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Abstract

Generalized Feynman diagrams have become the central notion of quantum TGD and one
might even say that space-time surfaces can be identified as generalized Feynman diagrams. The
challenge is to assign a precise mathematical content for this notion, show their mathematical
existence, and develop a machinery for calculating them. Zero energy ontology has led to a
dramatic progress in the understanding of generalized Feynman diagrams at the level of fermionic
degrees of freedom. In particular, manifest finiteness in these degrees of freedom follows trivially
from the basic identifications as does also unitarity and non-trivial coupling constant evolution.

There are however several formidable looking challenges left.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral
or summation over loop momenta.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis
relying on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly
that the loop momenta are discretized and ZEO predicts this kind of discretization naturally.

In this article a proposal giving excellent hopes for achieving these challenges is discussed.

Keywords: Feynman diagram, functional integral, symmetric space, p-adic numbers, algebraic uni-
versality.
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1 Introduction

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in zero energy ontology (ZEO) [2]. This work has
led to the notion of generalized Feynman diagram and the challenge is to give a precise mathematical
meaning for this object. The attempt to understand the counterpart of twistors in TGD framework
[9] has inspired several key ideas in this respect but it turned out that twistors themselves need not
be absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient [7]. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [7]. This means opening of
the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [9]. Modified gamma matrices
at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [7] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.

5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [9, 7].
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1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams is
finite. Unitarity reduces to Cutkosky rules [15] automatically satisfied as in the case of ordinary
Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level both in
real and p-adic context. This is due to the symmetric space property (maximal number of isometries)
of WCW required by the mere mathematical existence of Kähler geometry [17] in infinite-dimensional
context already in the case of much simpler loop spaces [18].

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.

3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
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sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

2 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

2.1 What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momentum
eigenstates to achieve quantum classical correspondence in the modified Dirac action [6] suggests
however a delocalization of braid points, that is wave function in space of braid points. In real
context one could allow all possible choices for braid points but in p-adic context only algebraic
points are possible if one wants to replace integrals with sums. This implies finite measurement
resolution analogous to that in lattice. This is also the only possibility in the intersection of real
and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [6].

2.2 How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
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no local interaction vertices are present. One should however assume the vanishing of loops
required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

2.3 How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.
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3 Generalized Feynman diagrams at fermionic and momen-
tum space level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

3.1 Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.



3 GENERALIZED FEYNMANDIAGRAMS AT FERMIONIC ANDMOMENTUM SPACE LEVEL7

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

3.2 Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (3.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [10] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
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product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

3.3 Taking into account magnetic confinement

What has been said above is not quite enough. As shown in the accompanying article and in [7] the
weak form of electric-magnetic duality [14] leads to the picture about elementary particles as pairs
of magnetic monopoles inspiring the notions of weak confinement based on magnetic monopole force.
Also color confinement would have magnetic counterpart. This means that elementary particles would
behave like string like objects in weak boson length scale. Therefore one must also consider the stringy
case with wormhole throats replaced with fermion-X± pairs (X± is electromagnetically neutral and
± refers to the sign of the weak isospin opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [10].

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [12].

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.

4 How to define integration, p-adic Fourier analysis and p-
adic counterpart of geometric objects?

The following considerations support the view that the p-adic variant of a geometric objects, inte-
gration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces.
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4.1 Simple examples

It is good to proceed by introducing simple examples about how the p-adicization of integration could
be achieved using symmetric spaces. Consider first circle with emphasis on symmetries and Fourier
analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n, up to n = N . Integration is naturally replaced
with sum by using discrete Fourier analysis on circle.

2. This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner
p-adically continuous whereas phase angles are naturally discrete and described in terms of
algebraic extensions. The conclusion is disappoing since one can quite well argue that the
discrete structures can be regarded as real. Is there any manner to escape this conclusion?

(a) Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. Could one
consider a generalization of phases as products Expp(N,n2π/N+x) = exp(in2πn/N)exp(ix)
of roots of unity and exponent functions with an imaginary exponent. This would assign
to each root of unity p-adic continuum interpreted as the analog of the interval between
two subsequent roots of unity at circle.

(b) p-Adic integration would involve summation plus possibly also an integration over each p-
adic variant of discretization interval. The summation over the roots of unity implies that
the integral of

∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral

is, it is compensated by a normalization factor guaranteing orthonormality.

(c) If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require
p-adic continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values
of m. This is obtained if one has n = pk. In the spherical geometry this condition is not
needed and would mean quantization of angular momentum as L = pk, which does not
look natural. If representations of translation group are considered the condition is natural
and conforms with the spirit of the p-adic length scale hypothesis.

3. The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of
the coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic
norm when it exists so that it is not a suitable choice. The powers pn existing for p-adic
integers however approach to zero for large values of x = n. This forces discretization of η or
rather the hyperbolic phase as powers of px, x = n. Also now one could introduce products of
Expp(nlog(p) + z) = pnexp(x) to achieve a p-adic continuum. Also now the integral over the
discretization interval is compensated by orthonormalization and can be forgotten. The integral
of exponential function would reduce to a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also
introduce finite-dimensional but non-algebraic extensions of p-adid numbers allowing e and its
roots e1/n since ep exists p-adically.

4. A natural question concerns the possibility of identifying the points of real and p-adic variants
of phase angles with each in one-one manner rather than along discrete set of common points
defined by the algebraic extension. One could of course argue that this kind of correspondence
is useless because of the finiteness of the measurement resolution and if this correspondence
exists it cannot be unique. In fact, the impossibity to well-order the points of real axis caused
by the finite measurement resolution could be seen as the basic reason for the possibility to
apply p-adic topology as an effective topology. If the correspondence however exist it should
map the p-adic integration interval defined by p-adic numbers of norm smaller than one to
its real counterpart (0, 2π/N). This kind of map would be defined as x→ I(x)× 2π/N , where
I(x) =

∑
xnp

n →
∑
xnp

−n is the standard form of canonical identification. Quite generally, the
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canonical identification would apply inside the interval defining finite measurement resolution.
The possibility to modify this correspondence by introducing some other coordinates on both
real and p-adic sides could be seen as a reflection of the finite measurement resolution.

Consider nex the case of plane and take first translational symmetries as a starting point. In this
case Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants
to define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

4.2 Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
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product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

5 Harmonic analysis in WCW as a manner to calculate WCW
functional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.

5.1 Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
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propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D at
propagator lines [6]. G-invariance at vertex dictates the vertex as the singlet part of the product
of WCW harmonics associated with the vertex and one sums over the harmonics for each internal
line. p-Adicization means only the algebraic continuation to real formulas to p-adic context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (5.1)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (5.2)

such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
. (5.3)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

5.2 Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [5, 6]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (5.4)
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works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [8] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1±, x
2
±)
d2x± . (5.5)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (5.6)
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The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1±, x

2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

5.3 Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .
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2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

5.4 Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.
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