2   in the generation 1n  with 0 , and aA-aa have 

children with the probability nnqp2  in the generation 1n  with 0 .  

There are three combinations aA-aA, aA-AA and aA-aa, where the heterozygote aA 

appears but we give the heterozygote advantage only to the case aA-aA. This is done by 

modifying the original model so that if both parents are aA, then they produce more children. 

We define that the children of aA-aA have the probability 2

np  in the generation 1n , that is, 

these couples produce   times as many children than AA-AA couples. Half of these children 

will be aA, one fourth AA and one fourth aa. 

The reason for not giving a heterozygote advantage to the case aA-aa is that as we are 

mostly interested in lethal allele a,   is zero and aA-aa have no children. It does not matter if 

we multiply zero by any  . The reason why we do not give a heterozygote advantage to aA-
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AA is that it is not possible to find a steady state solution for small p  if we do so and the 

carrier frequency p  for recessive lethal alleles is on the range of 1/25. Consider what would 

happen if we multiply the number of children of aA-AA couples by  . The leading term of 

p  for the number of heterozygote children is obtained from children of the couples aA-AA 

and it would be p  as the leading term of )1(2
2

1
qpp  , here always 2pq  .  The two 

leading terms of p  for the number of AA children are obtained from AA-AA and aA-AA 

couples and the terms would be p)2(1   from )1(2
2

1
)1( 2 qppqp   . If the 

system is in a steady state, then ratio of aA children to AA children must be the same as the 

ration of aA parents to AA parents. Thus 
p

p

p

p

)2(11 







 where   indicates that we 

ignored )( 2pO  terms. This equation can only be satisfied if p  is close to ½. So, for recessive 

lethal alleles we cannot give recessive advantage to the case aA-AA. 

 

It is rather natural to give a recessive advantage to the case aA-aA. In the case aA-AA 

no children is a homozygote of the type aa and in the past the parents cannot have known that 

one of them is a carrier, but for the case aA-aA the situation is different: one fourth of their 

children die young. The parents may have tried to compensate this situation by having more 

children. This is mathematically a heterozygote advantage even though a heterozygote has no 

real gain from one copy of the lethal allele. However, as will be seen, here is a surprise. We 

may initially think that if aA-aA parents simply have 4/3 times as many children as AA-AA 

parents, then they have effectively compensated to the lethal allele, but this is not so. The 

steady state requires that the number of aA heterozygotes stays the same from parents to 

children and a lethal allele removes the children of AA-aa, which is the second largest term of 

p contribution to the number of aA children and has the leading term 22 pq   from 

)1(2 qpq  . Indeed, to compensate 0  it will be seen that we need 3 .  

It sounds unrealistic that aA-aA couples would have had in the past three times as 

many children as AA-AA couples, but that is what the following calculation shows for a 

steady state solution and the idea in recessive advantage is that it is a steady state solution: 

loss of heterozygotes aA because of the lethal homozygote is compensated by more children 

because of recessive advantage.  

If 1   we have the original system and we get the Hardy-Weinberg equilibrium. 

If 1 , 0  the system cannot be in a steady state. The allele a is decreasing in each 

generation and we can estimate how fast the allele is removed from the population to 

undetectable frequencies. If 0 , there is a value   which gives a steady state solution. 

Then   is greater than 1 and it is the heterozygote advantage. Naturally we could select   

greater than one and study homozygote advantage, but this is not done in the present analysis.  

The scaled recursion equations from generation n  to generation 1n  are: 

 
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where the scaling factor s  is the total probability  

 222 22)1(1 nnnnn qqqqps   .      (3) 
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Dividing by s  assures that the total probability of equations (2), which is 1 in the generation 

n , stays as 1 in the generation 1n . Assigning 1   yields 1s  and 

0
4

1 2

1

2   nnnnn pqpqq . 

We can see that the system has a steady state solution ppp nn 1 , qqq nn 1  giving 

the Hardy-Weinberg equilibrium (1). If 1 , 0  there is no steady state solution. We 

will make a simple approximation of the solution. To make it simple, we will not scale the 

equations as in (2) by dividing the equations with s . Then for 1 , 0  they are 

2

1
4

1
nn pq     and         (4) 

  nnnnn pqppp  1
2

1 2

1 . 

If np  is small to start with at 0n , scaling by dividing with s  makes little difference. We 

will assume that np  is so small that )( 3

npO  terms can be ignored. The equation for 1np  

reduces to  

2

1
2

1
nnn ppp   . 

This equation is approximately solved by  
1

2
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which satisfies 

 32
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1 

  NOppp nnn . 

In order to use this solution, N , the total number of generations must be so large that 3N  is 

ignorable. As the carrier frequency np  is on the range of 1/25 for most recessive lethal 

alleles, 25N  should be enough. The constant C  in (5) is fixed by the initial value for np . 

Indeed, from (5) follows that  

np
pn




1
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2
 ,  
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p

n 


10
2

2
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Necessarily npn 12  must be larger than zero in the second equation. It is just stating the 

condition that np  is decreasing in each generation and cannot have been higher than one in 

generation zero. Thus, if the allele a is still detectable at carrier frequency np  in the 

generation n , there is a maximum number of generations it can have been decreasing. For 

Cystic Fibrosis np  has the value 1/24 today. Consequently n  must be smaller than 48. That 

means some 1450 years. The solution is approximation and cannot give precise values. Yet 

the age 52,000 years for the main allele of CF is too much at odds with this approximation. As 

promised in the beginning, this mathematical argument shows that some kind of mechanism 

must keep recessive lethal alleles in the population. Else we would only see relatively recent 

lethal mutations.  

 No more elaborated argument against a founder effect and genetic drift than was given 

in the beginning will be offered, but the possibility of heterozygote advantage will be 

analyzed. This advantage means that for 0  there is 1  that keeps the lethal allele in the 

population. Over all these generations the lethal allele has not replaced the healthy allele but 

has a rather small carrier frequency. This means that the system must be in a steady state and 
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frequencies of np  and nq do not any more depend on n . We set ppp nn 1 , 

qqq nn 1 in (2) and solve   from both equations: 
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Eliminating   gives an third order equation of q with parameters   and p  
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A third order equation has an exact solution, but it is inconvenient. Assuming that p  is small, 
2pq   is so small that the term 3q  can be ignored and as an approximation, we get a second 

order equation for q . The solution has a square root, which can be expanded as a power series 

of p , which is assumed small. In order to see what size of an error we are introducing by 

dropping the third order term 3q , we can do this approximation when 1 . When 1  

equation (7) reduces to (1) and yields the exact solution of Hardy and Weinberg. In our 

approximation we get by setting 1  in (7) the third order equation 
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which we approximate with a second order equation, solve it and expand to a power series of 

p . The result is  
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while the Hardy-Weinberg solution expanded as a power series yields  
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The difference is )( 4pO  and ignorable for realistic values if p for recessive lethal alleles. 

Thus, the approximation is sufficiently good for our purposes, but if p  is larger, this method 

must be used with care. For arbitrary   the approximation gives (to )( 4pO , which is the 

highest precision we can get) 
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Let us evaluate the solution (8) for some values of  : 

If 1 , then 0 BA , )(25.025.0)(
4
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If 0 , then 1 BA , )(06.175.0)(
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4
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If 2 , then 
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45
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Heterozygote advantage   can be solved by inserting   and the approximation of q  into (6). 

For )( 33

2

2

1 pOpcpcq  equation (6) gives )()(44 2

121 pOpccc   : 

 If 1 , )(1 2pO  (in this case the exact solution for   is 1.)  

 If 0 , )(24.43 2pOp  . 

 If 2 , )(82.063.0 2pOp  . 

We see that in all cases 2pq  , but the coefficient is different. For all recessive lethal alleles 

the values announced in literature for the disease prevalence q are related to the carrier 

frequency p  in the way that is very close to the Hardy-Weinberg equilibrium  

 32
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1
ppq  . 

In some cases this may be a result of measuring only the disease prevalence and 

calculating the carrier frequency from the Hardy-Weinberg formula, but at least [1] contains 

direct measurements of carrier frequencies and announces also how many homozygote cases 

the test sample contained. The sample in [1] is sufficiently large for measuring the carrier 

frequency, while it may be too small for estimating the disease prevalence in the sample. 

There fortunately are better values for the disease prevalence. There are certain problems 

arising from the composition of the samples in [1], but the results seem to fit to the Hardy-

Weinberg equilibrium, or to the exact non-steady state un-scaled solution 2

4

1
pq   when  

0 , 1 . The difference between these solutions and the steady state scaled solution for 

0 , 3 with 32 06.175.0 ppq   is so large that it should be seen in the sample of [1]. 

Consequently, the explanation of persistence of recessive lethal alleles because of 

heterozygote advantage must be discarded. It can also be questioned if recessive advantage is 

the only mechanism in the Sickle Cell disease. In that disease recessive advantage is a likely 

cause, but not necessarily the only cause for the observed carrier frequency. 

The final contribution of this analysis is a proposal of a mechanism that can explain 

why recessive lethal alleles do not disappear. The argument is based on a simple model, 

which is not in every respect realistic, but illustrates the mechanism sufficiently well. The 

idea is that many family lineages tended in the past to have about the same number of children 

over several generations. Thus, there were family lineages where most women had a large 

number of children, and the number could be higher than what was customary in the general 

population. This is still the case in some religious sects, which do not practice birth control 

and consider children as gifts from God. The proportion of people in a population originating 

from these family lineages grows over generations and if one such lineage included carriers of 

rare diseases, the carrier frequency of the population grows.  

The model is a Markov model, which is constructed to be easy to analyze. Let jns ,  be 

the fraction of the population of generation n  being born into a family of j  girls who grow 

old enough to reproduce. This implies that the state (n,j), which has the state probability jns , , 
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contains also women born into a family where both the mother and father were heterozygotes 

and more than j  girls were born but homozygotes died before reaching the reproductive age. 

Naturally, the recessive disease is not the only reason why children die before reaching the 

reproductive age. Most families faced this situation.  

For the model we take a birth and death process: 

 1,1,,,1 )1()1())1()1(1(
1

  jnjnjn

n

jn sjsjsjj
s

s  . 

Here ns  is the scaling factor to get the total probability to remain at one. The term 

1,)1(  jnsj   describes women, who were born into a family of 1j  daughters who grow up 

to reproduce, but who themselves have j  daughters. The parameter   describes the 

probability of having one daughter more than the mother, while the multiplier 1j  indicates 

that all 1j  daughters have this decision to make. In a similar way, the term 1,)1(  jnsj   

describes women, who were born into a family of 1j  daughters who grow up to reproduce, 

but who themselves have j  daughters. The parameter   describes the probability of having 

one daughter less than the mother, while the multiplier 1j  indicates that all 1j  daughters 

have this decision to make. The remaining term jnsjj ,))1()1(1(    describes those 

women who have the same number of daughters as their mother.  

Assuming that the system is in a steady state, the flow in and out of state (n,j) are 

equal:  

jnjn sjsj ,1,)1(      

yielding the solution 

 1,

1

1,

1

1,,

1

2

1
...

)1(

)2()1()1(
n

j

n

j

jnjn s
j

s
j

j

j

j
s

j

j
s 

 






 




 , 




  .  (9) 

The scaling factor ns  is the sum of the state probabilities: 
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Setting 1ns  fixes 
))1/(1ln()1ln(
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As 1ns  the recursion simplifies to  
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The average number of girls in generation n  (women in generation 1n ) is  
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In distant history human population growth was very small. In this simple model 1Av  

corresponds to a population with zero growth, that is, one daughter implies two children in 

average. This value for Av  gives a small   and we can determine   from a power series 

expansion of the logarithm: 

)(
2

1
1

)(
2

1

1

1

1
1 2

32






O

O






 ,  

so if 1Av , then 0 , but we cannot select 0  because then the system does not reach 

the steady state solution that was calculated before. In order to reach it,   and   must be 

positive. Let us set 1.0 . Then 055.1Av , which is very close to zero growth. The total 
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fertility rate is the double of Av , 2.1, and it is very close to the minimum for sustaining a 

population. We can also notice that the value 72.0  gives 02.2Av  implying about 4 

children per woman, that is 2.3% annual growth and 30 years (=one generation) doubling 

time. Before modern times such growth rates were a rarity.  

Selecting   does not fix   and  , only their relation, and the absolute values of   

and   are important for determining the average number of descendants in the nth generation 

for a family, which started with j children at the generation zero. This is obviously so because 

if 0   , all daughters of the family lineage will have j daughters reaching the productive 

age. Then the number of women grows as nj  and the population as nj2 . We cannot select 

0  , because that implies that after some time the whole population grows as nj2 , 

where j  is the highest number of daughters any woman of the zero generation had. However, 

we can set   and   to small positive values. Doing so, we can estimate the number of female 

descendants of a single woman of the zero generation having j  daughters, who reach the 

reproductive age.  

If   and   are small, it is sufficient to calculate only one or two state changes from 

one j  value to another in the whole run of generations from 0 to n . In the beginning all 

probability is in the state (0,j), i.e., 1,0 js . No state changes gives the following contribution 

to (n,j):  
n

j

n

jn jjsjjs ))1()1(1())1()1(1( ,00,,   .   (12) 

If there is only one state change in the run, there is no contribution to (n,j), while from two 

state changes there are. The state can change from (m,j) to (m+1,j 1) and back from (r,j 1) 

to (r+1,j) giving second order contributions to  

 






 
n

m

n

mr

mrrnm

ajn jjjjjjs
0

1

1

2,, ))2(1())1()1(1()1(  , 

 






 
n

m

n

mr

mrrnm

bjn jjjjjjs
0

1

1

2,, ))2(1())1()1(1()1(  . 

For simplicity we ignore from now on the second order contributions. Thus, (12) is the 

approximation of the state probability of jns , . The (first order) approximations of the state 

probabilities 1, jns  and 1, jns  are respectively 






 
n

m

mnm

jn jjjjjs
0

1, ))2(1())1()1(1(  , 






 
n

m

mnm

jn jjjjjs
0

1, ))2(1())1()1(1(  . 

The number of female descendants with j  daughters of the one woman in the zero generation 

is approximated by 
nn

j jjjNum ))1()1(1(   . 

If   and   are very small, we can ignore even the first order terms and keep only this term. 

It is essentially nj . Including male descendants, the woman has nj2  descendants and if the 

woman was a carrier, half of the descendants are carriers of the lethal allele. As the total 

population has negligible growth, the carrier frequency of the population reaches relatively 

high levels because of this exponential growth. This exponential growth does not continue 

infinitely. It stops when n  is on the range of 1))((  j . We may estimate that this n  could 

be about 10 by the following reasoning.  
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Human female has a upper limit for number of children probably around 16, but very 

large families, where children grow up to have their own children, must have been rare. We 

probably can ignore families with more than 4 daughters. For 4j  daughters 10n  

generations of growth approximated by ))(1(   njj n gives about 1 million female 

descendants to the generation n , that is two million people. If  11)1( 1    (we 

have selected 1.0 ) is sufficiently much smaller than 40/1)( 1 nj , the growth is almost 

exponential. That means that 440/1 , which is small but not necessarily impossible in this 

simple model. It very much depends on the value selected for  . 

Two millions is 4%, that is 1/25, of 50 million, which in the past was a large 

population. We see that in ten generations observed carrier frequencies can be reached by a 

family lineage which has 8 children per woman. For 3j  ten generations of growth 

produces 118,000 people. It is about 4% of 3 million. That is a more typical size that a 

population, which today has diseases caused by recessive lethal alleles, may have had 300 

years (=10 generations) ago. For 2j  we get 2000 people in 10 generations, for 1j  the 

number stays at one and the case 0j  there are no daughters.  

Assuming that the woman, who starts this family line at the generation zero, is a 

typical member of the larger population, the probability for her to have j  daughters living to 

a reproductive age is 

11 1

))1/(1ln(

1  


jj

jj





  

Multiplying this probability by the number of descendants in the generation 10n  and 

summing over the values 4,...,0j  yields the average number of descendants: 

 994000,000,21.0
4

1
000,1181.0

3

1
20001.0

2

1
10 32 sDescendant . 

The woman was a heterozygote for a lethal allele having the carrier frequency p  with the 

probability p . We may assume that her husband mostly was AA, as a is a rare allele. Thus, 

half of her children were carriers. Half of the children are boys and we may assume for 

simplicity that all boys were AA and all girls aA. This way it is not necessary to track the 

boys. All daughters in all generations are therefore carriers in this calculation. If the woman of 

the zero generation was a carrier, she produced 994 carriers to the 10th generation. 

 At the same time the number of heterozygotes aA decreases by a considerable factor. 

Since 0 , the couples AA-aa do not exist and they do not produce 

qqpq 2)1(2  carriers. The couples aA-aa also do not exist, but their contribution is of 

the order )( 3pO . From (2) we can see what is missing if 1 , 0 to the steady state 

solution 1  . The carrier frequency decreases in each generation by a fraction  

np
2

1
1 . 

As 10 generations is a short time, np  does not change very much and we can estimate that the 

change is about  









 ppp

2

1
101 . 

If p  is originally about 1/25=0.04, it decreases to about 0.032. At the same time we get 993 

new carriers. In order 0.8% of the population (0.04-0.032) to be 993, the population size 

should be 124,125.  
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 This is of course a very simple conceptual model and cannot be fully realistic. Yet it 

shows that if family lineages have a practice of getting the same number of children to 

adulthood as their parents did, which is about the same as making the same number of 

children, then it creates a pump, which increases the number of heterozygotes and can balance 

the loss of heterozygotes due to the death of homozygotes. Is there any reason to think that 

there were such practices in the past? The age of the main allele of Cystic Fibrosis, unless the 

dating will be revised, takes us back to the Stone Age. Hunter-gatherer societies usually have 

few children because many children restrict the mobility of women. As Hunter-Gatherer 

women get pregnant in a normal way, such societies practice infanticide: only one child, who 

cannot walk alone, can be nursed by a woman. This implies that the time between children is 

typically 3-5 years. As a woman reaches maturity at around 15 years and the life length 

around 35 years, a woman could raise 4-6 children, but as such societies tend to be violent, 

few lived long. Usually only tribal chiefs had more wives, often 2-4, and consequently more 

children, but that does not increase female fertility. It seems that there was no possibility for 

families with a large number of children, which is required by the mechanism proposed here. 

However, this may be a too fast judgment. There could have been areas and times when food 

was abundant, women could be semi-sedentary and nurse the children, or something else. 

 From the time of sedentary habitation, first in the Levant already before agriculture, 

family sizes could grow and families with 6 to 8 children were more like a rule in agricultural 

societies. Still the population grew very slowly, much below 1% annually. These facts can be 

combined by an assumption that most children did not reach the reproductive age, or that 

many adults died young, were widowed, taken to slavery, or for some other reason did not 

raise a large family. Some family lineages did and the gene pool probably was all the time 

changing with more fertile lineages replacing less fertile ones. Some may see here a place for 

natural selection, some only a play of chance. Such a situation explains why some religions 

gained support much easier than lends support to the forces of natural selection. Fertility cults 

and later patriarchic religions, which forbade infanticide, created family lineages which 

produced many children. Such lineages grew to represent the majority of the society.  

 Can this be a better explanation to the puzzle of Ashkenazi Jewish intelligence, 

pondered in [3]. Probably not for intelligence, but it may explain their collection of rare 

genetic diseases. Ashkenazi Jews had for about 800 years population growth rate about 1.4% 

annually. It was much higher than in the host society. A high growth rate implies large 

families and while 1.4% per year (50 years doubling time) means only doubling in two 

generations (setting the female generation to 25 years for simplicity), which is 2.8 children 

per woman, some family lineages almost certainly grew much faster. The pump mechanism 

described here could have contributed to keeping recessive lethal alleles in the population. It 

could also make non-lethal, even advantageous, alleles more common, but this is not the topic 

of the present analysis. In any case, the mechanism was not simply recessive advantage if 

understood in a simple way that heterozygotes had more children grown to the reproductive 

age. 

 A positive side in this is that as family sizes today are small in developed countries, 

such a pump mechanism cannot work. Recessive lethal alleles would be purged out of the 

population, unless modern medicine makes them non-lethal and the removal mechanism is 

blocked. That this can be so may be shown by Finns not having Cystic Fibrosis even though 

Finns have a large portion of genes from European Western Hunter Gatherers, who 

presumably had this disease as it is common in Northern Europe. If Finns had smaller 

families, the disease was purged out. Interestingly, the same mechanism may slow down 

evolution, but that topic I will leave to another time.  
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