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Abstract

Many breeders use selection as a first step for improvement of complex

traits. The theory of selection is well studied in the genetics literature.

In this article, we propose a new approach to breeding which focuses on

mating instead of selection, we refer it to as genomic mating. We believe

breeding by genomic mating uses the genomic information better than a

recently proposed method of breeding methodologies like genomic selec-

tion. We used concepts of risk and diversification from the economics for

formulating the optimum mating theory. The results from our simulations

point to the efficiency of our method to selection based breeding.
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genomic mating, complex traits, genome-wide markers, inbreeding, genomic di-
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1 Introduction

The role of mating as an evolutionary force has been described by many thinkers.
However, this evolutionary information have been in part ignored by breeding
methods that focus only on improvement by selection.

In this article we discuss that both PS and GS are in a sense inefficient for
improving complex traits in the long run, mainly because they are methods
of directional selection and both of these methods, lose genetic variation (i.e.,
increase the level of inbreeding). The importance of inbreeding for long term
success of selection has been expressed by few authors ([11, 13, 27]). Some
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approaches to control inbreeding in the selection paradigm have also been pro-
posed ([13]). For example, in [11], it is shown that the gain in selection response
from using individual genes was proportional to the variance they explained.
Goddard ([11]) argues that, GS is likely to lead to a more rapid decline in the
selection response unless new alleles are continuously added to the calculation of
GEBVs. Goddard also recommended a weighted selection scheme, where favor-
able alleles with low allele frequency receive more weight. In the same article,
the relationship between the effective population size and response to selection
is studied. A small but informative simulation study in [13] also stresses the
importance of balancing short and long term gains by controlling inbreeding in
selection.

We argue in this paper that, the solution lies in replacing the selection
paradigm (GS or PS) with optimal mating designs. This implies that instead of
only inferring which lines in the breeding population will become the parents of
the next generation, our solution should directly give the list of mates from cur-
rent breeding population for each of the progeny in the next generation. When
put in this way, the problem of breeder of finding the crosses that needs to be
made to improve the genetic level at each cycle while controlling inbreeding, can
be expressed as an optimization problem similar to the ones used in the selec-
tion paradigm [24, 12, 1]. This is a different approach than selection because the
solution set includes the possibility of all lines in the breeding population con-
tributing to the next generation. This approach brings a breakthrough method
for plant breeding programs.

Except for a few approaches like assignment of mates using sequential selec-
tion of least-related mates ([22]) or linear programming ([14]) and more recent
work of [27], which deal with selection of parents followed by mating, there is a
scarcity of compelling approaches to combine both of these steps. The proposed
genomic mating approach combines these two steps. The aim of this paper is
to develop a mathematical theory for GM and compare its performance to that
of the traditional breeding approaches, PS and GS.

2 Methods

Selection is an evolutionary phenomenon that affects the phenotypic distribu-
tion of a population. From a breeding point of view, selection means breeding
from the ”best” individuals ([10]). The simplest form of selection is to those
individuals on the basis of their own phenotypic values, which is called pheno-
typic selection (PS). Phenotypic selection has been in use since domestication
of crops thousand of years ago. In PS, phenotypes of individuals are used for
selection of individuals for advancement in the breeding cycle.

The development of molecular marker techniques has offered new selection
possibilities and new breeding schemes approaches ([9]). Marker assisted selec-
tion ([16]), marker assisted introgression ([8]), and marker assissted recurrent
selection ([5]) have been used as methods to make selection.

With the advent of high throughput genotyping, a new tool for animal and

2



Figure 1: Diagram for the different generation interval approaches in plant
breeding. Phenotypic selection (PS) and genomic selection (GS) are selection
methods, and genomic mating (GM) is the mating approach. Arrows indicate
the different stages during the generation interval. In PS, starting with a set of
parents as breeding material, selection is performed based on phenotypes. In GS,
the breeding value is predicted using a statistical model based on phenotypes
and the using of whole-genome markers, and selection is based on GEBVs. GM
is similar to GS in terms of training a model, but with the difference is that this
information is used to decide on mates not just for selecting the top parents.

plant breeding have been developed, called GS. Genomic selection use genome-
wide markers to estimate the effects of all genes or chromosome positions simul-
taneously ([21]) by calculating genomic estimated breeding values (GEBVs).
This GEBVs are used for selection of individuals for advancement in the breed-
ing cycle. This process involves use of genotypic and phenotypic data to build a
prediction model, that will estimate GEBV’s for selected individuals with only
genotypic data. The adaptation of GS in many breeding programs, is due not
just because allows increasing the genetic gain by reducing the generation inter-
val in the breeding program, but also because GS is more suitable for complex
quantitative traits with small effects. Many factors are involved in the rela-
tive per unit of time efficiency of these methods and their short and long time
performance.
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2.1 Genetic Gain and Inbreeding

It is widely accepted that short term gains from selection increases with in-
creased selection intensity. However, increasing selection reduces the genetic
variability, which increases the rates of inbreeding and may reduce gains in the
long term run. Most of the selection in plant breeding are designed to maximize
genetic gain. A few optimized selection schemes have been proposed to balance
the gain from selection and variability ([29, 6, 20, 21]). We will give a brief
review of these approaches since they relate to the mating theory.

Let A be a matrix of additive genetic relationships (by definition this is
equal to twice the matrix of coefficients of co-ancestry) between the individuals
in the genetic pool (this matrix can be obtained from a pedigree of genome-wide
markers for the individuals) and let c be the vector of proportional contributions
of individuals to the next generation under a random mating scheme. The
average relatedness for a given choice of c can be defined as r = 1

2
c′Ac. If b is

the vector of GEBV’s, i.e., the vector of BLUP estimated breeding values of the
candidates for selection. The expected gain is defined as g = c′b. Without loss
of generality, we will assume that the breeders long term goal is to increase the
value of g.

In [29, 6, 20] an approach that seeks maximizing the genetic gain while
restricting the average relationship is proposed. The optimization problem can
be stated as

minimize r = c′ A
2
c

subject to c′b = ρ

c′1 = 1

c ≥ 0

(1)

This problem is easily recognized as Quadratic Optimization problem (QP).
There are many efficient algorithms that solves QP’s so there is in practice
little difficulty in calculating the optimal solution for any particular data set.
Recently, several allocation strategies were tested using QP’s in [11, 22, 25].
It is easy to extend these formulations to introduce additional constraints as
positiveness,minimum-maximum for proportions, minimum-maximum for num-
ber of lines (cardinality constraints).

2.1.1 Balancing Genetic Level and Inbreeding: Efficiency Frontier

By solving the QP in (1) given for varying values of ρ we can trace out an
efficient frontier, a smooth non-decreasing curve that gives the best possible
trade off of genetic variance against gain, i.e., the curve represents the set of
Pareto-optimal allocations. This curve is called the efficiency frontier (EF) in
economics literature. One such EF curve is shown in Figure 2 for a set of 50
simulated lines.
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Figure 2: The EF curve for 50 simulated genotypes and a trait. The points along
the curve are the ”Pareto” optimal points balancing gain and inbreeding. Any
point below this line is sub-optimal and any point above the line is unattainable.

We would like to bring to the attention of the readers, that there is a big sim-
ilarity between the efficient portfolio selection problem and the solution offered
by Matkowitz in the 1950’s ([18, 19]), with the GS theory we have reviewed in
this section. Portfolio theory attempts to maximize portfolio expected return for
a given amount of portfolio risk, or equivalently minimize risk for a given level of
expected return, by finding optimal portfolio proportions. It is in fact beneficial
to consider investments in the parents as a capital investment problem, since the
economical ideas such as risk-return relationships, risk diversification, etc,.. are
applicable also to the investment in the populations by the breeding programs.
However, we believe that this theory needs to be appropriately modified because
of the specific considerations related to poliploidy, meiosis, and more generally,
to reproduction in living organisms which use DNA as a mode of information
transfer in reproduction.

2.2 Optimal Genomic Mating

The role of mating as an evolutionary force has been described by many thinkers
since Darwin. Mating choice is a major force in the evolution of many characters
seen in sexually reproducing organism ([4, 26, 7]0. What governs the operation
of sexual selection is the relative parental investments in their offspring 9[15,
2, 3, 28]0. However this evolutionary information have been in part ignored by
breeding methods that focus only on improvement by selection.

In this section, we will describe our proposed methodology. We introduce
measures of expected inbreeding and gain for a breeding population that are
the descendants of genotyped / ungenotyped individuals.

Let b = (b′
1
, b′

2
, b′

3
)′ denote the vector of genetic effects corresponding to the
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parents and progeny, where b1 and b2 are the genetic effects of the N parents and
b3 are the genetic effects of the Nc progeny . Let the pedigree based numerator
relationship matrix for the individuals in b is A and A is partitioned as

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33





corresponding to the partitions of b. Suppose, we also have the markers for the
parents in the second partition, and u2 =Ma where M is the matrix of minor
allele frequencies. Let Mc be the marker allele frequency centered incidence
matrix and a is the vector of marker effects. Covariance of b2 can be written as

cov(b2) =
McMc

k
σ2

b = Gσ2

b

where k is twice the sum of heterozygosities of the markers (VanRaden, 2008).
Following [23] and [17], let P be a matrix containing the transitions from

ancestors to offspring. We will refer P as the mating or parentage matrix. Then,
we can write b = Pb + ψ where ψ is the vector of Mendellian samplings and
founder effects with a diagonal variance D. In particular, using only the rows of
P corresponding to the b3 the relationship is written as

b3 =
[

P31 P32 P33

]





b1
b2
b3



+ψ
3

which can also be written as a regression equation of the form b3 = (I −

P33)(P31b1 + P32b2 +ψ3
) ([23]). The covariance matrix of b3 is given by

cov(b3) = (I − P33)(P31A11P
′

31
+ P32GP

′

32
+D3)(I − P33)

′. (2)

The variances caused by Mendelian sampling in D3 are related to inbreeding in
the parents via

var(ψ) ∝ (1/2− (F1 + F2)/4)

where F1 and F2 are the inbreeding coefficients of the two parents which can be
extracted from the diagonals of G. The covariance formula reduces to

cov(b3) = P32GP
′

32
+D3

if all the founders are genotyped, and a relatively simple mating strategy is
assumed where founders are the only parents and no back-crossing is allowed.
This is the assumption made for the remaining of this paper and in this case
P32 is a Nc children from N parents matrix with each row having two 1/2
values at positions corresponding to two distinct parents or only a value of 1 at
the position corresponding to the selfed parent. All the other elements of this
matrix are zero. Nevertheless, one can easily imagine situations where some of
the founders are not genotyped or when some of the progeny also have progeny,
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then the formula in (2) will be relevant. Construction of the matrix P for more
complex mating plans is described in [23].

The cov(b3) gives us the expected covariance of the progeny given the tran-
sition matrix P32 and the realized relationship matrix G of the parents. This
can be used as to measure the expected genetic diversity of a mating plan: we
can use a measure in the spirit of c′Ac in (1) by

Inbreeding(P32) = 1′

Nc

cov(b3)1Nc
= 1′

Nc

(P32GP
′

32
+D3)1Nc

.

We also need a measure for genetic gain. A simple measure of gain for a
given mating plan expressed in P32 can be constructed from the expected value
of b3 :

E(b3) = P32Ma

and an overall measure can be written as

Gain(P32) = 1′

Nc

E(b3).

We want to complement the measure ”gain” with a measure of within cross
variance for the genetic levels of children of the parent pairs. Under the infinites-
imal model, within cross variance arises from poliploidy and heterozygosity.

Suppose the organism under study is diploid. We can decode the markers
matrix M coded as -1, 0, and 1 into a matrix M∗ using the information in the
marker effects vector a such that markers are coded as the number of beneficial
alleles. We can also obtain a related marker effects vector a∗ by replacing the
original marker effects by the effects of the beneficial alleles so that we have
Ma = (M∗ − 1)a∗. For a given parent pair of parents, we can calculate the
vector expected number of beneficial alleles of the children of these parents
using a transition vector p as µ = E(m) = p′M∗. In addition, for each locus we
can calculate the variance for the number of beneficial alleles from the number
of alleles the parents have and put them in a vector which we will denote by
σ = (σ1, σ2, . . . , σm). Calculation of elements of µ and σ from the coding in
M∗ can be as in Table 1. We define risk measure for this parent pair as

risk(λ1) = (µ+ λ1 ∗









√

σ1/m
√

σ2/m
...

√

σm/m









− 1m)′a∗

where λ1 ≥ 0 is the risk parameter and m is the number of markers. The risk
of a mating plan (which is expressed in P32) is the sum of all the risk scores for
all mate pairs in that plan which we will denote by Risk(P32, λ1).

If the risk parameter is set to zero then we have Risk(P32, λ1 = 0) =
1′

Nc

E(b3) = 1′

Nc

P32Ma. The magnitude of this parameter is related to the
desire of breeder to take advantage of within cross variances and increasing it
gives more weight to high variance mate pairs and heterozygosity.
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Table 1: Calculation of mean number and variance of the beneficial alleles of
progeny at each locus from the beneficial allele code (-1, 0, 1) of the parents at
the same locus.

Parent 1 Parent 2 # Beneficial Allele Variance

1 1 2 0
1 0 1.5 0.5
0 1 1.5 0.5
1 -1 1 0
-1 1 1 0
0 0 1 2/3
0 -1 0.5 0.5
-1 0 0.5 0.5
-1 -1 0 0

In this sense, the efficient mating problem can be stated as an optimization
problem as follows:

minimize Inbreeding(P32) = 1′

Nc

(P32GP
′

32
+D3)1Nc

subject to Risk(P32, λ1) = ρ
(3)

where the minimization is over the matrices P32. In the above optimization
problem, we are trying to minimize the inbreeding in the progeny while the risk
is set at the level ρ ≥ 0. In the remaining of this paper we will prefer to use the
the following equivalent formulation of the mating problem:

minimize r = −Risk(P32, λ1) + λ2 ∗ Inbreeding(P32) (4)

where λ2 ≥ 0 is the parameter whose magnitude controls the amount of inbreed-
ing in the progeny, and the minimization is again over the space of the mating
matrices P32. λ1 controls allele heterozygosity weighted by the marker effects
and λ2 controls allele diversity.

The problem stated in Equation (1) and the mating problem are similar.
However, the differences are noteworthy: the solution to (1) only will give the
breeder the proportional contributions of parents, and leaves the mating problem
unanswered. A solution of the mating problem will give us the matrix P32 from
which an enumeration of all mates leading the progeny in the next breeding
cycle can be obtained.

The main advantage of switching from an inbreeding measure based on
parental contributions to a formulation based on mating plans is that, the later
allows a better control of inbreeding by completely controlling who mates with
who. In this way, there is an intrinsic limit to the amount of selfing or crosses
of closely related lines instead of leaving the decision to a roulette wheel assign-
ment of parents as mates in the formal method. A probabilistic assignment of
mates might lead to too much inbreeding. For example, if the parental contribu-
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tion proportion of a parent is 0.50, then we expect to have 25% to be obtained
by selfing this parent.

The optimization problem in two is a combinatorial problem whose order in-
creases with the number of individuals in the breeding population. We have used
an evolutionary algorithm to tackle this optimization problem and found that
the algorithm we have devised is very efficient for finding good solutions in rea-
sonable computing time. We did not explore any alternatives to our algorithm
but similar evolutionary algorithms like particle swarm, genetic algorithms, tabu
search, and simulated annealing are some other popular algorithms which can
solve this problem.

2.2.1 Efficiency frontier curve, risk and return

The frontier curve drawn using the optimal mating algorithm in Figure 3displays
the same kind of information as in the EF curve in Figure 2 . The coordinates
of the points on the curve are the values of estimated genetic gain (risk) and
inbreeding (diversity) for optimal set of mates. By changing the λ2 we move
along this curve. Since these are the optimal points, the breeder will choose one
of these points.

We want to stress the differences: First, as opposed to the continuous parent-
age contribution proportions solutions in the GS method , the mating method
gives discrete solutions. That is to say, the solutions of the mating algorithm
are the list of parent mates of the progeny. Second, there is no real guideline for
choosing where to operate while using GS method. On the other side, since the
mating algorithm is discrete and the number of genotypes contributing to the
next generation increase starting from one as we increase the λ2, we can iden-
tify a point to operate on this curve by slowly increasing the λ2 until a desired
minimum number of genotypes are included in the solution. This is the method
we have used in our simulations where we have run simulations of several cycles
of mating. we included the minimum number of parents as a paremeter: ”min-
parents” in simulations. This allowed us to run the simulations many times
without interference. However, a better approach in practical situations would
be to plot the whole frontier curve and select a solution that has a good risk to
diversity ratio (somewhere close to the kink of the frontier curve). The decision
for the λ1 depends on how much more risk a breeder wants to take.

To explore the effect of changing parameters for the mating algorithm, we
have devised the following simulations: A marker data was created for N geno-
types by randomly generating 1000 markers for each genotype. By introducing
independent and identical normally distributed marker effects at 500 of ran-
domly selected the loci we have defined a trait. Using the generated marker
effects, the genetic marker data we have identified optimal the mates for the
progeny at changing values of λ1 and λ2. A selected subset of solutions for
N=50 are displayed in Figure 3. In addition, for changing values of these pa-
rameters we have plotted the gain and the inbreeding values for the optimal
mates. Each curve in this figure display the efficient solutions at a fixed level of
λ1 for changing values of the λ2 parameter.
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Figure 3: The EF curve for same 50 simulated genotypes and a trait in Figure
2. The points along the curve are the ”Pareto” optimal points balancing gain
(or risk) and inbreeding at two levels of λ1. The effect of increasing λ1 is forcing
more heterozygosity and reducing inbreeding and reduced gains at λ2 close to
zero.

Finally, in Figure 5 the results from simulations for the study of the long
term behavior of PS, GS, Efficient GS and GM. Starting from 2 founders we
have formed a population of 150 genotypes with 1000 snps at 3 chromosomes
each and carried this population through 200 generations of random mating and
100 generations of phenotypic selection based on a complex trait (300 QTL at
random locations on each chromosome) with 0.5 heritability generated based on
the infinitesimal model. Starting from this initial population, we have simulated
10 rounds of PS, and 20 rounds of GS and GM (assuming one cycle of PS and two
cycles of GS and GM per year). The results of 5 replication of this simulation
are presented in Figure 5. Each thin line represents the genetic gains over cycles
by different methods over a replication of the experiment. The thick lines show
the mean improvement for each of the methods over 5 replications. In this
simulation study there is a clear advantage of using GM as a breeding method.

3 Conclusions and Discussions

In this article we have proposed a new methodology for breeding living organisms
based on optimal genomic determination of mating plans, our approach can be
contrasted with the selection paradigm where only proportional contributions
of parents to the progeny are the main focus. To this end we have adopted
economical concepts as risk and return to the specific case of breeding by mating.
Although similar to GS in its information requirements, our approach offers a
better use of the available genotypic and phenotypic information.
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We have provided several examples and compared our method by simulations
to the selection methodologies. We have found that the optimal genetic mating
approach very promising for improving short and long term gains. We believe
that successful application of GM will increase the rates of gains per cycle.

Under the optimal mating breeding scheme some concepts in statistical ge-
netics like selection intensity will have to be adopted so that the choice between
gain and genetic variability of the next generation become the main focus, not
the cut off point approach in selection.

Although we have only demonstrated the use of GM using marker estimates,
it is possible to adjust the methodology to work with phenotypic records or the
BV’s obtained from these. it can be argued that where PS is relatively more
efficient than GS, mating using BV’s and the marker data of the parents will
be beneficial for balancing risks and returns.

Now, we list a short list of factors that will be important to the success of
GM. As its true for almost all tools, blind use of GM can be problematic. The
success of GM lean on the improvement of accuracy of marker effect estimates,
which in turn depends on the following factors:

• Heritability of the trait,

• Linkage disequilibrium,

• Complexity of the trait,

• Statistical model,

• Size of breeding and training populations,

• Inbreeding in the breeding population,

• Relevance of training population to the breeding population.

The expected genetic gain and effectiveness of GM is directly proportional
to the prediction accuracy of GM models. Prediction accuracy is defined as
the correlation between the GEBVs and the true breeding value divided by the
square root of heritability (h2) [?, ?] Trait heritability, genetic architecture and
LD are the only factors that cannot be controlled by the researcher. Among
the factors that are under control of the researcher, the size of the training and
breeding population, and the strength of genetic relationships between them are
the most important factors affecting prediction accuracy. Under most circum-
stances, GM accuracies increase with increasing on the values of the different
vectors. For example, increasing marker density will help to increase the prob-
ability of finding markers that are in consistent LD with the trait of interest.
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N = 50, ImpVar = 0.4, ImpInbreed = 3
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Figure 4: For a the set of 50 simulated lines, the optimal solutions to the mating
problem at a few selected values of λ1 and λ2.
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Figure 5: The long term behavior of PS, GS, Efficient GS and GM. Starting
from this initial population, we have simulated 10 rounds of PS, and 20 rounds of
GS and GM (assuming one cycle of PS and two cycles of GS and GM per year).
Each thin line represents the genetic gains over cycles by different methods over
a replication of the experiment. The thick lines show the mean improvement
for each of the methods over 5 replications. In this simulation study there is a
clear advantage of using GM as a breeding method.
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