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Abstract. Various DNA testing companies promise their customers a collection of
genetic matches to facilitate finding family members. The matches are in centimorgans
(cM), where the higher the cM value the closer the relationship to a customer (R).
Unless the relationship is close, such as parent-offspring or among 1  cousins, a singlest

cM value is not that informative if the goal is to locate family. This paper describes a
statistical method that combines a collection cM values from a cluster of unknown
relatives of R, but where the cluster members are known among themselves being for
example 2  and 3  cousins. A presumed envoy is attached to the cluster, where R is ard th

descendant of the envoy, and the various cM values are combined to provide an overall
cM value between R and the envoy. The envoy’s cM comes with a statistical error to
judge significance. Unlike a single cM value on a typical unknown relative, the envoy’s
cM can be quite large and indicative of a real genetic path to R that has previously been
undiscovered. This paper describes the method for two sisters, where the path from the
envoy led to their lost father, a father that was later discovered.

1. Introduction

When the computer age augmented itself and led to the internet, the study of
genealogy benefitted tremendously among many other fields of study. Moreover, while
these technological developments occurred, the fields of genetics, molecular biology
and computational science produced many innovations that synergistically benefitted
each other, as well as advancing genealogy research further. Today, the public can join
various private companies, such as Ancestry, My Heritage, 23andMe, My Family Tree
DNA, and have their DNA sampled and tested as an aid to genealogic research that is
now conducted by the public at large.



Wikipedia (see https://en.wikipedia.org/wiki/Centimorgan) provides an adequate1

introduction.

An accounting made by the senior author.2
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Once DNA is sampled, it is put through laboratory analysis, then the results are put
through computer algorithms to produce matches with others that are part of the
respective databases kept by the various organizations. The costumers then receive a
collection of DNA matches with others that indicate a possible relationship, like 2nd

cousin, 2  cousin 1x removed, 3  cousin, distant cousin, etc. The strength of the matchnd rd

is evaluated in terms of pair-wise comparisons: the shared total centimorgans (cM)1

found and the number of DNA segments involved where the sharing occurred.

A customer reviewing the reported matches can anticipate disappointment, however,
because mere matches absent other supporting evidence provides little except in the
extraordinary matches found among immediate family that had been lost. In a website
footnote, Ancestry indicates that cM for any 3  cousin can vary between 90 and 180,rd

and for 4  cousins it can vary between 20 to 85. However, Bettinger (2016, page 106)th

reports wider variation where ranges overlap significantly. Typical variation can be
defined precisely as the range provided by the 10  and 90  percentiles, however,th th

based on 36 measurements  on known relatives the ranges were much lower than the2

expectation set by Ancestry: where the cM varied between 16 and 117 for 3  cousins,rd

and between 6 and 29 for 4  cousins. The proposed relationship that is supplied by theth

vendor can tend to be conservative for several reasons, e.g., penalizing the probability
of a false positive much more than a false negative, or because the calculation of
shared cM is directly impacted from efforts meant to err on the conservative side. In any
regard, standards that characterize the random behavior of cM measurements are not
well described, in part because testing companies use different methods to measure
shared cM.

It is not untypical for new technology to disappoint because methodology is missing or
is not  perfected or because additional research is neglected. It is now advertised that
the best use of DNA matches is to supplement existing genealogical findings. The
findings that are most useful are those that are summarized as an existing family tree
that includes branches for collateral relatives that may act to conduit possible genetic
matches. Geneticists refer to this information as pedigree information. Presently, most
customers that take DNA tests provide no pedigree information, and they will likely be
disappointed with the matches they receive unless they can match with someone that
can supply the missing pedigree information. Even if an existing pedigree finds a
possible 3   or 4  cousin, that comes with DNA confirmation, if the confirmation onlyrd th

involves one cM measurement the situation is less than perfect because of the innate
cM variation hinted at above. For 5  cousins, or distant cousins, the cM’s are expectedth

to fall off dramatically, and even less utility is found with genetic matches that come as
only one cM measurement. Unexplained large cM’s can also be found, however,
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presumably because of deep relationships that did not fall off as abruptly as
anticipated, for whatever reason that the DNA is identical by state rather than descent.

In this paper, total shared cM is adopted as the measure of genetic similarity (inversely
related to distance), and the following definitions are made. A known relative is
someone that can be placed in a supplied pedigree. A collection of known relatives
belong to the one pedigree. The unknown relative is someone that might connect to the
pedigree through a hypothetically placed envoy. The unknown relative is a presumed
descendant of the envoy. The envoy is the immediate offspring of the central ancestors
(husband and wife) in the pedigree that have many living descendants identified. Each
central ancestor has a mother and father, identified as the paternal common ancestors
and the maternal common ancestors. The pedigree information that is to be used will
represent all the descendants of the maternal and paternal common ancestors so
defined, i.e., beyond the descendants of the central ancestors. Deeper genetic
relationships are to be ignored, but in theory could be included. The living descendants
of the paternal and maternal common ancestors are mapped out as known relatives in
the provided pedigree. Some of the known relatives took DNA tests and matched with
the unknown relative. This paper will describe a statistical method to combine all those
cM values, into one estimate that can be assigned to the envoy that comes with a
standard error. The overall fit can also be judged by a chi-square statistic that also
informs on the innate variation of the cM values. 

It will be demonstrated that combining cM values from known relatives can provide
incontrovertible evidence of descent from the central ancestors, whereas no such proof
comes from one cM unless it is between immediate family.

2. Data Requirements

Taking a DNA test that returns a set of unspecified matches is a necessary starting
place, given that there can be no known relatives without first establishing an unknown
relative that stands opposed to a collection of known relatives that belongs to one
pedigree. It is necessary for the unknown relative to happen upon the set of relatives
known to be placed in one pedigree, and initially this search has the accuracy of a 
scatter gun. Getting siblings, half-siblings and 1st cousins to take the same DNA test
helps sharpen the focus of the search by eliminating possibilities and allowing more
comparisons involving shared matches. Connecting with immediate relatives helps
confirm which parts of a family tree are better known and come with well-researched
genealogy, and which part of the tree remains open to discovery. 

Downloading raw DNA results, and uploading the results to a service like My Family
Tree DNA, can broaden the search because such searches are limited by the size of
the respective databases. 

Having happened upon a set of relatives that belong to one pedigree, what can be
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observed is that the matches will cluster in groups as is apparent when viewing shared
matches. However, this observation cannot be made by the unknown relative. It can
only be made by the knowledgeable steward of the pedigree information, that also
knows a-prior which known relative in the pedigree took the DNA test, and notes the
fresh observation that the unknown relative is found matching with most of the known
relatives that took the DNA test. In other words, the unknown relative must find and ask
the knowledgeable steward of the outside pedigree for help.

Only now can the data requirements that meet statistical standards be specified,
because those requirements describe the three clusters of information first observed by
the knowledgeable steward: that the unknown relative is found matching strongly with
descendants of a pair of central ancestors (Cluster 1); that the unknown relative is also
found matching with descendants of siblings of the paternal central ancestor (Cluster
2); and that the unknown relative is found matching with descendants of siblings of the
maternal central ancestor (Cluster 3). It must be possible to identify enough
descendants belonging to the three clusters that took the DNA test, whether or not they
match with the unknown relative. Those DNA tests must be in sufficient numbers and
excluding no results (e.g., a non-match is a real data point), like 4 or 5 tests for each of
the three clusters. Lastly, the match information as genetic similarity (cM) to the
unknown relative is recorded for each of the known relatives that took the DNA test,
ideally recording close to 15 observations and excluding no results.

There is a forth cluster of cMs that ads to the noise, those coming from the deeper
common ancestors beyond the central ancestors, or their parents. It is theoretically
possible to incorporate this information in a more sophisticated statistical analysis, but
this is ambitious and well beyond the scope of the present paper.

Having serendipitously found possible common ancestors, the central ancestors in
someone else’s family tree, one has to consider the data requirements that have been
adopted by the knowledgeable steward in building the outside family tree, otherwise the
pedigree information is being taken for granted. The knowledgeable steward made
available a rich family tree. The rich family tree has to go back one generation on the
central ancestors to connect to their parents, and then forward as many generations as
feasible while collecting information on all collateral relatives. The rich family tree may
include all know ancestors (of the steward) going back into antiquity, but include
enough collateral relatives to keep track of all the steward’s 3rd cousins and possibly
stopping with the generation that fought Word War II  to avoid privacy concerns. Most
people that take DNA tests do not provide a rich family tree. Therefore, it was
necessary for the knowledgeable steward to build a rich family tree, to identify known
relatives that took DNA tests even when most of the known relatives do not provide
much of a family tree. A rich family tree is very untypical of what is actually provided by
people that take DNA tests. Nevertheless, this requirement does not go away. If a rich
family tree does not exists then it must be built, otherwise the three clusters will never
be recognized and what is found only remains as a scatter shot of DNA matches.



This probability is an element of the numerator relationship matrix that can be computed3

by following known recursion formulae (Van Vleck, 1979, pg 35).
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3. Statistical Model

The remarkable observation is that the cM measurements follow a pattern of
inheritance, a pattern that is different to that described by quantitative geneticists for
additive genetic effects, but a pattern nevertheless between parent and offspring. Like
the pattern found for additive genetic effects, that pattern found for the cM
measurements allows the specification of a linear model that permits the best linear
unbiased  prediction (BLUP) of cM measurements for all the relatives in the pedigree by
combining the observed cM measurements found on some of the living relatives. This
prediction includes the envoy, and it comes with a standard error to judge significance.
Just like dairy cattle are “blupped” to predict breeding values to aid selective breeding,
dead people in the pedigree are blupped to predict the cM of the envoy thereby
possibly proving that the unknown relative descended from the central ancestors. We
are spared from having to exhume skeletons from graves long ago sealed, and
performing DNA tests on the bones to prove paternity, even if its known what closet the
skeletons are buried in. 

 The pattern of inheritance for the cM measurements fall into three categories, defined
below.

A. From one parent to an offspring, with the parent not a common ancestor or central
ancestor.

PIf u  is the cM measurement between any parent, identified as P, and the unknown

Orelative R, then let u  be the cM measurement between that parent’s offspring,
identified as O, and relative R. Moreover, define Pr(P = R) as the probability  that a3

random gene taken from P (at a given loci) is identical by decent to a random gene
taken from the relative R (at the same loci) that is now assumed to pass through the
envoy by following a stipulated path. For relationships removed from immediate family,

Pthe expectation of u  is approximately 6800×Pr(P = R) .

It is apparent with meiosis and crossovers (i.e., genetic recombination) that half of the
parents genes will be passed on to the offspring, implying that

O P O(1) u  = ½u  + ,

O Owhere ,  is a random residual, with a variance that must be approximated. If u  is

Pdistributed as a Poisson distribution with mean parameter ½u , then the variance is well
approximated as  3400×Pr(P = R). This is a good variance to use as an approximation
because it tends to be a small variance relative to what is typically observed, and this
tends to create a sensitive goodness of fit test that points to a poor statistical fit with the
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slightest departure from model expectations, pointing again at extra-Poisson variation
that can be measured and then used to estimate statistical errors. The extra variation is
merely tacked on at the end of computation.

O eMore realistically, if u  is distributed as an approximate binomial distribution of N
effective  DNA segments of equal length "cM, each segregating with the binomial

O e eprobability ½, then u  has mean ½"N  and variance ¼" N . Because " is defined such2

e P Pthat "N =u , we find that the variance is approximated as ¼"u  or "1700×Pr(P = R). It

e Pwill be assumed that " is approximately constant for different variations of N  and u .,
i.e., DNA fragments that segregate independently tend to be the same length, with
some variation that can be ignored.

The means for Poisson and binomial distributions are identical. The difference in the
variance for the Poisson and binomial distributions comes from a proportionality

 constant ½" (a distinction that only repeats in the categories B and C that follow), and
as such ½" has no effect in the calculation of the linear predictions. The extra-Poisson
variation can be estimated from the chi-square statistic that is calculated following linear
prediction and tacked on at the end to compute standard errors , and so there is no4

need to further consider the binomial distribution as a special case.

However, rather that stopping with the variance approximation noted above for the
Poisson distribution, it can be advantageous to seek a better estimate of variance once
there has been the initial round of linear prediction. An additional improvement is found

P P Oby using the fresh prediction of u , say  û ,  to approximate for the variance of ,  with

P P P½û , which is a variance conditional on u =û  for a Poisson distribution. Similar
improvements are found with categories B and C that follow. What is discovered is that
the variances can be better approximated by plugging the linear predictions in as
prescribed, and then continuing to a second round of prediction. If the chi-square
goodness of fit statistics falls then this iteration is recommended. The procedure now is
to continue iterating, at each round plugging the linear predictions in for variances. This
is called re-weighted iteration, and it is continued while the chi-square statistic
stabilizes. The calculation of the extra-Poisson variation is moved to the end of re-
weighted iteration.

B. From common ancestors, or central ancestors, to an offspring, when the offspring is
not one of the central ancestors.

There is a need to consider the case when one parent is known (as in category A
above), and when two parents are known. However, in the case where one parent is
not related to the unknown relative, it might as well be assumed that the second parent
is unknown and restrict most of the statistical treatments to follow category A, thereby
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being more frugal with the numerical calculations. This shortcut  can be taken for most5

of the pedigree except for the case where the parents are central ancestors or the
paternal and maternal common ancestors. 

As long as the flow of genes that are common to the unknown relative flow down from
the two parents (P1 and P2) to an offspring (O), we can apply model (1) to represent
the uniting gametes from the two parents. Any allele that is common to the unknown
relative can only occupy one loci across both parents, and hence the common genes
are passed on independently with (1) applied twice to give model (2).

O P1 P2 O(2) u =½ u  +½ u  +  ,

OThe term ,  is again the residual, but now with a variance that can be approximated by:

OVariance(, ) .3400×[Pr(P1 = R)+Pr(P2 = R)] for the first round,
or

O P1 P2 Variance(, ) .½× [û  + û ] during re-weighted iteration.

C. From a paternal (or maternal) central ancestor back against the flow of genes to the
paternal (or maternal) common ancestors.

The paternal common ancestors are the parents for the male central ancestor, and the
maternal common ancestors are the parents for the female central ancestor. Here gene
flow is reversed to place the common genes, i.e., found identical in the unknown
relative, that are also in the central ancestors, but now finding them into the noted
parents. This makes two equations given by (3) for the parents rather than one for the
offspring, and done for both the paternal and maternal sides of the central ancestors.

P1 O P1u =½ u   +  ,
 (3) 

P2 O P2u =½ u   +  ,

Every common allele (at a particular loci) found in P1 is an allele missing in P2, and

P1 P2visa versa. Therefore ,  and ,  have a perfect negative correlation, and the
associated 2×2 variance-covariance matrix is a rank-1 matrix, approximated by the
following.
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Where

v = 3400×Pr(O=R) for the first round,
or

Ov = ½ û  during re-weighted iteration.

There are now equations and residuals coming form (1), (2) and (3)  for all individuals in
the pedigree that is to be analyzed, excluding the central ancestors and the envoy, and
the envoy’s descendants leading to the unknown relative. This information can be
collected and expressed in matrix notation as follows

Pu = ,

Var(,) = R

Where P is a rectangular matrix with two more columns than rows, with each row
representing an equation of the form (1) or (2) or where two rows are given by (3),
where most elements in any row are set to zero expect for the numbers 1 or -½ that are
found at the appropriate places. The column vectors u and , represent the sets of
shared cM values and residuals for the known relatives. The variance matrix R is
almost completely diagonal, except for two 2×2 blocks that correspond to the paternal
and maternal common ancestors. The fact that R is rank deficient is to be treated
correctly with the matrix tools that are described below. Because the cM values for the
common ancestors only impact the observed values as the sum of the paternal
common ancestor cMs, or the sum of the maternal common ancestor cMs, there is no
loss of degrees of freedom caused by the rank deficiency of R. The fact that there are
no equations for the central ancestors has the desired effect of treating those two cM
values as fixed effects, in much the same way fixed genetic groups (Westell, Quaas,
Van Vleck 1988) or fixed animal effects (Graser, Smith and Tier 1987) can be
introduced into linear mixed models that typify animal breeding studies. Introducing two
fixed effects spends two degrees of freedom.

The data are the observed cM values found on living relatives that also belong to the
pedigree. The linear model for the observations is the following.

y=Zu

Where y us a N×1 column vector containing the N shared cM values observed on some
of the living relatives, and Z is an incidence matrix containing mostly zeros except for a
single entry containing the number one in each row that picks out the appropriate
element in u so that it is matched with the corresponding element in y. The linear model
for the observations contains no additional error terms, meaning that the elements of u
are treated as intrinsic measurements that won’t vary if re-sampled. Rather than
smoothing the estimates of u, not using an additional error term has the effect of
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returning the cM values as estimates that now equal exactly the cM values that had
been observed on some of the living relatives; the rest being best predictions.

No complication is found with R rank-deficient, or with the null matrix representing the
variance matrix for observations that have no additional error vector, because the
normal equations or Henderson’s (1973) mixed model equations, won’t be used.
Rather, a method suitable to handle a singular variance matrix is to be used, described
by Siegel (1965) and given by equation (3.9) of Goldberger (1962).

For a given linear model of the form w=Xb+e, with Var(e)=V, and w is observed and
where X is known, Siegel recommended solving the following indefinite linear system of

equations for estimating b by a generalized least-squares, as .

It is convenient to augment the coefficient matrix with the right-hand side, producing the
following square matrix M that is symmetric and indefinite.

(4)

The empty space in M is understood to be entries of the number zero. As Smith(2001a)
demonstrated, the matrix M can be subjected to the Cholesky decomposition
(generalized for indefinite matrices) or elementary row-operations to decompose M by
the LU factorization, leading to maximum likelihood estimation of dispersion
parameters, and linear estimation and prediction, which includes the calculation of the
total sums of square minus the reduction of sums of square - the chi-square statistic.
The beauty in this approach is that it works even for singular V, and all that is needed is
to specify the linear model thereby building the matrix M directly using simple plug-ins,
then the analysts turns to standardized computer algorithms to apply elementary row-
operations, forward and backward substitution, and even backward differentiation, and
gone is any reference to the mixed-model equations or the normal equations because
those become a redundant by-product of a particular order of row-operations. 

For the present example we need not employ the heavy equipment that involves
backward differentiation of a likelihood function that is computed from a Cholesky
decomposition, as the present application is limited to linear prediction with quasi-
known dispersion parameters. Referring to the form on the linear model, substituting
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values in for V, X and w in (4) to represent the present case, gives the following
partition matrix.

The empty space in M is again understood to represent entries of zero. The
computations follow in the outline below.

1. The matrix M is constructed as described above, using simple variances derived for
the Poisson distribution and the probabilities of identity by descent.

2. A permutation matrix Q is found dynamically with the implementation of the LU
factorization (see Smith 2001b), to compute the unit lower triangular matrix L and an
upper triangular matrix U such that LU=QMQ , while restricting the permittedT

permutations to leave the last row and column of M fixed in the last position.

3. The chi-square statistic (P ) with N – 2 degrees of freedom is retrieve in the last2

diagonal element of U which is present as -P . The expectation is that this statistics will2

show significance because the Poisson distribution comes with small relative variances,
and it is therefore easy to generate a poor fit. Significance implies the presence of
extra-Poisson variation, with variance term F  noted below.2

4. To calculate the predictions of shared cM for all the known relatives (i.e., to calculate
the prediction of the vector u), retrieve the last column U but excluding the last element
where the chi-square statistic was found, and put it in the work vector r. Remove the
last row and column of U, making a smaller upper triangular matrix â. The column
vector r has already been subjected to implicit forward substitution with the LU
factorization. Complete the process now by solving × in â×=r by backward substitution.
The prediction of u, now defined as û, is found scattered in × depending on the
permutations. However, because the permutations are done implicitly by software, û is
found in × as if there had been no permutations.

5. With the chi-square statistic significant, the matrix M can be rebuilt for re-weighted
iteration by using the current value of û. The calculation then returns to Step 2 above,
and this iteration repeated as many of times as necessary until the chi-square statistic
stabilizes. Ideally, the chi-square statistic should fall initially, if only a little, otherwise re-
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weighted iteration is not recommended.  Once this is done, the last estimate of F  found6 2

in Step 3 is taken as the extra-Poisson variation.

6. To predict the shared cM for the envoy add the cM predictions for the central
ancestors together; i.e., add two elements of û together. Initialize the work vector r used
in Step 4 to zero everywhere except for the two entries that correspond to the central
ancestors that are set to the number one. With the permutations treated implicitly, use
forward substitution to solve for the vector s in â s=r. Calculate the negative weightedT

sum of squares, 

i iwhere  â  is the i-th diagonal of  â, and s  is the i-th element of s. The standard error for
the shared cM prediction for the envoy is F*=(F * ) .2 2 ½

4. Numerical Example

The pedigree information that is used to illustrate the method is presented in Display 1,
showing the central ancestors (Manuel da Rosa and Rosa Paula), the paternal common
ancestors (Francisco da Rosa and Maria Delfina) and the maternal common ancestors
(Manuel Antonio Paula and Marianna Felecie). Fourteen living descendants were
identified that took Ancestry’s DNA test. The family tree is 4 to 5 generations deep
showing relationships between 2  and 3  cousins.nd rd

Two sisters also took Ancestry’s DNA test, and were previously not known related to the
family tree shown in Display 1. However matches were found among the 14 individuals
shown in Display 1, coming with various degrees of strength as measured in cM. Those
cM values are listed in Table 1.

Table 1. Ancestry’s cM values between the sisters and 14 individuals that belong to the 
Rosa and Paula families.

Individual ET YP KH RM JM JK SS JS LM SK PJ KO DP TM

Sister 1 36 11 31 28 21 33.2 72 182 108 26 <6 15.5 60 60

Sister 2 15.5 11.4 29.4 26 <6 36 47 135 24.3 <6 <6 <6 39 13.3
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Display 1. Family tree with central ancestors Manuel da Rose and Rosa Paula, with
paternal common ancestors Francisco da Rosa and Maria Delfina, and with maternal
common ancestors Manuel Antonio Paula and Marianna Felecie. Circles indicate
individuals involved with gene flows that are common by decent between the envoy (red
circle)  and living descendants that took DNA tests (dark circles).

Following the method of Section 3, a pedigree of 56 individuals was built, including the
envoy and 52 known relatives belonging to the Rosa and Paula families. The 14 cM
values was evaluated for each sister in turn, predicting the cM values for all 38 relatives
that did not come with a measured cM value.

Regarding the five cM values in Table 1 that correspond to non-matches because cM<6
were found, the corresponding cM values were set to 3 to permit the calculations. Some
zero cM values are expected from chance alone even if the sisters are related to the 14
individuals as implied by Display 1. However, setting cM to zero can complicated re-
weighted iteration where positive weights are required, and so setting the non-matches
to cM=3 (the mid-point) rather than to cM=0 is preferred (not that it matters much).

After the first iteration for the Sister 1, the initial chi-square of 87.47 fell to 75.68 with
subsequent re-weighted iteration, and so re-weighted iteration was performed prior to
calculating the extra-Poisson variation and predicting the cM values for all the relatives.
The cM prediction between Sister 1 and the envoy was calculated as 1004, coming with
a standard error of 158. Using a normal approximation, this implies that the actual cM
between Sister 1 and the envoy is greater than 745 with 95% probability.



Bettinger (2016, pg 106) expects the cM values for great-grandparents to vary between7

547 to 1110.

Despite the unfortunate connotation of the word “fixed,” the fixed effect originates from8

sampling theory and represents a standalone parameter that is free to be anywhere, without any
bias from a prior distribution.
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No re-weighted iteration was performed for Sister 2 because the initial chi-square of
85.35 did not decline with re-weighted iteration. The extra-Poisson variation and the
predicted cM values were calculated after the initial iteration. The cM prediction
between Sister 2 and the envoy was calculated as 567, coming with a standard error of
154. Using a normal approximation, this implies that the actual cM between sister 2 and
the envoy is greater than 314 with 95% probability.

The genetic signal between the sisters and the 14 individuals that belong to a known
pedigree is stronger in Sister 1 than Sister 2. This difference is entirely expected from
genetic recombination. Moreover, the pattern found is consistent with the possibility that
the envoy is a great-grandparent  of the sisters when their results are taken together. 7

The evidence is compelling with the cM values observed on the 14 relatives. There
remains a small tendency for a confirmation bias in seeing the envoy as a great-
grandparent given that the model and its pedigree information is assumed correct.
However, setting all the 14 cM values to 3 (i.e., to what is defined to be a non-match),
only induces a predicted cM of 64.55 between a sister and the envoy. Therefore, any
confirmation bias coming from the model is small. What actually was calculated for the
cM between the envoy and a sister was much larger, and was closer to that expected
for a great-grandparent. The models treats that the associated cM values for the central
ancestors as “fixed effects”  that are un-impacted by prior information. These fixed8

effects are free to respond to the 14 measured cM values, even the non-matches.

The method is also robust to an unknown number of generations separating the sisters
and the envoy. It is only necessary for the sisters to have descended from the envoy.
To perform the calculation the envoy was assumed to be a great-grandparent of the
sisters, but this only impacts the R matrix as a proportionality constant (during the first
iteration) and has no impact with re-weighted iteration, leaving the linear predictions of
the cM values unaffected. 

5. Conclusion

The statistical model, and its calculation methods, were successful in combining the cM
values of 14 relatives and concentrating those measurements into a single cM value
between a hypothetical envoy and the previously unknown relative (actually a pair of full
sib sisters). These results were from a combination of statistical linear prediction and
genealogical research. However, the exercise also resembled a cluster analysis, where
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uniformly defined and are limited to the matches that are visible to the test taker, and a more
comprehensive tool (or set of tools) can be very useful.
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the 14 relatives were found clustered by being members in one pedigree that was the
product of genealogical research. It is possible to utilize a more comprehensive cluster
analysis of all the pair-wise cM values found in a large database, thereby finding many
clusters of genetic relatives without the foundation provided by genealogy. There may
be some utility in developing clustering tools that can be used to query the database
beyond what is presently available .  For example, each sisters can only access the 149

cM values in the cluster define by the one pedigree, however, each of the 14 members
have an additional 13 pair-wise cM measurements with other members of the cluster,
and all such pair-wise cM values go into defining the cluster. There are many such
clusters in the database, including clusters that are near-by and overlap, and these can
all be identified in principle by a more thorough cluster analysis.

In is unlikely that a more ambitious cluster analysis will ever substitute completely for
genealogy. Something must be known about a cluster before a linear model can be
defined that connects the unknown relative to the cluster through the presumed envoy.
That extra information comes from genealogy in the form of pedigree information.

Having found an envoy with a significantly large cM, as was done for the two sisters,
further detective work had been required. The envoy is the child of Manuel da Rosa and
Rose Paula, two Portugese emigrants that came to Northern California 150 years ago.
That provides a valuable clue on how the envoy might relate to the family tree of the
sisters, given that the envoy is a presumed great-grandparent of the sisters, and
Manuel and Rosa had 10 children. What had been missing in the sister’s family tree
was one of several possibilities that was very unclear at first: a misidentified parent,
grandparent or great-grandparent, and the sisters were initially thought to be half-sibs.
In a remarkable set of discoveries that followed in the wake of the envoy’s discovery by
statistical analysis, what had gone missing was a lost father, a living grandson of the
envoy. At the time of the writing of this paper, the lost father has agreed to take
Ancestry’s DNA test to confirm the discovery. It is usual for a parent-offspring discovery
to come directly from a vary powerful DNA match between parent and offspring, but in
the present case 14 relatives were first matched thereby creating a sharper focus in the
search, and the discovery of the biological father followed. 
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