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Abstract  

This paper attempts to cluster leukemia patients described by gene expression data, 

and to discover the most discriminating genes that are responsible for the clustering. A 

combined approach of Principal Direction Divisive Partitioning and bisect K-means 

algorithms is applied to the clustering of the investigated leukemia dataset. Both 

unsupervised and supervised methods are considered in order to get optimal result. The 

combination of PDDP and bisect K-means successfully clusters leukemia patients, and 

efficiently discovers salient genes able to the discriminate the clusters. The combined 

approach works well on the automatic clustering of leukemia patients depending merely 

on the gene expression information, and it has great potential on solving similar problems, 

like classifying pancreatic tumors. The salient identified genes may thus enhance relevant 

information for discriminating among leukemias.
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1. Introduction  

The rapid development of the DNA micro-array technology is making it more 

and more convenient to obtain various gene expression datasets with abundant information 

that can be very helpful for many meaningful biomedical applications such as prediction, 

prevention, diagnosis and treatment of diseases, development of new drugs, patient-

tailored therapy, precision and personalized medicine. However, these datasets are usually 

very large and unbalanced, with the number of genes (thousands upon thousands) being 

much greater than the number of patients (generally from tens to hundreds). Consequently, 

how to analyze effectively this kind of large datasets with few samples and numerous 

attributes, for example, how to classify according to their gene expression profile the 

patients suffering from certain disease, or how to determine from thousands of genes the 

most discriminating ones that are responsible for the corresponding disease, should be 

viewed as an important issue.  

In the recent decades there have been many exciting research results in the area 

of DNA micro-array data mining on the basis of gene expression data analysis. For 

instance, to cite a few pioneer results, depending solely on gene expression monitoring to 

micro-array datasets, Golub et al (1999) classified sample patients of acute leukemia as 

two sub types, ALL (Acute Lymphoblastic Leukemia) and AML (Acute Myeloid 

Leukemia), and predicted the sub types of new leukemia cases according to the expression 

values of the most decisive genes that were discovered during the classification of sample 

cases; Scott et al (2002) discovered a new sub type of acute leukemia, MLL (Mixed 

Lineage Leukemia), claimed as distinct enough to be separated from ALL or AML; In a 

hierarchical point of view, Loris et al (2004) classified patients of advanced ovarian cancer 
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and extracted significant genes which characterized each level in the hierarchies; On the 

basis of gene expression profile analysis van’t Veer et al (2002) predicted the clinical 

outcome (relapse / non-relapse) of breast cancer and Pomeroy et al (2002) predicted the 

outcome (survivor / failure) of embryonal tumor of central nervous system; Alon et al 

(1999) clustered correlated gene families about colon tissues and separated cancerous from 

non cancerous tissues; Dinesh et al (2002) performed the tumor versus normal 

classification of prostate cancer and predicted the clinical outcome of prostatectomy; Eng-

Juh et al (2002) classified the sub types and predicted the outcome of pediatric acute 

lymphoblastic leukemia; Gavin et al (2002) separated malignant pleural mesothelioma 

(MPM), which is not a lung cancer, from adenocarcinoma (ADCA) of the lung; Alizadeh 

et al (2000) identified two distinct types of diffuse large B-cell lymphoma (DLBCL), the 

germinal centre B-like DLBCL and the activated B-like DLBCL.  

The technologies applied in the analysis of gene expression data are various. In 

Golub et al. (1999) a method of neighborhood analysis is used to select out the most 

informative genes that are related to the classification of patients, a class predictor is 

designed by using the sum of the weighted votes from these genes to determine the wining 

class, and a cross-validation method is adopted to test the accuracy of the predictor. To 

classify the leukemia patients, a technology of self-organizing maps is applied to obtain 

two classes. In van't Veer et al. (2002) an unsupervised method is used to cluster both 

genes and tumors, and a supervised alternative is adopted to identify the outcome of the 

tumors and extract the most significant genes that are related to the outcome. In Pomeroy 

et al. (2002) Principal Component Analysis (PCA) is applied to determine different types 

of tumors and the related genes. In Alon et al.(1999) a deterministic-annealing algorithm is 
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used to organize both genes and sample tissues into binary trees so that they can be 

clustered hierarchically. In Gavin et al. (2002) gene expression ratios are calculated and 

thresholds are selected to distinguish between cancer and non-cancer tissues.  

 In this paper, an approach based on the collaboration of three algorithms, 

Principal Component Analysis (PCA), Principal Direction Divisive Partitioning (PDDP), 

and bisect K-means, is applied to cluster the sample patients from a public leukemia 

dataset (Scott et al., 2002) consisting of 72 leukemia samples (24 acute lymphoblastic 

leukemia (ALL), 20 mixed-lineage leukemia (MLL) and 28 acute myeloid leukemia 

(AML),  each sample being represented by 12,582 gene expression values. In the mean 

time, the few significant genes more determinant to the clustering results are identifieded.  

The rest of the paper is organized as follows:  

Section 2 is about the description and the pre-processing of the leukemia dataset 

that is used in the experiments, Section 3 reports the salient issues about the clustering 

algorithms, Section 4 illustrates the experimental results of  clustering the leukemia 

dataset,  Section 5 discusses the results.  

2. Dataset Description and Pre-processing  

2.1 Description of the Dataset  

The dataset analyzed in this paper is the combination of two leukemia datasets 

processed in Scott et al. (2002), where 57 samples (20 ALL, 17 MLL and 20 AML) are 

used for training and 15 (4 ALL, 3 MLL and 8 AML) for testing the clustering of leukemia 

patients. Each patient is determined by a sequence of 12,582 real numbers, each measuring 

the relative expression of the corresponding gene. The data set can then be viewed as 72 

points in a 12,582-dimensional Euclidean space. A simple measure of the genomic 
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difference between two patients can be obtained by resorting to the Euclidean distance of 

two points. In order to ease the algebraic manipulations of data, the dataset can also be 

represented as a real 2-D matrix S of size 72×12,582; the entry s
ij

 of S measures the 

expression of the j
th

 gene of the i
th

 patient.  

2.2 Pre-processing of the Dataset  

The leukaemia dataset is a very large matrix with more than ten thousand genes as 

its columns, while a great portion of them, with small changes of values between different 

patients, provides much less information related to the patient clustering than the residual 

small portion, in which large differences of values can be found between different patients 

or patient types. In this dataset, it can be observed that a very large portion of genes has 

relatively small standard deviation values, although the values vary from 0 to 15,000. For 

example, at least 10,000 standard deviation values are less than 1,200. Therefore, prior to 

the patient clustering, it is possible to apply a filter to remove those genes of little 

importance (Garatti et al., 2007). In order to analyze such a huge dataset without any 

filters, a higher amount of time and storage would be needed, as well as a larger amount of 

computational resources. The removing of less important genes can help decrease the 

complexity of analysis and the requirement of computational resources without much 

affecting result precision. Furthermore, the removing of those genes may also reduce the 

interference caused by noise. 

By taking all these factors into account, a pre-processing of the dataset is applied 

first to remove those genes with small standard deviation values. A threshold 400 is used 

to filter out the genes with standard deviation values less than it. The dataset after this pre-

processing almost halves, becoming a 72×6,611 matrix with the removing of 5,971 gene 
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columns. The reason for using 400 as the threshold is that it keeps a large portion of the 

data, so that the important information will reasonably not be ignored, at the same time 

removing another large portion– almost a half - of data to speed up the clustering 

procedures. In the following sections, unless otherwise specified, all the analysis is based 

on the 72×6,611 dataset after the pre-processing with threshold th = 400.  

3. Description of Algorithms 

The clustering analysis of the leukemia dataset is based on three steps. First, with 

the principal component analysis, all the genes in the dataset are sorted according to their 

significance to the patient clustering. Then, the dataset is clustered using a modified bisect 

K-means algorithm which is essentially the combination of principal direction divisive 

partitioning, using to initialize the following,  and K-means. Finally, the minimum set of 

genes minimizing clustering errors is identified. This gene set consists of a few necessary 

and sufficient genes in the sense of the clustering approach applied in this paper, but the so 

identified genes are also keen to provide useful information for the differential diagnosis 

and even better understanding of the corresponding sub types of leukemia.  

3.1 Principal Component Analysis (PCA)  

It is well known that the PCA method (Hand et al.,2001) (O'Connel 1974) (Wall  et al. 

2003) works better on measuring the contribution of attributes of samples to the clustering 

when the dataset can be linearly partitioned. The extraction of principal components is 

briefly recalled as follows for the sake of completeness:  

Given a p×N dataset S where p and N are respectively the numbers of samples and 

attributes. If dataset S is a centralized matrix where each column (i.e. attribute) of S has 

zero mean value, then the first principal component of S should be the eigenvector 
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corresponding to the largest eigenvalue of the covariance matrix of S, namely S
T

S, the 

second principal component of S should be the eigenvector corresponding to the second 

largest eigenvalue of S
T

S, and so on. A simple proof is given out in (Hand at al., 2001).  

The principal components can be obtained from the singular value 

decomposition (SVD) (Wall et al., 2003) of S as the product of three special matrices: the 

orthonormal unitary square matrix U
P×P

 (i.e. U
-1

=U
T

), the diagonal matrix Σ
P×N

, and 

the orthonormal unitary square matrix V
N×N

 (i.e. V
-1

=V
T

). Any non-zero diagonal 

element of matrix Σ is called a singular value of matrix S (i.e. the square root of an 

eigenvalue of matrix S
T

S), and the columns of matrix V (i.e. the eigenvectors of S
T

S) 

corresponding to the largest singular values are in turn the principal components of S.  

When a principal component, generally the one corresponding to the largest 

singular value, is selected out, the degree of contribution of the attributes to the clustering 

of samples can be quantified by comparing the absolute values of the elements in the 

principal component vector. The positions of the largest absolute values point out the most 

discriminating attributes for clustering the sample.  

When the dataset matrix S is not centralized, with the mean values of some 

attributes being non-zeros, the SVD should be performed on the centralized form of S so as 

to equally weight the contribution from each attribute. 

3.2 Principal Direction Divisive Partitioning (PDDP)  

The PDDP algorithm is proposed by Boley (1998). It has the following steps:  

(1) For the matrix S (in general S is not centralized) in Section 3.1, first calculate 
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the mean value vector w=[w
1
, w

2
, …, w

N
] for all the samples. The mean value vector is 

the centroid of the samples, where w
j
=

∑
=

p

i
ijsp 1

1

 (1≤j≤N) and s
ij

 is the element in the 

i
th

 row and j
th

 column of S.  

(2) Calculate matrix S
0, 

the centralized form of S, as S
0 

= S - ew and e = 

!"!#$
%

p

T]1,,1,1[ . Then, by the PCA analysis described in Section 3.1, decompose S
0
 as S

0
 = 

UΣV.  

(3) Select an appropriate principal component v = [v
1
,v

2
,…,v

N
]
T

 for S
0
，

where vector v is determined either manually or automatically by the method described in 

Section 3.3.  

(4) Write matrix S as [S
1
,S

2
,…,S

p
]
T

. If (S
i
-w)v≤0 ， then S

i
S

L
，

otherwise S
i

S
R
， where 1≤i≤p.  

The rationale of PDDP has a geometrical interpretation. The p×N dataset is first 

transformed to an N-dimensional coordinates system originting at the dataset centroid and   

having all the N component vectors (even not principal) as coordinates. Suppose a 

principal component is selected to do PDDP, then the data points are separated as two 

clusters by an (N-1)-dimensional hyperplane passing through the origin and is normal to 

such principal component vector. Generally speaking, some distance based methods  - such 

as the minimum distance and the average distance between two different clusters - can be 

used to measure the difference between them. 
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It should be pointed out that PDDP can be applied repeatedly to any cluster to 

get two sub clusters; therefore any number of clusters can be obtained by iteratively using 

such algorithm. Savaresi et al. (2002) have proposed a method to tell which one of two 

given clusters is more suitable to be further split, while Kruengkrai et al. (2003) have 

suggested how to determine wether a cluster culd again be split, thus helping to terminate 

iterations.  

 

3.3 The Selection of Principal Components  

3.3.1 A possible problem of principal component selection  

The selection of an appropriate principal component is the precondition of the 

success of PDDP clustering. In general, the first principal component is appropriate 

because it represents the primary direction of the dataset and the direction itself is the very 

foundation of the PDDP algorithm. However, the first principal component may not 

always be a good choice, for example when a dataset is similar to the one in Figure 1. In 

this case the primary direction of the data points is still indicated by the first principal 

component (shown as v
1
), but obviously another principal component (shown as v

2
) 

splits the dataset much better, therefore this principal component, even though not being 

the first one but just the secon one, should be selected as the input of the PDDP algorithm.  
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Figure 1  A Special Case of Principal Component Selection  

 

3.3.2 The automatic selection of principal components  

The selection of a principal component is easy for supervised PDDP clustering, 

because we can simply find out from a set of given candidates, for example, the first three 

principal components, the best one yielding the result closest to the reference. However, 

when an unsupervised PDDP clustering algorithm is applied, the selection of an 

appropriate principal component should be done on automatic basis other than manually. 

In Savaresi et al. (2002) a method that is originally designed for selecting what clusters are 

to split is deemed to be also helpful for selecting principal components, just after slight 

modification. The description of the modified algorithm is following.  

Suppose the matrices S
0
 and V have been worked out from Section 3.2, and a 

candidate principal component set P = {v
1
, v

2
, …, v

q
} (usually P = { v

1
, v

2
, v

3
}) has 

been given out.  
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(1) Write matrix S
0
 as [S

0,1
,S

0,2
,…,S

0,p
]
T

. For each principal component v
j
 in 

the given set P, calculate scalar k
i,j

 = S
0,i
·v

j
 (1 ≤ i ≤ p, 1 ≤ j ≤ q). If k

i,j
 ≤ 0 ， then k

i,j

K
j,L

， otherwise k
i,j

K
j,R

. Write K
j,L

 and K
j,R

 as two row vectors K
j,L

 

= [k
j,L,1

, k
j,L,2

, …, k
j,L,l

] and K
j,R

 = [k
j,R,1

, k
j,R,2

, …, k
j,R,r

].  

(2) Let K
j,L

 = K
j,L

 / min (K
j,L

) and K
j,R

 = K
j,R

 / max (K
j,R

). This normalizes 

K
j,L

 and K
j,R

 so that all their absolute values range from 0 to 1.  

(3) Let scalars w
j,L

and w
j,R

 be the mean values of K
j,L

 and K
j,R

, respectively, 

and w’
j,L

 and w’
j,R

 be the mean values of [(k
j,L,1

-w
j,L

)
2
, (k

j,L,2
-w

j,L
)
2
, …, (k

j,L,l
-

w
j,L

)
2

] and [(k
j,R,1

-w
j,R

)
2
, (k

j,R,2
-w

j,R
)
2
, …, (k

j,R,r
-w

j,R
)
2
], respectively. Calculate 

ratio R
j
 = 

2
,

2
,

,, ''

RjLj

RjLj

ww
ww

+

+

.  

(4) Select the principal component with the minimum ratio R.  

3.4 K-means and Bisect K-means  

K-means (MacQueen, 1967) (Pang-ning Tan et al., 2005) is a popular iterative 

clustering method. The clustering is based on some randomly selected “center points”. 

The number of random points – thus the numebr of obtained clusters - is predefined and 

determines the number of clusters that the algorithm will output. The basic principle of K-

means is as follows:  
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(1) Randomly select k points (c
1
, c

2
, …, c

k
) from a dataset S=[S

1
,S

2
,…,S

p
]
T

 in 

which S
i
 (1≤i≤p) denotes the i

th
 sample. These k random points are viewed as the initial 

“center points” of k clusters and refined later. 

(2) For each sample S
i
 (1≤i≤p), find out a number m, so that for any j≠m (1≤m, 

j≤k), ||S
i
-c

m
|| ≤ ||S

i
-c

j
||, then S

i
C

m
, where ||S

i
-c

m
|| and ||S

i
-c

j
|| are respectively the 

distances, for example the Euclidean distances, from S
i
 to c

m
 and c

j
, and C

m
 denotes the 

m
th

 cluster.  

(3) Calculate the new center points i.e. the mean values w
1
, w

2
, …, w

k
 for the 

clusters C
1
, C

2
, …, C

k
.  

(4) If for each cluster j (1≤j≤k), c
j
=w

j
, then stop; otherwise let c

j
=w

j
 for each j, 

and go to step (2).  

K-means algorithm is iteratively convergent, and, if the initial “center points” are 

selected well, that is to say, they are close to the true center points, then K-means will 

converge more rapidly, and the clustering result will be more accurate. However, it may 

not be easy to select good initial center points if one does not know in advance what the 

distribution of the data points is. This is the reason why to take random points as the initial 

centers. On the other hand, to apply K-means, the total number of clusters must be 

determined prior to the clustering.  

One kind of K-means, which can be repeatedly applied to form multiple clusters 

by separating one cluster at a time to get two sub clusters, is called bisect K-means. 

Similarly, bisect K-means algorithm has the following steps:  
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(1) Randomly select two “center points”, c
1
 and c

2
, from the dataset 

S=[S
1
,S

2
,…,S

p
]
T

.  

(2) If ||S
i
-c

1
||≤||S

i
-c

2
||, then S

i
C

1
; otherwise S

i
C

2
, (1≤i≤p), where 

||S
i
-c

1
|| and ||S

i
-c

2
|| are the distances, for example the Euclidean distances, from S

i
 to c

1
 

and c
2
, respectively, and C

1
 and C

2
 denote the two sub clusters.  

(3) Calculates the new center points w
1
 and w

2
 for the two sub clusters C

1
 and 

C
2
.  

(4) If c
1
=w

1
 and c

2
=w

2
, then stop; otherwise let c

1
=w

1
 and c

2
=w

2
, and go to step 

(2).  

To get more sub clusters, one can select a cluster, replace dataset S with it, and 

simply repeat the above steps. Such a procedure can be repeated until a desired number of 

clusters is obtained.  

3.5 Combining PDDP with Bisect K-means  

K-means algorithm performs well when the distance information between data 

points is important to the clustering. However, K-means has an intrinsic disadvantage. The 

clustering result depends greatly on the selection of initial “center points”. Pang-ning Tan 

et al. (2005) show different results by applying K-means on the same dataset with different 

choices of initial “center points”. PDDP has its own weakness, too. Since the partition of 

PDDP is only on the basis of the projection from the data points to a selected principal 

direction, the distance information between these data points is ignored.  

In spite of the fact that in many cases neither PDDP nor K-means alone is good enough for 

deriving desirable clustering results, according to the theory of Savaresi and Boley (2001), 
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Savaresi et al. (2002), Savaresi and Boley (2004), the combination of PDDP and bisect K-

means keeps the merits of both algorithms, and usually performs better than either single 

one does. PDDP, although is weak at taking advantage of distance information, can 

provide bisect K-means good initial center points that are close to true ones, therefore the 

accuracy of bisect K-means clustering can be improved. The difference between the 

combined method and the traditional bisect K-means lies in the selection of the initial 

center points, c
1
 and c

2
. With the combined method, the two center points of bisect k-

means are not selected randomly but according to the clustering result of PDDP, that is to 

say, c
1
 and c

2
 should be the sample mean values of the PDDP clusters S

L
 and S

R
, 

respectively. The combination of PDDP and bisect K-means makes the selection of c
1
 

and c
2

 more reasonable by reducing the risk caused by a random selection. 

Figure 2 is a 2-D illustration of the PDDP plus bisect K-means algorithm. In the 

figure, suppose a 2-D dataset is clustered using the combined method, the data points are 

represented as blue dots, and their origin is the green dot with coordinates (0, 0). First, by 

PCA analysis, the origin is moved to the centroid of the dataset (shown as a red dot) along 

the direction indicated by the dashed arrow, and a principal component is selected with its 

direction indicated by the black arrow which passes through the new origin and two orange 

dots. Then, by PDDP, the dataset is separated by another black arrow which passes 

through the new origin and is perpendicular to the principal direction. The two black 

arrows actually compose the two coordinates of the new coordinates system. Finally, after 

PDDP, the centroids of both clusters (shown as two orange dots) are selected as the initial 

center points of bisect K-means, and the dataset is clustered based on this selection.  
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Figure 2  A 2-D Illustration of PDDP + Bisect K-means  

 

3.6 The Extraction of Significant Attributes  

As already mentioned, the extraction of significant features strongly related to 

clustering is also a key issue, besides the clustering itself. To achieve this, one should 

first know the degree of significance of each attribute. Fortunately, principal component 

analysis itself can also provide quantitative information to measure the significance. A 

method of extracting the most significant attributes based on PCA analysis is following:  

(1) Suppose vector v
j
=[v

1j
,v

2j
,…,v

Nj
]
T

 is the j-th principal component of S
0
 (i.e. 

column j of V where S
0
=U∑V) and v

j
 is selected to do PDDP. Sort vector v

j
 in a 

descending order of |v
ij

| (1≤i≤N) and write it as v’
j
 =[v’

1j
,v’

2j
,…,v’

Nj
]
T

. Since the 
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significance of each attribute is reflected by the absolute value of the corresponding 

element in the principal component, now v’
1j

 is the significance coefficient of the most 

important attribute,v’
2j

 is that of the second most attribute, and so on.  

(2) Redo the PDDP + bisect K-means clustering using the reduced principal component 

um , (1≤m≤N), and find out the minimum value of m that outputs the best clustering result 

that is the closest to a reference result, then the m corresponding attributes are the solution.  

3.7 Supervised and Unsupervised Clustering  

With a supervised clustering approach, some a priori knowledge such as a pre-

defined reference result and the number of clusters can be used to guide the process of 

clustering. However, such a priori knowledge is not always available before clustering; 

they may be known only when the clustering is successfully completed. In this case, an 

unsupervised alternative can be considered when applicable. The PDDP + bisect K-means 

algorithm is capable of dividing data points into two clusters in either supervised or 

unsupervised way, as described in the following procedures:  

3.7.1 Procedure PCA  

Procedure PCA  

Input: p×N data matrix S.  

Output: sorted principal component vector v and index vector x.  

Begin  

Calculate the centralized matrix S
0
 of S;  

Do singular value decomposition with S
0
 and get the principal components;  

Select a principal component manually or automatically;  
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Sort its elements in the descending order of their absolute values, and get the 

index of each attribute corresponding to the order;  

Return v (the sorted principal component vector) and x (the index vector);  

End 

3.7.2 Procedure PDDP_Bisect_K-means_Unsupervised  

Procedure PDDP_Bisect_K-means_Unsupervised  

Input: matrix S, vector v (output of procedure PCA), and vector x (output of 

procedure PCA).  

Output: two clusters S
L

 and S
R

 and the significant attribute set A  

Begin  

Use matrix S and vector v to do PDDP + Bisect K-means clustering, and get 

two clusters S
L

 and S
R

;  

For (i <- 1 to N-1)  

v
i
 <- v;  

Set the last N-i elements in v
i
 to 0;  

Use S and v
i
 to do PDDP + Bisect K-means, and get two clusters S

Li
 

and S
Ri

;  

If ((S
Li

=S
L

) and (S
Ri

=S
R

))  

Break;  

End If  

End For  

A <- the first i indices in x;  



 1
7 

Return S
L

, S
R

, and A;  

End 

3.7.3 Procedure PDDP_Bisect_K-means_Supervised  

Procedure PDDP_Bisect_K-means_Supervised 

Input: matrix S, vector v (output of procedure PCA), vector x (output of 

procedure PCA), and vector c as the reference result of clustering.  

Output: two clusters S
L

 and S
R

 and the significant attribute set A. 

Begin  

Get two clusters S
Lc

 and S
Rc

 from matrix S and reference result c;  

err <- p; 

m <- 0;  

For (i <- 1 to N) 

v
i
 <- v;  

Set the last N-i elements in v
i
 to 0;  

Use S and v
i
 to do PDDP + Bisect K-means, get two clusters S

Li
 and 

S
Ri 

and the clustering result c
i
;  

Calculate err
i
, the number of differences between c and c

i
;  

If (err
i
 < err)  

err <- err
i
;  

m <- i;  

End If  

End For  
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S
L

 <- S
Lm

; 

S
R

 <- S
Rm

; 

A <- the first m indices in x;  

Return S
L

, S
R

, and A;  

End 
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4. Experimental Case: Data and Results  

This Section is focused on some experimental results about the clustering of the 

leukemia gene expression dataset mentioned previously. The original dataset S consists of 

72 samples (24 ALL, 20 MLL and 28 AML patients distributed in a training dataset of 57 

samples and a testing dataset of 15 samples) and each sample is represented by 12,582 

gene expression values. The samples are numbered as: #1 - # 20 (ALL in training), #21 - 

#37 (MLL in training), #38 – #57 (AML in training), #58- #61 (ALL in testing), #62 - #64 

(MLL in testing), and #65 - #72 (AML in testing). Dataset S is stored as a 72×12,583 

matrix, because there is an extra column, column 12,583, which represents the clustering 

result presented in Scott et al. (2002). In this column, classes ALL, MLL, and AML are 

represented as 0, 1, and 2, respectively. This column serves as the reference result of all 

the following experiments. In other words, the experiment results are compared with the 

reference, and any different clustering cases are reported as “errors” and analyzed later. As 

already said, before any experiments, a threshold th = 400 is applied to remove those genes 

with standard deviation values less than 400, since they are with little possibility to be 

significant attributes. To verify the effectiveness of the threshold, every experiment is then 

repeated with th = 0 i.e. all the genes included. The exactly same results and much less 

execution time show that the threshold applied is reasonable and effective at least in this 

experimental case. All the experiments are based on the MATLAB implementation of the 

algorithms described in Section 3.  

4.1 The Unsupervised Clustering of Dataset S  

With threshold th = 400, the input dataset S becomes a 72×6,611 matrix. With 

the first principal component and all the 6,611 genes, a clustering result is shown in Table 
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1, where two initial clusters, S
L

 and S
R

, are obtained. It should be mentioned that, this 

initial clustering successfully separates ALL and AML with only an exception at sample 

#3, if we claim that all ALL samples belong to S
L

 and all AML belong to S
R

. This implies 

that we correctly identify 23 out of 24 ALL and all the 28 out of 28 AML samples, like in 

Garatti et al. (2007).  
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Table 1 Unsupervised Clustering Result of Dataset S  

 

The minimum gene set that produces the above result consists of only two genes: 

#28 (in the original 12,582-attribute dataset) whose name is AFFX-UMGAPDH/M33197_5_at 

and  

#12,430 with the name 256_s_at.  

 Table 2 gives out the significance coefficient information about these two genes. The 

significance coefficients are obtained by taking the absolute values of the corresponding 

elements in the first principal component, the average coefficient is the mean of the 

absolute values of all the 6,611 coefficients, and the normalized coefficients, which are 

used as the contribution indicator of the genes to the clustering, are the quotients of the 

significance coefficients to the average coefficient.  
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G
ene  

#  
Gene Name  

Signific
ance 

Coeffci

ent  

Average  

Coeffic

ient  

Normal
ized  

Coeffic

ient  

28  AFFX-HUMGAPDH/M33197_5_at  0.1113  
0.0073  

15.2466  
13.4795  12

,430  
256_s_at  0.0984  

Table 2 Significant Genes for the Clustering of Dataset S  

 

From Figures 3 and 4, the plotting of the 72 expression values of these two genes, 

we can visually separate S
L

 (with relatively low expression values) and S
R

 (with relatively 

high expression values) to a certain extent, although a few exceptional cases exist. The 

rationale of the extraction of these two genes is thus illustrated in such a manner.  

 

Figure 3  Expression Values of Gene #28 
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Figure 4  Expression Values of Gene #12,430 

It is natural that the initial clustering does not give out any useful information 

about the MLL samples, because the PDDP based approach only produces two clusters 

after a single application. For this reason, further clustering is needed to hopefully reveal 

the aspect of the MLL part.  

4.2 The Unsupervised Clustering of Sub Dataset S
L  

According to the result of the initial clustering, 37 samples are classified as S
L

; 

among them 23 are actually ALL samples and 14 are MLL. ). Clustering of subclass S
L

 is 

continued in order to see if the PDDP based approach can successfully identify these ALL 

samples from the non ALL ones (i.e., according to the reference, the MLL ones, at the first 

bipartition clustered with ALL, thus closest to such ones than to AML). With the first 

principal component, 5,962 genes (threshold th = 400), and two significant genes, a result 

is obtained exactly reproducing the reference, as shown in Table 3, listing the patient 

numbers and the subclasses that they belong to. Based on Table 3, we claim that S
LL

 and 
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S
LR

 are actually ALL and a part of MLL, respectively. Table 4 gives out the two 

significant genes and quantifies their contribution to the clustering. Figures 5 and 6 plot 

the 37 expression values of these two genes.  
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Table 3 Unsupervised Clustering Result of Sub Dataset SL 

 

G
ene  

#  

Gene  

Name  

Signific
ance 

Coeffic

ient  

Average  

Coeffic

ient  

Normal
ized  

Coeffic

ient  

7,
754  

33412_at  0.1533  
0.0072  

21.2917  
11

,924  769_s_at  0.1083  15.0472  

Table 4 Significant Genes for the Clustering of Sub Dataset SL 
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Figure 5  Expression Values of Gene #7,754  

 

Figure 6  Expression Values of Gene #11,924 
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4.3 The Unsupervised Clustering of Sub Dataset S
R  

Since the initial clustering of dataset S is insufficient for identifying the MLL 

samples, a similar clustering of the subclass S
R

 is then performed to see whether those 

MLL samples can be separated successfully. According to the result of the initial 

clustering, 35 samples are classified as S
R

. Among them are 28 AML, 6 MLL, and one 

misclassified ALL. With the first principal component and 6,191 genes (threshold th = 

400), the result is shown in Table 4.5. The minimum gene set with the clustering result in 

this table consists of 219 genes; they are not reported in this paper.  

The clustering seems unsuccessful, with many AML samples and all the MLL 

samples clustered together into S
RL

. However, an interesting observation is that no MLL 

sample is clustered into S
RR

 as shown in Table 5 with MLL patients shaded in grey.  
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Table 5  The Unsupervised Clustering Result of Sub Dataset SR  

 

4.4 The Supervised Clustering of Sub Dataset S
RL  

Because all the 6 MLL samples are classified as S
RL

 in Section 4.3, it may be 

interesting to continue clustering the sub cluster S
RL

. With the first principal component 

and 5,877 genes (threshold th = 400), an unsupervised result with two errors is obtained. 

The minimum gene set for this result consists of 103 genes which are not reported in this 

paper. However, when the clustering is performed under the supervision of the reference 
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result, a better result is obtained with only one error at patient #3, as shown in Table 6, 

listing the patient numbers and their clusters according to this supervised clustering. The 

minimum gene set for this result consists of 9 genes. They are listed in Table 7.  

 

 Patient Numbers  
S

RLL 
3 2

2 
2
4 

2
6 

2
7 

2
9 

3
1 

 

S
R

LR  

4
2 

4
3 

4
7 

4
8 

5
0 

5
2 

5
5 

6
8 

7
0 

7
2 

Table 6 Supervised Clustering Result of Sub Dataset SRL  
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#  

Gene  

Name  

Signific
ance 

Coeffic

ient  

Average  

Coeffic

ient  

Normal
ized  

Coeffic

ient  

12
,357 

319_g_at 0.1106  

0.0080  

13.8250  
31  AFFX-HSAC07/X00351_5_at  0.1106  13.8250  
32  AFFX-HSAC07/X00351_M_at  0.0995  12.4375  
7,

754  
33412_at 0.0993  12.4125  

1,
904  

33516_at 0.0989  12.3625  
28  AFFX-HUMGAPDH/M33197_5_at  0.0985  12.3125  
1,

316  
35083_at 0.0950  11.8750  

8,
428  

36122_at 0.0940  11.7500  
3,

634  39318_at 0.0933  11.6625  

Table 7 Significant Genes for the Clustering of Sub Dataset SRL  

 

5. Discussion 

5.1 Discussion about the Experimental Results  

5.1.1 Discussion about the clustering results  

According to the clustering results in Section 4, the leukemia dataset S can be 

clustered as the following hierarchy:  
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Figure 7  The Hierarchy of the Leukemia Dataset (referred Tables inherit prefix 

4. in order to remind they are in Results Chapter 4)  

 

In Figure 7, if we name cluster S
LL

  as ALL, clusters S
LR

 and S
RLL

 together as 

MLL, and clusters S
RLR

 and S
RR

 together as AML, then there is only one error occuring 

in the whole set of patient with such supervised aggregation. From Table 3, almost all the 

24 ALL patients are identified in cluster S
LL

, except patient #3 eventually misclassified 

into cluster S
RLL

; this is the only error that occurs. It may be due to impreciosion of the 

algorthm, but also to orginal misclassificaton of the data, or just be a borderline subjet 

difficult to classify being closed to another class at least in the reduced used subspace 

(Garatti et al, 2007).  

From tables 3 and 6, 14 MLL patients are identified in cluster S
LR

 and other 6 are 

identified in S
RLL

; these two clusters include all the MLL patients without any 

misclassification.  
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From tables 5 and 6, 18 AML patients are identified in cluster S
RR

 and the other 

10  in cluster S
RLR

; these two clusters include all the AML patients without any 

misclassification.  

Interestingly enaough, except for ALL, both MLL and AML patients are divided 

into two sub clusters. This implies that there might exist other sub types for MLL and 

AML. In fact, on the very same subset,  Golub et al. (1999) labeled only two sub types of 

leukemia (ALL and AML) while Scott et al. (2002) detailed proposing the three sub types 

(ALL, MLL, and AML) analyzed in this paper.  

5.1.2 Discussion about the significant genes  

First, by reviewing the gene extraction results in Section 4, we see that different 

levels of expression values of just the 2 genes #28 (AFFX-HUMGAPDH/M33197_5_at) and 

#12,430 (256_s_at) are already enough to well separate ALL and AML patients. Second, in 

the initial clustering of the dataset, most MLL data are shown closer to ALL than AML, 

implying that MLL and ALL share similarity to a great extent: in fact, they were classified 

together in the same class by Golub et al. (1999). The difference between ALL and MLL 

is then very well revealed by just 2 more genes #7,754 (33412_at) and #11,924 (769_s_at). 

On the other hand, a small portion of MLL data are shown closer to AML, showing that 

some MLL and AML cases may have common characteristics. The size of the minimum 

set of genes which separate MLL from AML is very large, implying that genetically 

diagnosing AML-like MLL patients may be more difficult than that of ALL-like MLL 

patients. Finally, the contribution of genes to the corresponding clustering results is 

quantified so that the significance of them can be compared quantitatively. For examples, 
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gene #28 (normalized significance coefficient (NSC) = 15.2466) and #12,430 (NSC = 

13.4795) are almost equally significant to the discrimination between ALL and AML, 

while gene #7,754 (NSC = 21.2917) appears to be more significant than #11,924 (NSC = 

15.0472) to the discrimination between MLL and ALL, and so on. 

5.2 Conclusion  

With the combined approach of PDDP and bisect K-means, 72 leukemia patients 

are successfully clustered as ALL, MLL and AML, respectively. Among all the 12,582 

genes, the most discriminating ones that are responsible for the clustering are efficiently 

discovered. Furthermore, both the clustering of patients and the discovering of significant 

genes are performed automatically to a great extent, and depend merely on the gene 

expression data which can be obtained conveniently by using the popular DNA micro 

array technology.  

In conclusion, the combination of PDDP and bisect K-means is an efficient 

approach for the clustering of the leukemia patient dataset described in this paper, and 

hopefully also efficient for other similar datasets. Moreover, the significant genes 

discovered among tens of thousands of genes may provide very important information for 

the diagnosis of leukemia. The same approach reveals to be useful to other tumor 

classifications, like pancreatic ones (in preparation), even if not all case: it does not work 

for instance in discriminating breast cancer. This is understandable by considerign that the 

proposed approach works in a quasi-linear partitioning, that is not in general appropriate to 

any data set. When woring, like in this paper, it offers a powerful simlple approach to gain 

immediateknowledge about the few genes mainly involved in classification, thus possibly 

offering hints in understandig pathophysiology and suggesting and monitoring teraphy, 
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beyond the scope of this very paper  
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