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Introduction
Forest tree breeding is a long-term endeavor often adopting 

the recurrent selection scheme [1] where hundreds of parents 
are rigorously tested through the performance of several 
thousands of their offspring planted over vast geographic 
territories known as breeding zones [2].  Parental ranking, for 
forward selection, is often based on offspring’s performance 
which is followed by the selection of elite genotypes for either 
new rounds of breeding (matings, testing, and selection) or the 
establishment of production populations (a.k.a., seed orchards) 
[3].  Breeding and testing are the most costly and time consuming 
aspects of tree breeding.  Breeding is done following one of the 
established mating designs to generated “structured” pedigree 
(half- and full-sib families) needed for genetic parameters (e.g., 
traits’ heritabilities and correlations, and parents and offspring’s 

breeding values) estimation [4].  The creation of structured 
pedigree is meticulous work requiring great care and often takes 
multiple years to complete owing to the large number of parents 
and the required numerous crosses.  Completion of the breeding 
phase is often delayed by fertility and phenological differences 
among the breeding parents [5].  The authenticity of the resulting 
offspring affects the accuracy of the generated genetic parameters 
and ultimately the attained genetic gain; unfortunately, this 
process is never error-free [6,7].

Forest tree breeders attempted to simplify breeding through 
the use of “wind- /open-pollinated” families [8,9] and often 
treated them as half-sib families as maternal parents are known 
and assumed that offspring is sired by large number of male 
donors; however, the possibilities of having full-sibs or selfs 
within these “half-sib” families is high.  Thus, treating wind- /open-
pollinated families as half-sibs leads to an over inflated additive 
genetic variance estimation and subsequently breeding values 
and heritabilities, resulting to an inaccurate ranking of parents 
(seed donors) [10-12]. The availability of reliable, informative 
molecular markers coupled with paternity assignment methods 
[13] created an opportunity whereby the breeding phase of 
tree breeding could be effectively eliminated.  Lambeth, et al. 
[14] were the first to capitalize on this development and used 
paternity assignment to unravel the paternal parents in a polymix 
breeding framework.  This approach was further extended and 
the “Breeding without Breeding” concept was developed [15-18] 
and offered a viable option for breeding-phase avoidance in tree 
breeding programs.

Here we test two sampling methods for structured pedigree 
assembly; namely, partial- and full-pedigree reconstruction 
using equal sample sizes drawn from a 74-parent lodgepole pine 
parental population.  Partial- and full-pedigree reconstruction 
were represented by family array (individuals generated 
from a subset of parental seed-donors) and random sampling 
(individuals drawn from a seedling population representing 
the reproductive output of the entire parental population), 
respectively. Pedigree reconstruction was based on using 
genomic and chloroplast DNA microsatellite markers.
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Materials and Methods
Seed orchard population and offspring sampling

A 71-clone lodgepole pine seed orchard located near 
Armstrong, British Columbia (50˚ 23’ N, 119˚ 17’ E, 470 m a.s.l.) 
provided the material for this study.  The orchard was established 
in 1994 following the permutated neighborhood design which 
maximizes the separation distances among ramets of the same 
clone, hence minimizing selfing [19].  At the time of sampling 
(2007), the orchard’s population consisted of 1,047 ramets 
representing the 71 parents (13.9 ± 7.0 SD ramets per parent).

Dormant vegetative buds were sampled from the entire 
orchard’s parental population (2 random ramets/parent) and 
two seed sampling methods; namely, 1) family array (known 
11 seed-donors, each with 56.3 ± 7.3 SD seed/parent (N = 619)) 
and 2) bulk sample (random sample of 635 seeds from the 
entire orchard’s seed crop with unknown maternal and paternal 
parentage).  The dormant buds were stored at -80°C until DNA 
extraction while the seeds were stored at 4°C until germination.

DNA extraction and SSR genotyping

DNA was extracted from vegetative buds and germinating 
seed (2-3cm embryos) following Doyle and Doyle [20]. Parents 
and offspring were genotyped using 9 nuclear SSRs [21-23] and 6 
cpSSRs chloroplast microsatellite loci [24].

Parentage analyses

For paternity assignment, we used a likelihood-based 
paternity inference method with a known level of statistical 
confidence and accounting for genotyping errors [25] (CERVUS 
3.0.3).  Two parentage analyses were carried out, one for the 
family array with known maternal parent and the other was 
a parent pair analysis with unknown sexes of the candidate 
parents for the bulk seed sample.  The paternal population (N 
= 74) (the orchard’s known 71 parents plus 3 additional alien 
genotypes detected during the orchard’s parental genotyping).  
The parentage analysis for the known mother-offspring 
genotypes was based on 10,000 simulations with 74 sampled 
candidate parents, genotyping error rate of 0.01, and 95% (strict) 
confidence level using the 9 nuclear SSRs.  We chose 6 cpSSRs to 
permit the identification of the paternal parentage from the most 
likely parent pair [24]. We conducted the identity analysis with 
cpSSRs (also in CERVUS 3.0.3), after creating dummy genotypes 
via converting the haploid profiles to a hypothetically complete 
homozygous offspring.  For each offspring, the paternal parent 
determined by the identity analysis was compared with the two 
parents identified by the parent pair analysis.  The maternity 
analysis with known fathers (although, strictly speaking, with 
fathers deduced from marker evidence) was then conducted for 
these offspring, using the same parameters described earlier.

Results
The paternity assignment analyses were successful in 

assigning the male parent for 528 out of 619 offspring (85.3%) 
and both male and female parents for 522 out of 635 offspring 
(82.2%) for the family array and random sample, respectively.  

The inability to assign paternity or maternity to the remaining 
offspring was either due to insufficient informative genotypes to 
match the candidate parents with 95% confidence, or that seeds 
are sired by parents from outside the studied population (i.e., the 
product of gene flow/pollen contamination), or a combination of 
both.  Since the 9 nuclear SSRs used are highly polymorphic and 
possess low null allele frequencies [23] and the fact that most 
of the unassigned offspring had mismatches on at least two loci, 
then it is conceivable to assume that the used loci provide the 
required statistical power.

The additional 6 uniparentally inherited cpSSRs (mean: 4.8 
and SD: 1.3 alleles/locus, range: 4-7) produced unique 51 multi 
loci.  These unique haplotypes were essential in providing the 
high discrimination power needed for the successful assignment 
of the male parents in the random sample and resulted in 
increasing the number of successfully assigned males to 545 
offspring being successfully assigned to one of the candidate 
fathers (85.8%) (additional 23 offspring).  The identity analysis 
fully corresponded with the parent pair analysis, as for each of 
the analyzed offspring the assigned candidate paternal parent 
was the same as one of the two most likely parents determined by 
the parent pair analysis (in total 545 offspring).  The unassigned 
offspring on the male side are most likely a product of gene flow 
from non-sampled candidate paternal parents from outside the 
studied population, producing gene flow estimates of 14.7 and 
14.2% for the family array and bulk seed sample, respectively.  
The close to identical estimates of gene flow sheds light on the 
accuracy of the pedigree reconstruction of assigning the male or 
female and male parents for family array and random sample, 
respectively.  The utility of these unassigned individuals to 
quantitative genetic analyses is documented in the Discussion 
section (below).  It should be noted based on these results that 
had we only used the nuclear markers and the standard parent 
pair analysis, we would have been able to identify which two 
parents produced a given offspring.

Pedigree reconstruction of the family array produced 268 
full-sib families nested within the 11 sampled maternal half-sib 
families, ranging in number from 17 (maternal half-sib family 
#37) to 31 (#52) and in size from 1 to 15 individuals per full-
sib family (Figure 1).  Pedigree reconstruction of the random 
sample captured offspring of 65 out of the 74 candidate mothers 
present in the seed orchard (87.8%) and, consequently, revealing 
a considerably higher number of full-sib families than the family 
array analysis (446 full-sib families, ranging in size between 1 
and 4 (Figure 2)).  These results were anticipated as the random 
sample, unlike maternal family array, represented the entire 
population’s reproductive output.

The paternal half-sib family sizes ranged from 1 (nine families) 
to 58 (family #52) and from 1 (three families) to 28 (family #61) 
for the family array and random sample, respectively, with a 
positive correlation (r = 0.61, N = 74, p < 0.05) (Figure 3).  This 
represents Pearson’s product-moment correlation between 
vectors of paternal HS family sizes (male reproductive success) 
estimated by the two approaches (i.e., family array and bulk 
sample) for all 74 paternal parents existing in the seed orchard.
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The variation in the paternal half-sib family sizes between 
these two approaches might have been due to the sampling 
methods of the individuals assayed, because seed representing 
each maternal half-sib family (i.e., family array) was only collected 
from one single ramet (i.e., one position) while the random 
sample was taken from a mixture of seed collected from the 
entire seed-producing population. Figure 2 illustrates the ability 
of the random sample to forming substantial number of full-sib 
families representing 87.8% of the population parents as well as 
demonstrates the restrictive ability of the family array sampling 
which is limited by the number of seed-donors sampled.

Discussion
Forest tree breeders utilize mating designs to create 

the “structured” pedigree needed for estimating the genetic 
parameters needed for elite genotypes identification and their 
selection for either breeding or seed production (seed orchards) 
[2].  Tree breeding programs often harbor large number of 
parents, thus, irrespective of which mating design is used; a 
substantial number of controlled crosses are needed.  The physical 
task of controlled crosses itself is often hampered by parental 
fecundity and reproductive phenology variation, thus in most 
cases multiple years are needed for this phase completion and 
even when completed, cases of mistaken parental authenticity 
are common [6,7].  The partial or complete avoidance of using 
controlled crosses for structured pedigree formation would 

be a favorable development to tree breeding programs.  The 
combined use of DNA fingerprinting and pedigree reconstruction 
provided an opportunity for bypassing the breeding phase and 
“structured” pedigree can be assembled for quantitative genetics 
analyses.  It should be stated that the resulting structured 
pedigree from pedigree reconstruction is often unbalanced 
favoring the more fecund parents and is greatly affected by the 
degree of gene flow from outside undesirable sources (i.e., wasted 
genotyping efforts) (Figures 1 and 2).  However, the utilization of 
quantitative genetics’ algorithms such as ASReml [26] with their 
versatility to handle very large, multi-generational, and statically 
and genetically imbalance data sets made these analyses feasible 
and the restrictions of having balanced pedigree or statistical 
designs became unnecessary.  This was clearly demonstrated by 
El-Kassaby, et al. [16] who presented an analysis for unbalanced 
structured pedigree that included a mixture of full- and half- 
sib families with various sample sizes.  The inclusion of half-
sib families in the analysis provide a situation where offspring 
from known mothers but unknown fathers (i.e., those sired by 
gene flow) could be effectively used to increase the precision of 
the estimated genetic parameters, thus the notion of “wasted” 
fingerprinting efforts is rectified.

The advantage of pedigree reconstruction, partial or full, is 
apparent from Figures 1 and 2.  If the disconnected diallel mating 
design was used to create crosses for the 74 parents used in this 
study, then at least 12, 6-parent diallel unites is needed and a total 

Figure 1: Distribution of 528 naturally occurred matings in a lodgepole pine seed orchard (74 parents) revealed by partial pedigree reconstruction 
of 11 wind-pollinated maternal half-sib families using nine nuclear microsatellite loci.
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Figure 2: Distribution of 522 naturally occurred matings in a lodgepole pine seed orchard (74 parents) revealed by full pedigree reconstruction of 
random sample of offspring with unknown maternal and paternal parentage using a combination of nine nuclear and six chloroplast microsatellite 
loci.
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Figure 3a: Comparison of paternal half-sib family sizes obtained from partial (family array) and full (random sample) pedigree reconstruction of 
offspring from a lodgepole pine seed orchard (r = 0.61, p  <  0.05, N = 74).

of 180 crosses would have been created.  The family array and 
random sampling produced 268 and 446 crosses, respectively, 
exceeding that from the disconnected diallel mating design 
without making a single cross.  The resulting crosses offered 
more mating combinations than those from the disconnected 
diallel mating design, thus eliminating the sampling caveat of 

this design where crosses are restricted to within diallel unites 
and not among. It should be stated that the use of the nuclear 
SSR markers, alone, were sufficient in constructing the resulting 
crosses in the partial pedigree reconstruction as the offspring was 
collected from known maternal parents and thus the inference 
of parentage was restricted to the paternal component.  On the 
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Figure 3b: Maternal half-sib family sizes obtained from full pedigree reconstruction of random sample offspring from a lodgepole pine seed orchard 
(black bars represent the 11 family arrays studied).

other hand, the identity of the paternal parentage in the bulk seed 
sample required supplement of an additional set of uniparentally 
inherited markers, thus cpDNA markers were used to separate 
males with similar nuclear genotypes [27-29].

Pedigree reconstruction has been extensively used to assess 
male and female fertility variation as well as selfing and gene flow 
rates in seed orchard populations [22,30-34].  The use of pedigree 
reconstruction as a platform for breeding was first proposed 
by El-Kassaby, et al. [15] and its theoretical foundation was 
illustrated by El-Kassaby and Lstibůrek [34] using a Douglas-fir 
retrospective study and was further demonstrated as an avenue 
for testing and selection of elite genotypes using a combination 
of assembled full-sib and wind-pollinated half-sib families from a 
western larch experimental population [16].  However, it should 
be stated that the work of Lambeth, et al. [14] was inspring 
as it demonstrated the power of pedigree reconstruction in 
determining the male parents of crosses produced through 
polycross mating design (pollen consisted of a mixture from 
several male parents, thus parernity is unknown and the resulting 
families were considered half-sibs) and thus converted a set of 
half-sib to a full-sib families.  Pedigree reconstruction as an aid 
to breeding has gained momentum and several retrospective 
studies on Eucalyptus urophylla [35], Pinus pinster [36], Abies 
nordmanniana [37] and Picea rubens [38] have been documented.

In conclusion, based on the present study results, we 
recommend the use of full pedigree reconstruction using 
individuals with unknown paternal and maternal parentage 
to enable the posterior assemblage of naturally occurring 
crosses among population’s members, resulting in the creation 
of a mating design in the extent that would otherwise only be 
accomplishable by controlled pollination with extremely high 
costs and labor efforts.
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