ENIGMAS OF THE GENETIC CODE, ENIGMA 2: A SECOND HIDDEN ARITHMETICAL ALGORITHM (Version 1)

Miloje M. Rakočević
Full professor of Faculty of Science, University of Niš, Serbia;
Now retired, on the Address: Milutina Milankovica 118/ 25
11070 Belgrade, Serbia
E-mail: milemirkov@nadlant-com
www.rakocevcode.rs

Abstract

This second enigma is standing in relation to enigma 1 in our previous communication. It is relating to total number of atoms (204) in side chains of 20 protein amino acids, within standard genetic code.

INTRODUCTORY NOTES

1. From the aspect of symmetry, the relation between the numbers 2 and 5 appears to be special (Table 1). Namely, in the binary numbering system, the pair $2-5$ is the first possible pair with both symmetry - direct (vertical) and indirect (horizontal):

010

$$
\begin{equation*}
010 / 101 \tag{1}
\end{equation*}
$$

101
2. It is known that the balances of atom number and/or nucleon number in amino acid molecules (within genetic code) are determined by the differences for $00,01,10$ and/or 11 , writing in decimal numbering system [see about that in our works; for example, References in Note 1 (version 2) in our site (www.rakocevcode.rs)].
3. The question is whether the standpoints of point 1 and point 2 may be related? The answer to this question incorporates arithmetic system presented in Table 2.

THE PROBLEM

Find such an arrangement of amino acids (5×4) that the number of atoms (in the side amino acid chains), in five rows (Table 3), corresponds to $10^{\text {th }}$ event within the system in Table 2. (Hint: In a series of even natural numbers just $10^{\text {th }}$ case is the number 20.)

COMMENT

The solutions of this enigma give the satisfaction to our hypothesis that the genetic code was complete from the very beginning and that it represents a unique (full and whole) system in which the position of each amino acid is strictly determined, and that with several different aspects (Rakočević, 2004).

Table 1. The pairs of numbers (from the sequence of natural numbers) that have mutual symmetry [see binary number presentation (1)].

00	02	04	06	08	10	12
11	13	15	17	19	21	23
22	24	26	28	30	32	34
11	16	21	26	31	36	41
00	05	10	15	20	25	30
44	60	76	92	108	124	140
	12	14	16	18	20	22
	23	25	27	29	31	33
	34	36	38	40	42	44
	41	46	51	56	61	66
	30	35	40	45	50	55
	140	156	172	188	204	220
	22	24	26	28	30	32
	33	35	37	39	41	43
	44	46	48	50	52	54
	66	71	76	81	86	91
	55	60	65	70	75	80
	220	236	252	268	$\underline{284}$	$\underline{\underline{300}}$
	32	34	36	38	40	42
	43	45	47	49	51	53
	54	56	58	60	62	64
	91	96	101	106	111	116
	80	85	90	95	100	105
	300	316	332	348	364	380
	..					

Table 2. A specific arithmetical system. Start with 00-11-22-11-00, and then adding the number 2 in the first three cases, and number 5 in the last two cases. As a result we have $10^{\text {th }}$ event, correspondent with number of atoms within 4×5 amino acids as it is shown in Table 3. (Notice, that the pair 220-284 is the first pair of friendly numbers; cf. Figures A. 1 and A. 2 in Appendix A.)

Table 3. The number of atoms within side chains of five rows of amino acids $\left(a_{1}-a_{4}, b_{1}-b_{4}, \ldots, e_{1}-e_{4}\right)$ corresponds to the five results in $10^{\text {th }}$ case of an arithmetical system presented in Table 2.

REFERENCES

Rakočević, M. M. (1998) The genetic code as a Golden mean determined system, Biosystems 46, 283-291.
Rakočević, M. M. (2004) A harmonic structure of the genetic code, J. Theor. Biol. 229, 221-234.

APPENDIX A

The six-bit binary code tree of the genetic code (Rakočević, 1998) in Figure A. 1 and its determination with third perfect number (496) as well as first pair of friendly numbers $(220,284)$ in Figure A.2.

Figure A.1. The six-bit binary code tree of the genetic code (Rakočević, 1998)

Figure A.2. The determination of six-bit binary code tree (Figure A.1) with third perfect number (496) and with first pair of friendly numbers $(220,284)$.

