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Abstract

Physics as a generalized number theory program involves three threads: various p-adic physics
and their fusion together with real number based physics to a larger structure, the attempt to
understand basic physics in terms of classical number fields discussed in this article, and infinite
primes whose construction is formally analogous to a repeated second quantization of an arithmetic
quantum field theory.

In this article the connection between standard model symmetries and classical number fields
is discussed. The basis vision is that the geometry of the infinite-dimensional WCW (”world of
classical worlds”) is unique from its mere existence. This leads to its identification as union of
symmetric spaces whose Kähler geometries are fixed by generalized conformal symmetries. This
fixes space-time dimension and the decomposition M4 × S and the idea is that the symmetries
of the Kähler manifold S make it somehow unique. The motivating observations are that the
dimensions of classical number fields are the dimensions of partonic 2-surfaces, space-time surfaces,
and imbedding space and M8 can be identified as hyper-octonions- a sub-space of complexified
octonions obtained by adding a commuting imaginary unit. This stimulates some questions.

Could one understand S = CP2 number theoretically in the sense that M8 and H = M4×CP2

be in some deep sense equivalent (”number theoretical compactification” or M8 − H duality)?
Could associativity define the fundamental dynamical principle so that space-time surfaces could
be regarded as associative or co-associative (defined properly) sub-manifolds of M8 or equivalently
of H.

One can indeed define the associativite (co-associative) 4-surfaces using octonionic represen-
tation of gamma matrices of 8-D spaces as surfaces for which the modified gamma matrices span
an associate (co-associative) sub-space at each point of space-time surface. Also M8 −H duality
holds true if one assumes that this associative sub-space at each point contains preferred plane of
M8 identifiable as a preferred commutative or co-commutative plane (this condition generalizes
to an integral distribution of commutative planes in M8). These planes are parametrized by CP2

and this leads to M8 −H duality.
WCW itself can be identified as the space of 4-D local sub-algebras of the local Clifford

algebra of M8 or H which are associative or co-associative. An open conjecture is that this
characterization of the space-time surfaces is equivalent with the preferred extremal property of
Kähler action with preferred extremal identified as a critical extremal allowing infinite-dimensional
algebra of vanishing second variations.

Keywords: Classical number fields, quaternions, octonions, complexified octonions, associativity,
local Clifford algebra, quaternionic sub-manifolds.
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1 Introduction

This article is second one in the series devoted to the vision about TGD as a generalized number
theory. The basic theme is the role of classical number fields [25, 26, 27] in quantum TGD. A
central notion is M8 −H duality which might be also called number theoretic compactification. This
duality allows to identify imbedding space equivalently either as M8 or M4 × CP2 and explains the
symmetries of standard model number theoretically. These number theoretical symmetries induce
also the symmetries dictaging the geometry of the ”world of classical worlds” (WCW) as a union of
symmetric spaces [17]. This infinite-dimensional Kähler geometry is expected to be highly unique
from the mere requirement of its existence requiring infinite-dimensional symmetries provided by the
generalized conformal symmetries of the light-cone boundary δM4

+×S and of light-like 3-surfaces and
the answer to the question what makes 8-D imbedding space and S = CP2 so unique would be the
reduction of these symmetries to number theory.

Zero energy ontology has become the corner stone of also number theoretical vision. In zero
energy ontology either light-like or space-like 3-surfaces can be identified as the fundamental dynamical
objects, and the extension of general coordinate invariance leads to effective 2-dimensionality (strong
form of holography) in the sense that the data associated with partonic 2-surfaces and the distribution
of 4-D tangent spaces at them located at the light-like boundaries of causal diamonds (CDs) defined
as intersections of future and past directed light-cones code for quantum physics and the geometry of
WCW. Also the hierarchy of Planck constants [11] plays a role but not so important one.

The basic number theoretical structures are complex numbers, quaternions [26] and octonions
[27], and their complexifications obtained by introducing additional commuting imaginary unit

√
−1.

Hyper-octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are mul-
tiplied by commuting

√
−1 have naturally Minkowskian signature of metric. The question is whether
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and how the hyper-structures could allow to understand quantum TGD in terms of classical num-
ber fields. The answer which looks the most convincing one relies on the existence of octonionic
representation of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the modified Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as preferred
extremals [7].

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-algebra is contained in the tangent space of the space-
time surface. This condition actually generalizes somewhat since one can introduce a family of so
called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of decompositions
of tangent space to the space of non-physical and physical polarizations [12]. The physical
interpretation is as a number theoretic realization of gauge invariance selecting a preferred local
commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associatitivy and
co-commutativity applying in the regions of space-time surface with Euclidian signature of the
induced metric. The basic unproven conjecture is that the decomposition of space-time surfaces
to associative and co-associative regions containing preferred commutative resp. co-commutative
2-plane in the 4-D tangent plane is equivalent with the preferred extremal property of Kähler
action and the hypothesis that space-time surface allows a slicing by string world sheets and by
partonic 2-surfaces [7].

1.1 Hyper-octonions and hyper-quaternions

The discussions for years ago with Tony Smith [28] stimulated very general ideas about space-time
surface as an associative, quaternionic sub-manifold of octonionic 8-space: in what sense remained
however an open question. Also the observation that quaternionic and octonionic primes have norm
squared equal to prime in complete accordance with p-adic length scale hypothesis, led to suspect that
the notion of primeness for quaternions, and perhaps even for octonions, might be fundamental for
the formulation of quantum TGD. The original idea was that space-time surfaces could be regarded
as four-surfaces in 8-D imbedding space with the property that the tangent spaces of these spaces can
be locally regarded as 4- resp. 8-dimensional quaternions and octonions.

It took some years to realize that the difficulties related to the realization of Lorentz invari-
ance might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1 and can be regarded as a sub-space of

complexified quaternions resp. octonions. The transition is the number theoretical counterpart of the
transition from Riemannian to pseudo-Riemannin geometry performed already in Special Relativity.
The loss of number field and even sub-algebra property is not fatal and has a clear physical meaning.
The notion of primeness is inherited from that for complexified quaternions resp. octonions.

Complexified number fields make also sense p-adically unlike the notions of number fields them-
selves unless restricted to be algebraic extensions of rational variants of number fields. What deserves
separate emphasis is that the basic structure of the standard model would reduce to number theory.

1.2 Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
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One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics as in super string model.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8−H duality would apply also
at the induced spinor field and at the level of configuration space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

1.3 Notations

Some notational conventions are in order before continuing. The fields of quaternions resp. octonions
having dimension 4 resp. 8 and will be denoted by Q and O. Their complexified variants will
be denoted by QC and OC . The sub-spaces of hyper-quaternions HQ and hyper-octonions HO
are obtained by multiplying the quaternionic and octonionic imaginary units by

√
−1. These sub-

spaces are very intimately related with the corresponding algebras, and can be seen as Euclidian
and Minkowkian variants of the same basic structure. Also the Abelianized versions of the hyper-
quaternionic and -octonionic sub-spaces can be considered: these algebras have a representation in
the space of spinors of imbedding space H = M4 × CP2.
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2 Quaternion and octonion structures and their hyper coun-
terparts

In this introductory section the notions of quaternion and octonion structures and their hyper counter-
parts are introduced with strong emphasis on the physical interpretation. Literature contains several
variants of these structures (Hyper-Kähler structure [19] and quaternion Kähler structure possed also
by CP2 [21]). The notion introduced here is inspired by the physical motivations coming from TGD.
As usual the first proposal based on the notions of (hyper-)quaternion and (hyper-)octonion analyticity
was not the correct one. Much later a local variant of the notion based on tangent space emerged.

2.1 Octonions and quaternions

In the following only the basic definitions relating to octonions and quaterions are given. There is an
excellent article by John Baez [27] describing octonions and their relations to the rest of mathematics
and physics.

Octonions can be expressed as real linear combinations
∑
k x

kIk of the octonionic real unit I0 = 1
(counterpart of the unit matrix) and imaginary units Ia, a = 1, ..., 7 satisfying

I20 = I0 ≡ 1 ,

I2a = −I0 = −1 ,

I0Ia = Ia . (2.1)

Octonions are closed with respect to the ordinary sum of the 8-dimensional vector space and with
respect to the octonionic multiplication, which is neither commutative (ab 6= ba in general) nor
associative (a(bc) 6= (ab)c in general).

Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units hold
true. The arrow defines the orientation for each associative triplet. Note that the product for the
units of each associative triplets equals to real unit apart from sign factor.

A concise manner to summarize octonionic multiplication is by using octonionic triangle. Each
line (6 altogether) containing 3 octonionic imaginary units forms an associative triple which together
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with I0 = 1 generate a division algebra of quaternions. Also the circle spanned by the 3 imaginary
units at the middle of the sides of the triangle is associative triple. The multiplication rules for each
associative triple are simple:

IaIb = εabcIc , (2.2)

where εabc is 3-dimensional permutation symbol. εabc = 1 for the clockwise sequence of vertices (the
direction of the arrow along the circumference of the triangle and circle). As a special case this rule
gives the multiplication table of quaternions. A crucial observation for what follows is that any pair
of imaginary units belongs to one associative triple.

The non-vanishing structure constants d c
ab of the octonionic algebra can be read directly from

the octonionic triangle. For a given pair Ia, Ib one has

IaIb = d c
ab Ic ,

dab c = ε c
ab ,

I2a = d 0
aa I0 = −I0 ,

I20 = d 0
00 I0 ,

I0Ia = d a
0a Ia = Ia . (2.3)

For εabc c belongs to the same associative triple as ab.
Non-associativity means that is not possible to represent octonions as matrices since matrix prod-

uct is associative. Quaternions can be represented and the structure constants provide the defining
representation as Ia → dabc, where b and c are regarded as matrix indices of 4 × 4 matrix. The
algebra automorphisms of octonions form 14-dimensional group G2, one of the so called exceptional
Lie-groups. The isotropy group of imaginary octonion unit is the group SU(3). The Euclidian inner
product of the two octonions is defined as the real part of the product xy

(x, y) = Re(xy) =
∑

k=0,..7

xkyk ,

x = x0I0 −
∑

i=1,..,7

xkIk , (2.4)

and is just the Euclidian norm of the 8-dimensional space.

2.2 Hyper-octonions and hyper-quaternions

The Euclidicity of the quaternion norm suggests that octonions are not a sensible concept in TGD
context. One can imagine two manners to circumvent this conclusion.

1. Minkowskian metric for octonions and quaternions is obtained by identifying Minkowski inner
product xy as the real counterpart of the product

x · y ≡ Re(xy) = x0y0 −
∑
k

xkyk . (2.5)

SO(1, 7) (SO(1, 3) in quaternionic case) Lorentz invariance appears completely naturally as the
symmetry of the real part of the octonion (quaternion) product and hence of octonions/quaternions
and there is no need to perform the complexification of the octonion algebra. Furthermore, only
the signature (1, 7) ((1, 3) in the quaternionic case) is possible and this would raise M4

+ × CP2

in a preferred position.

This norm does not give rise to a number theoretic norm defining a homomorphism to real
numbers. Indeed, the number theoretic norm defined by the determinant of the linear mapping
defined by the multiplication with quaternion or octonion, is inherently Euclidian. This is in
conflict with the idea that quaternionic and octonionic primes and their infinite variants should
have key role in TGD [14].
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2. Hyper-octonions and hyper-quaternions provide a possible solution to these problems. These are
obtained by multiplying imaginary units by commutative and associative

√
−1. These numbers

form a sub-space of complexified octonions/quaternions and the cross product of imaginary parts
leads out from this sub-space. In this case number theoretic norm induced from QC/OC gives
the fourth/eighth power of Minkowski length and Lorentz group acts as its symmetries. Light-
like hyper-quaternions and -octonions causing the failure of the number field property have also
a clear physical interpretation.

A criticism against the notion of hyper-quaternionic and octonionic primeness is that the tangent
space as an algebra property is lost and the notion of primeness is inherited from QC/OC . Also
non-commutativity and non-associativity could cause difficulties.

Zero energy ontology leads to a possible physical interpretation of complexified octonions. The
moduli space for causal diamonds corresponds to a Cartesian product of M4×CP2 whose points label
the position of either tip of CD × CP2 and space I whose points label the relative positive of the
second tip with respect to the first one. p-Adic length scale hypothesis results if one assumes that the
proper time distance between the tips comes in powers of two so that one has union of hyperboloids
Hn × CP2, Hn = {m ∈ M4

+|a = 2na0)}. A further quantization of hyperboloids Hn is obtained
by replacing it with a lattice like structure is highly suggestive and would correspond to an orbit
of a point of Hn under a subgroup of SL(2, QC) or SL(2, ZC) acting as Lorentz transformations in
standard manner. Also algebraic extensions of QC and ZC can be considered. Also in the case of CP2

discretization is highly suggestive so that one would have an orbit of a point of CP2 under a discrete
subgroup of SU(3, Q).

The outcome could be interpreted by saying that the moduli space in question is H × I such that
H corresponds to hyper-octonions and I to a discretized version of

√
−1H and thus a subspace of

complexified octonions. An open question whether the quantization has some deeper mathematical
meaning.

2.3 Basic constraints

Before going to details it is useful to make clear the constraints on the concept of the hyper-octonionic
structure implied by TGD view about physics.

M4 ×CP2 cannot certainly be regarded as having any global octonionic structure (for instance in
the sense that it could be regarded as a coset space associated with some exceptional group). There
are however clear indications for the importance of the hyper-quaternionic and -octonionic structures.

1. SU(3) is the only simple 8-dimensional Lie-group and acts as the group of isometries of CP2:
if SU(3) had some kind of octonionic structure, CP2 would become unique candidate for the
space S. The decomposition SU(3) = h+ t to U(2) subalgebra and its complement corresponds
rather closely to the decomposition of (hyper-)octonions to (hyper-)quaternionic sub-space and
its complement. The electro-weak U(2) algebra has a natural 1+3 decomposition and generators
allow natural hyper-quaternionic structure. The components of the Weyl tensor of CP2 behave
with respect to multiplication like quaternionic imaginary units but only one of them is covari-
antly constant so that hyper Kähler structure [19] with three covariantly constant quaternionic
imaginary units represented by Kähler forms is not possible. These tensors and metric tensor
however define quaternionic structure [21].

2. M4
+ has a natural 1+3 decomposition and a unique cosmic time coordinate defined as the light

cone proper time. Hyper-quaternionic structure is consistent with the Minkowskian signature
of the inner product and hyper quaternion units have a natural representation in terms of
covariantly constant self-dual symplectic forms [22] and their contractions with sigma matrices.
It is not however clear whether this representation is physically intereting.

2.4 How to define hyper-quaternionic and hyper-octonionic structures?

I have considered several proposals for how to define quaternionic and octonionic structures and their
hyper-counterparts.
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1. (Hyper-)octonionic manifolds would obtained by gluing together coordinate patches using (hyper-
)octonion analytic functions with real Laurent coefficients (this guarantees associativity and
commutativity). This definition does not yet involve metric or any other structures (such as
Kähler structure). This approach does not seem to be physically realistic.

2. Second option is based on the idea of representing quaternionic and octonionic imaginary units as
antisymmetric tensors. This option makes sense for quaternionic manifolds [20] and CP2 indeed
represents an example represents of this kind of manifold. The problem with the octonionic
structure is that antisymmetric tensors cannot define non-associative product.

3. If the manifold is endowed with metric, octonionic structure should be defined as a local tangent
space structure analogous to eight-bein structure and local gauge algebra structures. This can
be achieved by contracting octo-bein vectors with the standard octonionic basis to get octonion
form Ik. Each vector field ak defines naturally octonion field A = akIk. The product of two
vector fields can be defined by the octonionic multiplication and this leads to the introduction
of a tensor field dklm of these structure constants obtained as the contraction of the octobein
vectors with the octonionic structure constants dabc. Hyper-octonion structure can defined in a
completely analogous manner.

It is possible to induce octonionic structure to any 4-dimensional space-time surface by forming
the projection of Ik to the space-time surface and redefining the products of Ik:s by dropping
away that part of the product, which is orthogonal to the space-time surface. This means that
the structure constants of the new 4-dimensional algebra are the projections of dklm to the space-
time surface. One can also define similar induced algebra in the 4-dimensional normal space of
the space-time surface. The hypothesis would be that the induced tangential is associative or
hyper-quaternionic algebra. Also co-associativity defined as associativity of the normal space
algebra is possible. This property would give for the 4-dimensionality of the space-time surface
quite special algebraic meaning. The problem is now that there is no direct connection with
quantum TGD proper- in particular the connection with the classical dynamics defined by Kähler
action is lacking.

4. 8-dimensional gamma matrices allow a representation in terms of tensor products of octonions
and 2 × 2 matrices. Genuine matrices are of course not in question since the product of the
gamma matrices fails to be associative. An associative representation is obtained by restrict-
ing the matrices to a quaternionic plane of complex octonions. If the space-time surface is
hyper-quaternionic in the sense that induced gamma matrices define a quaternionic plane of
complexified octonions at each point of space-time surface the resulting local Clifford algebra
is associative and structure constants define a matrix representation for the induced gamma
matrices.

A more general definition allows gamma matrices to be modified gamma matrices defined by
Kähler action appearing in the modified Dirac action and forced both by internal consistency and
super-conformal symmetry [6, 7]. The modified gamma matrices associated with Kähler action
do not in general define tangent space of the space-time surface as the induced gamma matrices
do. Also co-associativity can be considered if one can identify a preferred imaginary unit such
that the multiplication of the modified gamma matrices with this unit gives a quaternionic basis.
This condition makes sense only if the preferred extremals of the action are hyper-quaternionic
surfaces in the sense defined by the action. That this is true for Kähler action at least is an is
an unproven conjecture.

In the sequel only the fourh option will be considered.

2.5 How to end up to quantum TGD from number theory?

An interesting possibility is that quantum TGD could emerge from a condition that a local version
of hyper-finite factor of type II1 represented as a local version of infinite-dimensional Clifford algebra
exists. The conditions are that ”center or mass” degrees of freedom characterizing the position of CD
separate uniquely from the ”vibrational” degrees of freedom being represented in terms of octonions
and that for physical states associativity holds true. The resulting local Clifford algebra would be
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identifiable as the local Clifford algebra of WCW (being an analog of local gauge groups and conformal
fields [30]).

The uniqueness of M8 and M4×CP2 as well as the role of hyper-quaternionic space-time surfaces
as fundamental dynamical objects indeed follow from rather weak conditions if one restricts the
consideration to gamma matrices and spinors instead of assuming that M8 coordinates are hyper-
octonionic as was done in the first attempts.

1. The unique feature of M8 and any 8-dimensional space with Minkowski signature of metric
is that it is possible to have an octonionic representation of the complexified gamma matrices
[6, 8] and of spinors. This does not require octonionic coordinates for M8. The restriction to a
quaternionic plane for both gamma matrices and spinors guarantees the associativity.

2. One can also consider a local variant of the octonionic Clifford algebra in M8. This algebra con-
tains associative subalgebras for which one can assign to each point of M8 a hyper-quaternionic
plane. It is natural to assume that this plane is either a tangent plane of 4-D manifold defined
naturally by the induced gamma matrices defining a basis of tangent space or more generally,
by modified gamma matrices defined by a variational principle (these gamma matrices do not
define tangent space in general). Kähler action defines a unique candidate for the variational
principle in question. Associativity condition would automatically select sub-algebras associated
with 4-D hyper-quaternionic space-time surfaces.

3. This vision bears a very concrete connection to quantum TGD. In [8] the octonionic formulation
of the modified Dirac equation is studied and shown to lead to a highly unique general solution
ansatz for the equation working also for the matrix representation of the Clifford algebra. An
open question is whether the resulting solution as such defined also solutions of the modified
Dirac equation for the matrix representation of gammas. Also a possible identification for 8-
dimensional counterparts of twistors as octo-twistors follows: associativity implies that these
twistors are very closely related to the ordinary twistors. In TGD framework octo-twistors
provide an attractive manner to get rid of the difficulties posed by massive particles for the
ordinary twistor formalism.

4. Associativity implies hyperquaternionic space-time surfaces (in a more general sense as usual)
and this leads naturally to the notion of WCW and local Clifford algebra in this space. Number
theoretic arguments imply M8 −H duality. The resulting infinite-dimensional Clifford algebra
would differ from von Neumann algebras in that the Clifford algebra and spinors assignable to
the center of mass degrees of freedom of causal diamond CD would be expressed in terms of
octonionic units although they are associative at space-time surfaces. One can therefore say that
quantum TGD follows by assuming that the tangent space of the imbedding space corresponds
to a classical number field with maximal dimension.

5. The slicing of the Minkowskian space-time surface inside CD by stringy world sheets and by par-
tonic 2-surfaces inspires the question whether the modified gamma matrices associated with the
stringy world sheets resp. partonic 2-surfaces could be could commutative resp. co-commutative.
Commutativity would also be seen as the justification for why the fundamental objects are ef-
fectively 2-dimensional.

This formulation is undeniably the most convincing one found hitherto since the notion of hyper-
quaternionic structure is local and has elegant formulation in terms of modified gamma matrices.

3 Number theoretical compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 −H duality boils down to the assumption that
space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of asso-
ciative and co-associative regions identifiable as regions of space-time possessing Minkowskian resp.
Euclidian signature of the induced metric.
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3.1 Basic idea behind M8 −M4 × CP2 duality

The observation that M4 × CP2 does not allow octonionic structure in the sense that transition
functions would be octonion analytic functions with real coeffeicients forced to ask whether four-
surfaces X4 ⊂ M8 could under some conditions define 4-surfaces in M4 × CP2 indirectly so that
the spontaneous compactification of super string models would correspond in TGD to two different
manners to interpret the space-time surface. The following arguments suggest that this is indeed the
case. One could end up to the duality also from the attempt to understand M4×CP2 decomposition
number theoretically.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.
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3.2 Hyper-octonionic Pauli ”matrices” and modified definition of hyper-
quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [9]).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma
matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

3.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
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CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [12] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

3.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
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whether not only X3
l but entire four-surface X4(X3

l ) could be mapped to the tangent space of
M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.
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4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

3.4.1 Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality ofM8 allows to consider both associativity (hyper-quaternionicity) of the tangent
space and associativity of the normal space- let us call this co-assosiativity of tangent space- as
alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

3.4.2 Are the known extremals of Kähler action consistent with the strong form of
M8 −H duality

It is interesting to check whether the known extremals of Kähler action [12] are consistent with strong
form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
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with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [12], and leads to the introduction of Hamilton-Jacobi coordinates involving a local
decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate lines
having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for vacuum
extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In the latter
case, vacuum property follows from the vanishing of the determinant of the induced metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

3.4.3 Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there would
nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.
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3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.

3.4.4 The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action. As found, this leads to the conclusion that theM8 −H duality is
Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn leads to the
introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.
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5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

3.4.5 M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot avoid
the question whether it is possible or useful to formulate the notion of configuration space geometry
and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as vacuum
functional.

1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.
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3.4.6 Why M8 −H duality is useful?

Skeptic could of course argue that M8−H duality produces only an inflation of unproven conjectures.
There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

3.5 M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.
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3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [15].

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

4 Quaternions, octonions, and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.

(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2
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corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.

(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

4.1 The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

4.1.1 Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (4.1)



4.1 The replacement of SO(7, 1) with G2 21

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (4.2)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (4.3)

where ei are the octonionic units. e2i = −1 guarantees that the M4 signature of the metric comes
out correctly. Note that γ7 =

∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (4.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [27] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3L = σ23 + σ30 representing left handed weak isospin (see the Appendix about the geometry
of CP2 [?]) one can conclude that this particular sigma matrix and left handed sigma matrices
in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is mapped
to that for the rotation group SO(3) since in the case of Lorentz group one cannot speak of
a decomposition to left and right handed subgroups. The elements of the complement of the
quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.

4.1.2 Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equivalent
with the standard one.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
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is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure [19], which has been
speculated to be a hidden symmetry of quantum TGD at the level of WCW. This option would
lead to difficulties with associativity since the action of the charged gauge potentials would lead
out from the local quaternionic subspace defined by the octonionic spinor.

3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.

4.1.3 Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (4.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(4.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

4.2 Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.
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4.2.1 The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the modified
Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional generalized eigenvalue equation for which the modified gamma matrices
are defined by Chern-Simons action defined by the sum Jtot = J +J1 of Kähler forms of S2 and
CP2 [6, 7].

D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(4.7)

The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and thus
constant. Given eigenvalue λk defines pseudo momentum which is some function of the gen-
uine momenta pk and other quantum numbers via the boundary conditions associated with the
generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra. The
term Q can be rather general since it provides a representation for the measurement interaction
by mapping observables to Cartan algebra of isometry group and to the infinite hierarchy of
conserved currents implied by quantum criticality. The operator O characterizes the quantum
critical conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel”
to the wormhole throat in the slicing of X4: this means an additional symmetry. Formally the
measurement interaction term can be regarded as an addition of a gauge term to the Kähler
gauge potential associated with the Kähler form Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole throats
is formally massless Dirac propagator so that standard twistor formalism applies also without
the octonionic representation of the gamma matrices although the physical particles propagating
along the opposite wormhole throats are massive on mass shell particles with both signs of energy
[7].

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (4.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like 3-
surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces in
the slicing would allow to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. One proposal has been that Dirac determinant could be identified as the
product of these eigen values. Another and more plausible identification is as the product of
pseudo masses assignable to D3 defined by Chern-Simons action [31]. It must be however made
clear that the identification of the exponent of the Kähler function to Chern-Simons term makes
the identification as Dirac determinant un-necessary.

3. There are two options depending on whether one requires that the eigenvalue equation applies
only on the wormhole throats and at the ends of the space-time surface or for all 3-surfaces
in the slicing of the space-time surface by light-like 3-surfaces. In the latter case the condition
that the pseudo four-momentum is same for all the light-like 3-surfaces in the slicing gives a
consistency condition stating that the commutator of the two Dirac operators vanishes for the
solutions in the case of preferred extremals, which depend on the momentum and color quantum
numbers also:

[DK , D3] Ψ = 0 . (4.9)
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This condition is quite strong and there is no deep reason for it since λk does not correspond to
the physical conserved momentum so that its spectrum could depend on the light-like 3-surface
in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred hyper-complex
plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator λkγk commuting
with DK : the values of λk cannot depend on slice since this would mean that DK does not
commute with D3.

4.2.2 About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.

1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.

3. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

4. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which might belong to the complement of the quaternionic sub-space.
The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the situation dramati-
cally but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is that the action of DK is

not algebraic so that one cannot treat reduce the associativity condition to (AA)A = A(AA).

4.3 Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [35, 36, 37]. This motivated the question whether
they might be applied in TGD framework too [9] - at least in the description of the QFT limit. The
basic problem of the twistor program is how to overcome the difficulties caused by particle massivation
and TGD framework suggests possible clues in this respect.

1. In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-D
counterpart of twistors by relying on the geometric picture in which twistors correspond to a
pair of spinors characterizing light-like momentum ray and a point of M8 through which the
ray traverses. Twistors would consist of a pair of spinors and quark and lepton spinors define
the natural candidate for the spinors in question. This approach would allow to handle massive
on-mass-shell states but cannot cope with virtual momenta massive in 8-D sense.



4.3 Could the notion of octo-twistor make sense? 25

2. The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively massless
propagators for pseudo momenta, which are functions of physical on shell momenta (with both
signs of energy in zero energy ontology) and of other quantum numbers, twistor formalism can
be applied in its standard form. An attractive assumption is that also λk are conserved in the
vertices but a good argument justifying this is lacking. One can ask whether also N = 4 SUSY,
N = 8 super-gravity, and even QCD could have similar interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one might
hope that octotwistors could provide new insights about what happens in the real case.

1. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

2. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

3. Associativity condition for the octotwistors requires that the gamma matrix basis appearing in
the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a local G2

rotation from the standard hyper-quaternionic gamma matrix for M4 so that it is always in the
local hyper-quaternionic plane. This suggests that octo-twistor can be mapped to an ordinary
twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices. A stronger condition
guaranteing the commutativity of D3 with λkγk is that λk belongs to a preferred hyper-complex
plane M2 assignable to a given CD. Also the two spinors should belong to this plane for the
proposed solution ansatz for the modified Dirac equation. Quaternionization would also allow
to assign momentum to the spinors in standard manner.

The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this should
certainly improve dramatically the convergence properties for the sum over the non-conserved
pseudo-momenta in propagators which in the worst possible of worlds might destroy the man-
ifest finiteness of the theory based on the generalized Feynman diagrams with the throats of
wormholes carrying always on mass shell momenta. This effective 2-dimensionality should apply
also in the real case and would have no catastrophic consequences since pseudo momenta are in
question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal and
transversal parts in perturbative QCD might have interpretation in terms of pseudo-momenta
if they are conserved.

4. M8 − H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to M2 hyper-
complex plane. One ends up with the similar outcome as one constructs a representation for
the quantum states defined by WCW spinor fields as superpositions of real units constructed as
ratios of infinite hyper-octonionic integers with precisely defined number theoretic anatomy and
transformation properties under standard model symmetries having number theoretic interpre-
tation [14].
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