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Abstract

Within this paper, I combine ideas from information theory, topology and game theory, to
develop a framework for the determination of optimal strategies within iterated

cooperative games of incomplete information.

1 Foreword

In this paper I aim to provide a sensible formulation of Game Theory. I discuss
normal games, then iterated games. Consequent to this, I intend in a later paper to
look into meta games, with and without iteration.

2 Game Theory: foundation and approach

2.1 Preliminaries: A formulation of Game Theory

LetAi, i ∈ {0, 1, 2, 3} be CW complexes. Consider a := (a0, a1, b0, b1) ⊂ (A0, A1, A2, A3) =:
A, with ai CW complexes, as a point. This will be a point in ∆ := δ4, where δ is the
space of triangulations of an Alexandrov space of maximal complexity (the universal
Alexandrov space Ω).

Now, we are interested in functions g : ∆4 → R for each a ∈ A. This defines a
game, where g is the payoff function.

Let now a0, a1 have the interpretation as being coalitions of agents (note as a
special case these can be single agents, or null). Furthermore, let b0, b1 have the
interpretation as being choices for each coalition in turn (presumably defined over
use of abstracted resources in the game; i.e., b0, b1 can be viewed as ’arrows between
resources’, rather like functions can be viewed as arrows between points (in category
theory)).
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Example. (Special Case). A0, A1 are points, and A2 and A3 are each sets of two
disjoint points {0, 1}. Let g be the matrix that maps (0, 0) to 1, (0, 1) to 2, (1, 0)
to 0, and (1, 1) to 3. Then this game is clearly equivalent to the prisoner’s dilemma
(the two disjoint points 1 and 0 can be viewed as ’cooperate’ or ’defect’).

This however seems a little bit of an unsatisfying interpretation - ideally we
would like to construct an analogy with three dimensions of space and one of time,
for instance. Suppose instead then that a0, a1, a2 are coalitions of agents, and a3 is
an accord between these three coalitions. What would this mean, and how would
this reduce to the Prisoner’s dilemma above?

The interpretation here would be that for (a0, a1, a2) a decision a3 has been made
that is binding on all coalitions. Then g(a) determines the payoff.

But this is still not entirely satisfactory. We ideally want g to take as a parameter
a coalition of players, and determine what the outcome should be as a consequence
of one (or more) decisions.

Suppose then we have the following: a0 is our coalition, and a1 is the decision as
to how to compete with a second coalition, a2 is the decision as to how to compete
with a third coalition, and a3 is the decision as to how to allow for the second
coalition competing with the third.

Example: A representation vector over ∆

Perhaps then we are interested in a payoff function that takes three coalitions
as parameters: a0, b0, c0, and computes g(a, b, c), where b1, b2, b3 are defined in an
analogous way to the ai; similarly for the ci; a = (a0, a1, a2, a3), b = (b0, b1, b2, b3), c =
(c0, c1, c2, c3).

So, we are consequently interested in functions g : ∆ × ∆ × ∆ → R. We will
recast this as our definition of a game, where g is the payoff function.
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Example: Computation of payoff

Then, with this change of structure, we can reformulate the Prisoner’s dilemma
in the following way:

Example. (Special Case revisited). We only have two players, so we can treat c as
null. Since c is null, we need consider only a = (a0, a1) and b = (b0, b1). a0 and
b0 are points, so we can reduce further; a and b then become the decisions a1 and
b1, which can each be either cooperate or defect. Then g(a1, b1) takes four possible
values, which is clearly equivalent to the Prisoner’s dilemma.

For a game, we define an optimal decision as being the choice that gives maximal
payoff for a coalition of agents, assuming that every other coalition is also striving
for an optimal decision. The choice reached in this way is the Nash equilibrium.

We are now ready to pose our first question:

Question 2.1. (Making an optimal decision in a game). Given a (cooperative)
game, what is the optimal decision for a coalition of agents to make?

Remark. Note that this should be in line with intuition regarding the nature of
finding a Nash equilibrium.

To make progress on this, we need to introduce the idea of a decision metric.

Definition 1. (Decision metric). For a game g, a decision metric is a map σ :
T∆3 × T∆3 → R, where T∆3 is the Lie Algebra associated to ∆3, if ∆3 is viewed
as a Lie Group with the natural multiplication a ? b := a ∩ b, where intersection
is by each and every coordinate component. Multiplication on T∆3 then is given
by v ? w := v ∩ ∂w, where ∂ is the boundary operator applied to the CW complex
vector w, and we moreover have a relation (the Baker Campbell Hausdorff formula)

exp(v) ?∆ exp(w) ≈ v + w + ∂[v, w]∆
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where [v, w] := v ∩ ∂w − w ∩ ∂v is the Lie bracket for T∆3.

We can then construct an information in terms of this decision metric for our
game:

I(σ) :=
∫

∆3

∫
λ
(∂ln ◦ f)2fdρdX

where f(X, ρ) = δ(σ(X)− ρ).

Remark. (Equivalence of the information and the payoff function). Note that I can
just be viewed as a payoff function g.

Taking the first variation δI(σ) = 0 gives us a relation via the Cramer-Rao
inequality of ”R(σ) = 0”, where

R = σijΓ
l
ikΓ

k
jl

with

Γkij := 〈∂kvi, vj〉

where ∂k is the simplicial boundary operator with respect to the kth component
of the CW complex vector v.

Then, we can solve for σ, which then becomes our ”optimal decision metric”.

Consequently, optimal decisions over our game g then lie along geodesics of σ,
which answers our first question.

2.2 A step further: Iterated games

Interestingly, we have only a functional over what, for smooth geometry, would
involve a meta-functional over a set of functionals (see for instance [7]). So this
raises a separate question - if a sideways step in abstraction involved simplifying:
to go from smooth geometry to discrete geometry - and then abstracting: to go
from numbers as coordinate components to jump to CW complexes as coordinate
components - as to what a second sideways step might look like.

We would expect indeed a second sideways step to exist, and be characterised as
a structure that has upon it defined a function h : G5 → R, where G is our structure.
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Suppose G represents a triangulation of the space of functions f which map from
∆ to ∆, written equivalently as ∆(1). But then we have the correct ingredients for
the concept of an iterated game.

But what is an iterated game? Intuitively, an iterated game is a game that runs
over many iterations. We would expect the nature of such a game, then, to be more
complex than a normal game.

Definition 2. (Iterated game). Let ∆(1) be a natural triangulation of {f |f : ∆ →
∆} (the set of functions mapping ∆ to itself). Then an iterated game is a map
h : ∆(1) × · · · ×∆(1) → R, where 5 copies of ∆(1) are taken.

Remark. To quantify this slightly, let (v0, · · · , vn) be a chain in ∆. Then f could
be thought of most simply as a map that extends from chains, in the way of f :
(v0, · · · , vn) 7→ (w0, · · · , wm). In this way, ∆(1) is generated by elements fnm that
map from n-simplices to m-simplices. Then a simplex in ∆(1) can be viewed as some
element (fn0m0 , · · · , fnkml

), i.e. a vector of size k × l where nk,ml ∈ N .

Example: Element in ∆(1)

(We would have five elements like this of various lengths if we were interested in
mapping to a number in the reals for our iterated game.)

For an iterated game, we define a strategy as an approach to making decisions
(that could, for instance, either reward or punish other coalitions playing), that is
formulated with the goal in mind of achieving the best long term payoff (although
it may not achieve this, and generically will not if it is sub-optimal). Strategies for
iterated games tend to be different than decisions of one-off games.

We are now ready to pose our second question:
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Question 2.2. (Finding optimal strategies). Given an iterated game, what is the
optimal strategy for a coalition of agents to take in order to make the best long term
payoff?

One might wonder if one would need to use nested functionals to answer this
question. However, such iteration should only be necessary if we have a sequence
of embedded games - a special case of which is if we have a metagame with one or
more child games (say perhaps four games subsidiary to the metagame).

So, how can we compute an optimal strategy given an iterated game h?

Define a three tensor τ : T∆(1)5 × T∆(1)5 × T∆(1)5 → R. Define a cybernetic
information I(τ) in the usual way. Again, this can be viewed as our payoff h. Then
by the Cramer-Rao inequality, I(τ) ≥ 0. Setting the first variation of I(τ) to zero
leads us to determine a relation for τ :

R = τijkΓiabcdΓjcdefΓkefab = 0

with

Γijabc := 〈∇ijva, vb, vc〉

where va, vb, vc ∈ T∆(1)5, and ∇ij is the induced simplicial boundary operator on
T∆(1) with respect to the i−jth component of ∆(1)5 (for f : wi 7→ wj, wi, wj ∈ ∆(0)3).

Then optimal strategies for coalitions of players in h are geodesics with respect
to τ , answering the question above - ie, they are surfaces S in ∆(1)5 such that
∇TSS = 0, for TS to represent the tangent space to S in ∆(1)5.

Remark. (Neural networks). In a neural network with layers Li, i ∈ {0, · · · , N},
each with nodes Nij, j ∈ {0, · · ·M}, we have transition weights wijk from Nij to
Ni+1,k. If we simplify the structure of our iterated game to merely be a grid of
0-cells, and further simplify the allowed possible connections between them, then τ
could actually be viewed as a representation of the weight tensor w. In this way,
Neural Networks are a special case of the theory above.

2.3 An application: The cybernetic triumvirate of problems
in machine learning

One might ask three questions in machine learning:
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• What is the game, given that we have data concerning inputs into it, and
outputs from it? (observation),

• What is the optimal strategy, given that we know the game? (decision), and
finally

• What is the effect of choices of strategy, whether optimal or suboptimal, by
all coalitions of players, on the shape of the game? (anticipation)

In the considerations so far, we have focused on the second question. But what
about the first and the third?

Note that this seems to also be characteristic of decision making in an iterated
game; so perhaps we have already solved this problem? In particular, note that we
can define our game from the metric, so we have answered questions one and two;
certainly if the metric is suboptimal then the payoff will be nonzero.

And, in an iterated game, from before we have that geodesics are surfaces in
∆(1)5, with each iterate being a path in that surface. So it is clear then that we have
solved for the third question as well, in a manner of speaking.

Turning to application of the theory developed, it seems to me that programming
a computer to implement a solution to the previous section is indeed a solution
to this three fold question for single instances of a one-off game that are chained
together, and would necessitate either implicitly or explicitly computing solutions
to the above three machine learning questions.

In particular, we can formulate the following chain of definitions:

Definition 3. (Intelligence). Intelligence is the capacity to make decisions under
uncertainty; i.e., for any game, given limited information as to the nature of said
game, who the players are, and what their actions might be - then intelligence is the
capacity to make decisions and formulate strategies within such a situation.

In particular, a system displays intelligence if it can formulate an approach to
making decisions in an iterated game under uncertainty, i.e. incomplete information
as to the strategies of other players.

And one system, system A, is more intelligent than another, system B within a
particular game G, if it can formulate more effective strategies to achieve a better
payoff within G when competing against that other system, amongst potentially
additional observants.
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If this holds for the majority of games that these systems can play with respect
to some suitable measure µ on the space of games, then we say that system A is
smarter or more capable than system B with respect to measure µ.

3 Further Work

In the next paper I will discuss the theory of meta games, with and without iteration.
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