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1. Introduction 5

Abstract

There are three separate approaches to the challenge of constructing WCW Kähler geometry
and spinor structure. The first approach relies on a direct guess of Kähler function. Second
approach relies on the construction of Kähler form and metric utilizing the huge symmetries of
the geometry needed to guarantee the mathematical existence of Riemann connection. The third
approach discussed in this chapter relies on the construction of spinor structure based on the
hypothesis that complexified WCW gamma matrices are representable as linear combinations of
fermionic oscillator operator for the second quantized free spinor fields at space-time surface and
on the geometrization of super-conformal symmetries in terms of spinor structure. This implies a
geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces
to the second quantization of the induced spinor fields using Dirac action. This assumption
is parallel with the bosonic emergence stating that all gauge bosons are pairs of fermion and
antifermion at opposite throats of wormhole contact. Vacuum function is identified as Dirac
determinant and the conjecture is that it reduces to the exponent of Kähler function. In order
to achieve internal consistency induced gamma matrices appearing in Dirac operator must be
replaced by the modified gamma matrices defined uniquely by Kähler action and one must also
assume that extremals of Kähler action are in question so that the classical space-time dynamics
reduces to a consistency condition. This implies also super-symmetries and the fermionic oscillator
algebra at partonic 2-surfaces has intepretation as N = ∞ generalization of space-time super-
symmetry algebra different however from standard SUSY algebra in that Majorana spinors are
not needed. This algebra serves as a building brick of various super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires
that the preferred extremals are critical in the sense that the second variation of the Kähler action
vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at
least involve it.

Quantum classical correspondence demands that quantum numbers are coded to the proper-
ties of the preferred extremals given by the Dirac determinant and this requires a linear coupling
to the conserved quantum charges in Cartan algebra. Effective 2-dimensionality allows a mea-
surement interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole
throats and the ends of the space-time surfaces at the boundaries of CD. This allows also to
have physical propagators reducing to Dirac propagator not possible without the measurement
interaction term. An essential point is that the measurement interaction corresponds formally
to a gauge transformation for the induced Kähler gauge potential. If one accepts the weak form
of electric-magnetic duality Kähler function reduces to a generalized Chern-Simons term and the
effect of measurement interaction term to Kähler function reduces effectively to the same gauge
transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at
the boundaries of CD. The basic building brick of WCW is the product of infinite-D symmetric
spaces assignable to the ends of the propagator line of the generalized Feynman diagram. WCW
Kähler metric has in this case ”kinetic” parts associated with the ends and ”interaction” part
between the ends. General expressions for the super-counterparts of WCW flux Hamiltoniansand
for the matrix elements of WCW metric in terms of their anticommutators are proposed on basis
of this picture.

1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space. In
particular, physical states should correspond to the modes of the configuration space spinor fields.
The immediate consequence is that configuration space spinor fields cannot, as one might naively
expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the
configuration space spinor structure there are some important clues.

1.1 Geometrization of fermionic statistics in terms of configuration space
spinor structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the configuration space spinor structure in the sense that the anti-
commutation relations for configuration space gamma matrices require anti-commutation relations for
the oscillator operators for free second quantized induced spinor fields.
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1. One must identify the counterparts of second quantized fermion fields as objects closely related
to the configuration space spinor structure. [5] has as its basic field the anti-commuting field
Γk(x), whose Fourier components are analogous to the gamma matrices of the configuration
space and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests
that the are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic
oscillator operators so that their naturally derives from the anti-commutativity of the fermionic
oscillator operators.

As a consequence, configuration space spinor fields can have arbitrary fermion number and
there would be hopes of describing the whole physics in terms of configuration space spinor
field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the
spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in
degrees of freedom analogous to the ’orbital’ degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the configuration space geometry.
It would be very nice if the classical theory for the spinor fields would be contained in the
definition of the configuration space spinor structure somehow. The properties of the associated
with the induced spinor structure are indeed very physical. The modified massless Dirac equation
for the induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not generate .
The differences between quarks and leptons result from the different couplings to the CP2 Kähler
potential. In fact, these properties are shared by the solutions of massless Dirac equation of the
imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the configuration space geometry. This is indeed true if the complexified
configuration space gamma matrices are linearly related to the oscillator operators associated
with the second quantized induced spinor field on the space-time surface and its boundaries.
There is actually no deep reason forbidding the gamma matrices of the configuration space to
be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in
general. In fact, in the finite-dimensional case the equivalence of the spinorial and vectorial
vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same
dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence
might explain the success of 10-dimensional super string models for which the physical degrees
of freedom effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms
of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB ,

where JAB denotes the matrix elements of the Kähler form of the configuration space. The
presence of the Hermitian conjugation is necessary because configuration space gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in the
complex coordinates. The realization of this delicacy is necessary in order to understand how
the square of the configuration space Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second quan-
tization of the induced spinor fields should be carried out and space-time conformal symmetries
allow to explicitly solve the Dirac equation associated with the modified Dirac action in the
interior and at the 3-D light like causal determinants. An essentially new element is the no-
tion of number theoretic braid forced by the fact that the modified Dirac operator allows only
finite number of generalized eigen modes so that the number of fermionic oscillator operators
is finite. As a consequence, anticommutation relations can be satisfied only for a finite set of
points defined by the number theoretic braid, which is uniquely identifiable. The interpretation
is in terms of finite measurement resolution. The finite Clifford algebra spanned by the fermionic
oscillator operators is interpreted as the factor spaceM/N of infinite hyper-finite factors of type
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II1 defined by configuration space Clifford algebra N and included Clifford algebra M⊂ N in-
terpreted as the characterizer of the finite measurement resolution. Note that the finite number
of eigenvalues guarantees that Dirac determinant identified as the exponent of Kähler function
is finite. Finite number of eigenvalues is also essential for number theoretic universality.

1.2 Modified Dirac equation for induced classical spinor fields

The earlier approach to the definition of the configuration space spinor structure relied on the second
quantized ordinary massless Dirac action for the induced spinors. This action had some anomalous
looking features. The first anomaly was the appearance of the effective tachyonic mass term propor-
tional to the trace of the second fundamental form vanishing only for minimal surfaces. The breaking
of N = 2 super symmetry generated by right-handed neutrinos for other than minimal surfaces was
the second anomalous feature. It became also clear that the divergences of the fermionic isometry
currents can have a non-vanishing c-number anomaly unless one varies Dirac action also with respect
to the configuration space coordinates. This anomaly obviously might destroy the definition of the
configuration space spinor structure.

The vision about quantum TGD as a generalized number theory [26, 27, 25] comes in rescue
here. One of its outcomes was the realization that, in order to achieve exact super-symmetry, one
must modify Dirac action so that its variation with respect to the imbedding space coordinates gives
the field equations derivable from the action principle in question. By taking the modified Dirac
action as the fundamental action, one can identify vacuum functional as the Dirac determinant. If
this determinant equals to exponent of Kähler action for the preferred extremal containing partonic
3-surfaces, one can predict even the value of the Kähler coupling constant.

1.2.1 Chern-Simons - or Kähler Dirac action?

Two alternative choices represented themselves as candidates for the modified Dirac action: either
the 3-D Chern-Simons Dirac action or 4-D Kähler action. Eventually came the realization that the
addition of a measurement interaction term to either Chern-Simons action or Kähler action is needed
to resolve a bundle of conceptual problems. It took still some time to conclude that Kähler action
with instanton term is the correct choice since the measurement interaction term assigned to Chern-
Simons-Dirac action creates more problems than it solves.

1. Basic implications

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.
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4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kähler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kähler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

2. Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that
the modified gamma matrices span a quaternionic subspace of complexified octonions at each point
of the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7, 1) as vielbein group is replaced with G2 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

1.2.2 Super-conformal symmetries of modified Dirac action

The modified Dirac equation allows large number of super-conformal gauge symmetries as zero modes
of DK(Y 3

l ) and are interpreted as generators of exact N = 4 super-conformal gauge symmetries in both
quark and lepton sectors. These super-symmetries correspond to pure super gauge transformations
and state the the effective 3-dimensionality of space-time dynamics.

Super-symplectic and super Kac-Moody transformations respecting the light-likeness of light-like 3-
surfaces define dynamical super conformal symmetries with covariantly constant right handed neutrino
spinor serving as the generator of super symmetries. These are crucial for p-adic thermodynamics.
No spartners of ordinary particles are predictedin particular N = 2 space-time super-symmetry is
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generated by the righthanded neutrino is absent contrary to the earlier beliefs. There is no need to
emphasize the experimental implications of this finding.

An essential difference with respect to the standard super-conformal symmetries is that Majo-
rana condition is not satisfied and the usual super-space formalism does not apply. The notion of
super-space is un-necessary since fermionic super-generators do not anticommute to vector fields of
symmetries but to their Hamiltonians.

1.2.3 Identification of configuration space gamma matrices

Configuration space gamma matrices identified as super generators of super-symplectic or super Kac-
Moody algebras (depending on CH coordinates used) are expressible in terms of the oscillator oper-
ators associated with the eigen modes of the modified Dirac operator. Super-symplectic and super
Kac-Moody charges are expressible as integrals over 2-dimensional partonic surfaces X2 and interior
degrees of freedom of X4 can be regarded as zero modes representing classical variables in one-one
correspondence with quantal degrees of freedom at X3

l as indeed required by quantum measurement
theory. The resulting situation is highly reminiscent of WZW model and the results imply that at
technical level the methods of 2-D conformal field theories should allow to construct quantum TGD.

1.3 The exponent of Kähler function as Dirac determinant for the modified
Dirac action?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

2. The basic problem has been how to feed in the information about the preferred extremal of
Kähler action to the eigenvalue spectrum of the Dirac operator in question. The identification
of the preferred extremal associated with X3

l became possible via the boundary conditions at X3
l

dictated by number theoretical compactification, which also predicted the dual slicings of the
M4 projection of space-time surface by string world sheets and partonic 2-surfaces. The basic
observation is that the Dirac equation associated with the 4-D Dirac operator DK associated
with by Kähler action can be seen as a conservation law for a super current. The slicing of
X4(X3

l ) by the parallel light-like 3-surfaces Y 3
l allows solutions for which the super current

flows along Y 3
l and has no component in normal direction. The zero modes of DK reducing

to effectively 3-D solutions of DK at each Y 3
l give a family of holographic copies of X3

l . The
effective 3-dimensionality is due to the super-conformal gauge invariance in the direction of
light-like coordinate u labeling the 3-surfaces Y 3

l .

A physically attractive unique realization of the slicings of space-time surface by 3-surfaces and
string world sheets is discussed in [13] by starting from the observation that TGD could define
a natural realization of braids, braid cobordisms, and 2-knots.

3. The spectrum of eigenvalues corresponds to the ”energy” spectrum of DK and the product of the
eigenvalues defines the Dirac determinant in standard manner. If the eigenmodes are restricted
to those localized to regions of strong induced electro-weak magnetic field, the number of eigen
modes is finite and therefore also Dirac determinant is finite.

4. The requirement that the Noether currents associated with Dirac Kähler action are conserved is
that preferred extremals of Kähler action correspond to extremals for which the second variation
of Kähler action vanishes at least for the deformations associated with the conserved currents.
Obviously this is nothing but the formulation of quantum criticality at space-time level!
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5. The physical analog is energy spectrum for Dirac operator in external magnetic field. The effec-
tive metric appearing in the modified Dirac operator corresponds to ĝαβ = ∂LK/∂h

k
α∂LK/∂h

l
βhkl,

and vanishes at the boundaries of regions carrying non-vanishing Kähler magnetic field. Hence
the modes must be localized to regions X3

l,i containing a non-vanishing Kähler magnetic field.
Cyclotron states in constant magnetic field serve as a good analog for the situation and only a
finite number of cyclotron states are possible since for higher cyclotron states the wave function
-essentially harmonic oscillator wave function- would concentrate outside X3

l,i.

6. A more precise argument goes as follows. Assume that it is induced Kähler magnetic field
BK that matters. The vanishing of the effective contravariant metric near the boundary of
X3
l,i corresponds to an infinite effective mass for massive particle in constant magnetic field so

that the counterpart for the cyclotron frequency scale eB/m reduces to zero. The radius of
the cyclotron orbit is proportional to 1/

√
eB and approaches to infinity. Hence the required

localization is not possible only for cyclotron states for which the cyclotron radius is below that
the transversal size scale of X3

l,i.

7. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

1.4 Super-conformal symmetries

The almost topological QFT property of partonic formulation based on modified Dirac Kähler ac-
tion allows a rich structure of N = 4 super-conformal symmetries. In particular, the generalized
Kac-Moody symmetries leave corresponding X3-local isometries respecting the light-likeness condi-
tion. A rather detailed view about various aspects of super-conformal symmetries emerge leading to
identification of fermionic anti-commutation relations and explicit expressions for configuration space
gamma matrices and Kähler metric. This picture is consistent with the conditions posed by p-adic
mass calculations.

The relationship between super-symplectic (SC) and Super Kac-Moody (SKM) symmetries has
been one of the central themes in the development of TGD. The progress in the understanding of
the number theoretical aspects of TGD gives good hopes of lifting SKMV (V denotes Virasoro) to a
subalgebra of SCV so that coset construction works meaning that the differences of SCV and SKMV
generators annihilate physical states. This condition has interpretation in terms of Equivalence Prin-
ciple with coset Super Virasoro conditions defining a generalization of Einstein’s equations in TGD
framework. Also p-adic thermodynamics finds a justification since the expectation values of SKM
conformal weights can be non-vanishing in physical states.

Number theoretical considerations play a key role and lead to the picture in which effective dis-
cretization occurs so that partonic two-surface is effectively replaced by a discrete set of algebraic
points belonging to the intersection of the real partonic 2-surface and its p-adic counterpart obeying
the same algebraic equations. This implies effective discretization of super-conformal field theory
giving N-point functions defining vertices via discrete versions of stringy formulas.

Before continuing I must represent apologies for the reader. This chapter is just now under
updating due to the dramatic simplifications related to identification of the eigenvalue spectrum of
the modified Dirac operator and the definition of the Dirac determinant. The new vision is briefly
discussed but a lot of mammoth bones remains to be eliminated.

2 Configuration space spinor structure: general definition

The basic problem in constructing configuration space spinor structure is clearly the construction of
the explicit representation for the gamma matrices of the configuration space. One should be able to
identify the space, where these gamma matrices act as well as the counterparts of the ”free” gamma
matrices, in terms of which the gamma matrices would be representable using generalized vielbein
coefficients.
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2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{γA, γB} = 2gAB .

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the difficulties related to the understanding of the configuration space d’Alembertian
defined in terms of the square of the Dirac operator forced to reconsider the definition. If configuration
space allows Kähler structure, the most general definition allows to replace the metric any covariantly
constant Hermitian form. In particular, gAB can be replaced with

{Γ†A,ΓB} = iJAB , (2.1)

where JAB denotes the matrix element of the Kähler form of the configuration space. The reason is
that gamma matrices carry fermion number and are non-hermitian in all coordinate systems. This
definition is numerically equivalent with the standard one in the complex coordinates but in arbitrary
coordinates situation is different since in general coordinates iJkl is a nontrivial positive square root
of gkl. The realization of this delicacy is necessary in order to understand how the square of the
configuration space Dirac operator comes out correctly. Obviously, what one must do is the equivalent
of replacing D2 = (ΓkDk)2 with DD̂ with D̂ defined as

D̂ = iJklΓ†lDk .

2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is coded
into the geometry of the configuration space it seems natural to expect that same applies in the
case of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the configuration
space spinor structure. This leads to the challenge of defining what classical spinor field means.

2. Since classical scalar field in the configuration space corresponds to second quantized boson
fields of the imbedding space same correspondence should apply in the case of the fermions,
too. The spinor fields of configuration space should correspond to second quantized fermion
field of the imbedding space and the space of the configuration space spinors should be more
or less identical with the Fock space of the second quantized fermion field of imbedding space
or X4(X3). Since classical spinor fields at space-time surface are obtained by restricting the
spinor structure to the space-time surface, one might consider the possibility that life is really
simple: the second quantized spinor field corresponds to the free spinor field of the imbedding
space satisfying the counterpart of the massless Dirac equation and more or less standard anti-
commutation relations. Unfortunately life is not so simple as the construction of configuration
space spinor structure demonstrates: second quantization must be performed for induced spinor
fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X4. Since this
field is free field, one can indeed perform second quantization and construct fermionic oscillator
operator algebra with unique anti-commutation relations. The space of the configuration space
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having configuration
space as its base space.

2. The gamma matrices of the configuration space (or rather fermionic Kac Moody generators) are
representable as super positions of the fermionic oscillator algebra generators:
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Γ+
A = EnAa

†
n

Γ−A = ĒnAan

iJAB̄ =
∑
n

EnAĒ
n
B (2.2)

where EnA are the vielbein coefficients. Induced spinor fields can possess zero modes and there
is no oscillator operators associated with these modes. Since oscillator operators are spin 1/2
objects, configuration space gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and configuration space metric is analogous
to the pair of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the
contractions jAkΓk of the complexified gamma matrices with the isometry generators are genuine
spin 1/2 objects labeled by the quantum numbers labeling isometry generators. In particular,
in CP2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kähler structures of the configuration space
is that configuration gamma matrices are actually generators of super-symplectic symmetries.
This simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.

2.3 Inner product for configuration space spinor fields

The conjugation operation for configuration space spinors corresponds to the standard ket → bra
operation for the states of the Fock space:

Ψ ↔ |Ψ〉
Ψ̄ ↔ 〈Ψ| (2.3)

The inner product for configuration space spinors at a given point of the configuration space is just
the standard Fock space inner product, which is unitary.

Ψ̄1(X3)Ψ2(X3) = 〈Ψ1|Ψ2〉|X3 (2.4)

Configuration space inner product for two configuration space spinor fields is obtained as the integral of
the Fock space inner product over the whole configuration space using the vacuum functional exp(K)
as a weight factor

〈Ψ1|Ψ2〉 =

∫
〈Ψ1|Ψ2〉|X3exp(K)

√
GdX3 (2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by including
the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the central
extension for the isometry algebra leads automatically to the appearance of this factor in vacuum
spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire configuration space rather than over a time= constant slice of the
configuration space. Also the presence of the vacuum functional makes it different from the finite
dimensional inner product. These are not un-physical features. The point is that (apart from classical
non-determinism forcing to generalized the concept of 3-surface) Diff4 invariance dictates the behavior
of the configuration space spinor field completely: it is determined form its values at the moment of
the big bang. Therefore there is no need to postulate any Dirac equation to determine the behavior
and therefore no need to use the inner product derived from dynamics.
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2.4 Holonomy group of the vielbein connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the configuration space counterpart of the electro-
weak gauge group and its algebra is expected to have same general structure as the algebra of the
configuration space isometries. In particular, the generators of this algebra should be labeled by
conformal weights like the elements of Kac Moody algebras. In present case however conformal
weights are complex as the construction of the configuration space geometry demonstrates.

2.5 Realization of configuration space gamma matrices in terms of super
symmetry generators

In string models super symmetry generators behave effectively as gamma matrices and it is very
tempting to assume that configuration space gamma matrices can be regarded as generators of the
symplectic algebra extended to super-symplectic Kac Moody type algebra. The experience with
string models suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are
good reasons to expect that configuration space Dirac operator and its square give automatically a
realization of this algebra. It this is indeed the case, then configuration space spinor structure as well
as Dirac equation reduces to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators SA are
identifiable as configuration space gamma matrices:

ΓA = SA . (2.6)

The anti-commutators {Γ†A,ΓB}+ = i2JA,B define a Hermitian matrix, which is proportional to the
Kähler form of the configuration space rather than metric as usually. Only in complex coordinates the
anti-commutators equal to the metric numerically. This is, apart from the multiplicative constant n,
is expressible as the Poisson bracket of the configuration space Hamiltonians HA and HB . Therefore
one should be able to identify super generators SA(rM ) for each values of rM as the counterparts of
fluxes. The anti-commutators between the super generators SA and their Hermitian conjugates should
read as

{SA, S†B}+ = iQm(H[A,B]) . (2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transforma-
tion properties of the super generators under symplectic transformations, which are same as for the
Hamiltonians themselves

{HAm, SBn}− = S[Am,Bn] , (2.8)

and are of the same form as in the case of Super-Kac-Moody algebra.
The task is to derive an explicit representation for the super generators SA in both cases. For

obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary δM4
+ × CP2

can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type algebra.
What is then the strategy that one should follow?

1. Configuration space Hamiltonians correspond to either magnetic or electric flux Hamiltonians
and the conjecture is that these representations are equivalent. It turns out that this electric-
magnetic duality generalizes to the level of super charges. It also turns out that quark represen-
tation is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.
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2. The simplest option would be that second quantized imbedding space spinors could be used in
the definition of super charges. This turns out to not work and one must second quantize the
induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordinary
Dirac action does not work. It turns out that in the most plausible scenario the modified
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges associated
with this action give rise to bosonic conserved charges defining configuration space Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations for
the induced spinor fields.

2.6 Central extension as symplectic extension at configuration space level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the configuration space Dirac equation. The rather
obvious idea was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro
generators involving the Dirac operator of the imbedding space. The basic difficulty was the necessity
to assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
rather feasible. One could call these conditions as configuration space Dirac equation but at this
moment I feel that this would be just play with words and mask the group theoretical content of these
conditions. In any case, the formulas for the symplectic extension and action of isometry generators
on configuration space spinor deserve to be summarized.

2.6.1 Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator, by
the covariant derivatives defined by a coupling to a multiple of the Kähler potential.

jAk∂k → jAkDk ,

Dk = ∂k + ikAk/2 . (2.9)

where Ak denotes Kähler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form in Cartan
algebra. k is expected to be integer also by the requirement that covariant derivative corresponds to
connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators JA read:

[JA, JB ] = J [A,B] + ikjAkJklj
Bl ≡ J [A,B] + ikJAB . (2.10)

Since Kähler form defines symplectic structure in configuration space one can express Abelian exten-
sion term as a Poisson bracket of two Hamiltonians

JAB ≡ jAkJklj
Bl = {HA, HB} . (2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.
The extension indeed has acceptable properties:
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1. Jacobi-identities reduce to the form

∑
cyclic

H [A,[B,C]] = 0 , (2.12)

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representation.

2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket
for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (q, p) Poisson algebra: although the differential operators ∂p and ∂q commute the
Poisson bracket of the corresponding Hamiltonians p and q is nontrivial: {p, q} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is also
local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields in
that it contains constant Hamiltonian (”1” in the commutator), which commutes with all other
Hamiltonians and corresponds to a vanishing vector field.

3. For the generators not belonging to Cartan sub-algebra of CH isometries Abelian extension term
is not annihilated by the generators of the original algebra and in this respect the extension differs
from the standard central extension for the loop algebras. It must be however emphasized that for
the super-symplectic algebra generators correspond to products of δM4

+ and CP2 Hamiltonians
and this means that generators of say δM4

+-local SU(3) Cartan algebra are non-commuting and
the commutator is completely analogous to central extension term since it is symmetric with
respect to SU(3) generators.

4. The proposed method yields a trivial extension in the case of Diff4. The reason is the (four-
dimensional!) Diff degeneracy of the Kähler form. Abelian extension term is given by the
contraction of the Diff4 generators with the Kähler potential

jAkJklj
Bl = 0 , (2.13)

which vanishes identically by the Diff degeneracy of the Kähler form. Therefore neither 3- or
4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4-dimensional
Diff degeneracy is what is needed to eliminate time like vibrational excitations from the spectrum
of the theory. By the way, the fact that the loop space metric is not Diff degenerate makes
understandable the emergence of Diff anomalies in string models [5, 2] .

5. The extension is trivial also for the other zero norm generators of the tangent space algebra, in
particular for the k2 = Im(k) = 0 symplectic generators possible present so that these generators
indeed act as genuine U(1) transformations.

6. Concerning the solution of configuration space Dirac equation the maximum of Kähler function
is expected to be special, much like origin of Minkowski space and symmetric space property
suggests that the construction of solutions reduces to this point. At this point the generators
and Hamiltonians of the algebra h in the defining Cartan decomposition g = h+ t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces at
the maximum to an exceptionally simple form since only central extension contributes to the
metric and Kähler form. In the ideal case the elements of the metric and Kähler form could be
even diagonal. The degeneracy of the metric might of course pose additional complications.

2.6.2 Super symplectic action on configuration space spinors

The generators of symplectic transformations are obtained in the spinor representation of the isometry
group of the configuration space by the following formal construction. Take isometry generator in
the spinor representation and add to the covariant derivative Dk defined by vielbein connection the
coupling to the multiple of the Kähler potential: Dk → Dk + ikAk/2.
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JA = jAkDk +DljkΣkl/2 ,

→ ĴA = jAk(Dk + ikAk/2) +Dlj
A
k Σkl/2 ,

(2.14)

This induces the required central term to the commutation relations. Introduce complex coordinates
and define bosonic creation and annihilation operators as (1, 0) and (0, 1) parts of the modified isometry
generators

B†A = JA+ = jAk(Dk + ... ,

BA = JA− = jAk̄(Dk̄ + ... .

(2.15)

where ”k” refers now to complex coordinates and ”k̄” to their conjugates.
Fermionic generators are obtained as the contractions of the complexified gamma matrices with

the isometry generators

Γ†A = jAkΓk ,

ΓA = jAk̄Γk̄ . (2.16)

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation re-
lations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the sense
that creation type generators are hermitian conjugates of the annihilation operator type generators.
There are two kinds of representations depending on whether one uses leptonic or quark like oscil-
lator operators to construct the gammas. These will be assumed to correspond to Ramond and NS
type generators with the radial plane waves being labeled by integer and half odd integer indices
respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by the
matrix elements of the Kähler form in the basis of formed by the isometry generators

[B†A, BB ] = J(jA†, jB) ≡ JĀB . (2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not belonging
to Cartan algebra are just those of the local gauge algebra with Abelian extension term added.

The anti-commutators between the fermionic generators are given by the elements of the metric
(as opposed to Kähler form in the case of bosonic generators) in the basis formed by the isometry
generators

{ΓA†,ΓB} = 2g(jA†, jB) ≡ 2gĀB . (2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators differ only
the presence of the imaginary unit and the scale factor R relating the metric and Kähler form to each
other (the factor R is same for CP2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

[BA,ΓB ] = Γ[A,B] . (2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is essential
for obtaining these nice commutations relations. The commutators vanish identically for Cartan
algebra generators. From the commutation relations it is clear that Super Kac Moody algebra structure
is directly related to the Kähler structure of the configuration space: the anti-commutator of fermionic
generators is proportional to the metric and the commutator of the bosonic generators is proportional
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to the Kähler form. It is this algebra, which should generate the solutions of the field equations of
the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the fermionic
oscillator operators and this suggests the interpretation as the fermionic contribution to the isometry
currents. This means that the action of the bosonic generators is essentially non-perturbative since it
creates fermion antifermion pairs besides exciting bosonic degrees of freedom.

2.7 Configuration space Clifford algebra as a hyper-finite factor of type
II1

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra spanned
by configuration space sigma matrices is infinite and thus defines an excellent candidate for a source
of divergences in perturbation theory. This potential source of infinities remained un-noticed until it
became clear that there is a connection with von Neumann algebras [12] . In fact, for a separable
Hilbert space defines a standard representation for so called [13] . This guarantees that the trace of
the unit matrix equals to unity and there is no danger about divergences.

2.7.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation ∗ and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to
1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type II1 [13] .

The definitions of adopted by von Neumann allow however more general algebras. Type In algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type III
non-trivial traces are always infinite and the notion of trace becomes useless.

2.7.2 von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac based
on the notion of delta function, plus the emergence of Feynman graphs, the possibility to formulate
the notion of delta function rigorously in terms of distributions, and the emergence of path integral
approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [15, 17] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic structures
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known as bi-algebras, Hopf algebras, and ribbon algebras [14, 10] relate closely to type II1 factors.
In topological quantum computation [4] based on braid groups [11] modular S-matrices they play an
especially important role.

2.7.3 Clifford algebra of configuration space as von Neumann algebra

The Clifford algebra of the configuration space provides a school example of a hyper-finite factor of
type II1, which means that fermionic sector does not produce divergence problems. Super-symmetry
means that also ”orbital” degrees of freedom corresponding to the deformations of 3-surface define
similar factor. The general theory of hyper-finite factors of type II1 is very rich and leads to rather
detailed understanding of the general structure of S-matrix in TGD framework. For instance, there is
a unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner single
particle time evolution. Also a connection with 3-dimensional topological quantum field theories and
knot theory, conformal field theories, braid groups, quantum groups, and quantum counterparts of
quaternionic and octonionic division algebras emerges naturally. These aspects are discussed in detail
in [30] .

3 Hierarchy of Planck constants and the generalization of the
notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.

3.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [1] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [23, 21] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [24] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
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-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [28]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [1] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [1, 28] , [1] .

3.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.
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(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

3.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.

3.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
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(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

3.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [9] .

3.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.

3.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
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biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

3.7.1 1-1 correspondence between canonical momentum densities and time derivatives
fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
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number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

3.7.2 Do the coverings forces by the many-valuedness of ∂0h
k correspond to the cover-

ings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
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(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

3.7.3 Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.
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4 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 − H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.

4.1 Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to ask
whether four-surfaces X4 ⊂M8 could under some conditions define 4-surfaces in M4×CP2 indirectly
so that the spontaneous compactification of super string models would correspond in TGD to two
different manners to interpret the space-time surface. The following arguments suggest that this is
indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
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assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

4.2 Hyper-octonionic Pauli ”matrices” and modified definition of hyper-
quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [29] ).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma
matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

4.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.
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1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [3] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

4.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
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make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.
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3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

4.4.1 Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality ofM8 allows to consider both associativity (hyper-quaternionicity) of the tangent
space and associativity of the normal space- let us call this co-assosiativity of tangent space- as
alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

4.4.2 Are the known extremals of Kähler action consistent with the strong form of
M8 −H duality

It is interesting to check whether the known extremals of Kähler action [3] are consistent with strong
form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal space.
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1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [3] , and leads to the introduction of Hamilton-Jacobi coordinates involving a local
decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate lines
having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for vacuum
extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In the latter
case, vacuum property follows from the vanishing of the determinant of the induced metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

4.4.3 Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there would
nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The
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identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.

4.4.4 The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action. As found, this leads to the conclusion that theM8 −H duality is
Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn leads to the
introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
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classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

4.4.5 M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot avoid
the question whether it is possible or useful to formulate the notion of configuration space geometry
and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as vacuum
functional.

1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
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eliminating the classical W gauge boson field altogether at X3
l and whether this allows to trans-

form the modified Dirac equation in H to that in M8 when restricted to X3
l . That something like

this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

4.4.6 Why M8 −H duality is useful?

Skeptic could of course argue that M8−H duality produces only an inflation of unproven conjectures.
There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

4.5 M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
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coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [20] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

4.6 The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [16] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [16] . The reason is that in this case the notion of number entanglement theoretic entropy
having negative values makes sense and entanglement becomes information carrying. This motivates
the identification of life as something in the intersection of real and p-adic worlds. In this situation the
identification of the ends of the number theoretic braid as points belonging to the intersection of real
and p-adic worlds is natural. These points -call them briefly algebraic points- belong to the algebraic
extension of rationals needed to define the algebraic extension of p-adic numbers. This definition
however makes sense also when the equations defining the partonic 2-surfaces fail to make sense in
both real and p-adic sense. In the generic case the set of points satisfying the conditions is discrete.
For instance, according to Fermat’s theorem the set of rational points satisfying Xn+Y n = Zn reduces
to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection
of real and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.
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1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could however
allow the construction of the elements of M -matrix describing quantum transitions changing
p-adic to real surfaces and vice versa as realizations of intentions and generation of cognitions.
In this the case it is natural that only the data from the intersection of the two worlds are used.
In [16] I have sketched the idea about number theoretic quantum field theory as a description
of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.
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4.7 Connection with string model and Equivalence Principle at space-time
level

Coset construction allows to generalize Equivalence Principle and understand it at quantum level. This
is however not quite enough: a precise understanding of Equivalence Principle is required also at the
classical level. Also the mechanism selecting via stationary phase approximation a preferred extremal
of Kähler action providing a correlation between quantum numbers of the particle and geometry of
the preferred extremals is still poorly understood.

4.7.1 Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach in which
one tries to deduce a connection between classical TGD and string model and hope that the bridge
from string model to General Relativity is easier to build. Number theoretical compactification gives
good hopes that this kind of connection exists.

1. Number theoretic compactification implies that the preferred extremals of Kähler action have
the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the preferred
extremal M2(x) identified as the plane of non-physical polarizations and also as the plane in
which local massless four-momentum lies.

2. If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string world-

sheets. The intersection of string world sheets with X3 ⊂ δM4
±×CP2 corresponds to a light-like

curve having tangent in local tangent space M2(x) at light-cone boundary. This is the first
candidate for the definition of number theoretic braid. Second definition assumes M2 to be
fixed at δCD: in this case the slicing is parameterized by the sphere S2 defined by the light rays
of δM4

±.

3. One can assign to the string world sheet -call it Y 2 - the standard area action

SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (4.1)

where g2 is either the induced metric or only its M4 part. The latter option looks more natural
since M4 projection is considered. T is string tension.

4. The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate if
one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler action for
two pieces of CP2 type vacuum extremals representing propagating graviton. The formula reads
G = L2

pexp(−2aSK(CP2)), a ≤ 1 [2, 10] . The interaction strength which would be L2
p without

the presence of CP2 type vacuum extremals is reduced by the exponential factor coming from
the exponent of Kähler function of configuration space.

5. One would have string model in either CD×CP2 or CD ⊂M4 with the constraint that stringy
world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational four-momentum
defined as Noether charge is conserved. The extremal property of string world sheet need
not however be consistent with the preferred extremal property. This constraint might bring
in coupling of gravitons to matter. The natural guess is that graviton corresponds to a string
connecting wormhole contacts. The strings could also represent formation of gravitational bound
states when they connect wormhole contacts separated by a large distance. The energy of the
string is roughly E ∼ ~TL and for T = 1/~G gives E ∼ L/G. Macroscopic strings are not
allowed except as models of black holes. The identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which

does not favor long strings for large values of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp

and E ∼ ~0L/L
2
p, which makes sense and allows strings with length not much longer than p-

adic length scale. Quantization - that is the presence of configuration space degrees of freedom-
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would bring in massless gravitons as deformations of string whereas strings would carry the
gravitational mass.

6. The exponent exp(iSG) can appear as a phase factor in the definition of quantum states for
preferred extremals. SG is not however enough. One can assign also to the points of number
theoretic braid action describing the interaction of a point like current Qdxµ/ds with induced
gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (4.2)

In stationary phase approximation subject to the additional constraint that a preferred extremal
of Kähler action is in question one obtains the desired correlation between the geometry of
preferred extremal and the quantum numbers of elementary particle. This interaction term
carries information only about the charges of elementary particle. It is quite possible that the
interaction term is more complex: for instance, it could contain spin dependent terms (Stern-
Gerlach experiment).

7. The constraint coming from preferred extremal property of Kähler action can be expressed in
terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (4.3)

8. The action exponential reads as

exp(iSG + Sbraid + Sc) . (4.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation of
Kähler action with respect to M4 coordinates and involve third derivatives of M4 coordinates
at the right hand side. If the second variation of Kähler action with respect to M4 coordinates
vanishes, free string results. This is trivially the case if a vacuum extremal of Kähler action is
in question.

9. An interesting question is whether the preferred extremal property boils down to the condition
that the second variation of Kähler action with respect to M4 coordinates or actually all co-
ordinates vanishes so that gravitonic string is free. As a matter fact, the stronger condition is
required that the Noether currents associated with the modified Dirac action are conserved. The
physical interpretation would be in terms of quantum criticality which is the basic conjecture
about the dynamics of quantum TGD. This is clear from the fact that in 1-D system criticality
means that the potential V (x) = ax+bx2 + .. has b = 0. In field theory criticality corresponds to
the vanishing of the term m2φ2/2 so that massless situation corresponds to massless theory and
criticality and long range correlations. For more than one dynamical variable there is a hierarchy
of criticalities corresponding to the gradual reduction of the rank of the matrix of the matrix
defined by the second derivatives of V (x) and this gives rise to a classification of criticalities.
Maximum criticality would correspond to the total vanishing of this matrix. In infinite-D case
this hierarchy is infinite.

4.7.2 What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this framework.

1. Coset construction inspires the conjecture that gravitational and inertial four-momenta are iden-
tical. Also some milder form of it would make sense. What is clear is that the construction of
preferred extremal involving the distribution of M2(x) implies that conserved four-momentum
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associated with Kähler action can be expressed formally as stringy four-momentum. The integral
of the conserved inertial momentum current over X3 indeed reduces to an integral over the curve
defining string as one integrates over other two degrees of freedom. It would not be surprising
if a stringy expression for four-momentum would result but with string tension depending on
the point of string and possibly also on the component of four-momentum. If the dependence
of string tension on the point of string and on the choice of the stringy world sheet is slow,
the interpretation could be in terms of coupling constant evolution associated with the stringy
coordinates. An alternative interpretation is that string tension corresponds to a scalar field.
A quite reasonable option is that for given X3

l T defines a scalar field and that the observed T
corresponds to the average value of T over deformations of X3

l .

2. The minimum option is that Kähler mass is equal to the sum gravitational masses assignable to
strings connecting points of wormhole throat or two different wormhole throats. This hypothesis
makes sense even for wormhole contacts having size of order Planck length.

3. The condition that gravitational mass equals to the inertial mass (rest energy) assigned to
Kähler action is the most obvious condition that one can imagine. The breaking of Poincare
invariance to Lorentz invariance with respect to the tip of CD supports this form of Equivalence
Principle. This would predict the value of the ratio of the parameter R2T and p-adic length
scale hypothesis would allow only discrete values for this parameter. p ' 2k following from
the quantization of the temporal distance T (n) between the tips of CD as T (n) = 2nT0 would
suggest string tension Tn = 2nR2 apart from a numerical factor. Gp ∝ 2nR2/~0 would emerge
as a prediction of the theory. G can be seen either as a prediction or RG invariant input
parameter fixed by quantum criticality. The arguments related to p-adic coupling constant
evolution suggest R2/~0G = 3× 223 [2, 10] .

4. The scalar field property of string tension should be consistent with the vacuum degeneracy of
Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is non-
vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν over
the degrees transversal to M2 to the stringy action so that string tension vanishes for vacuum
extremals. This would be nothing but dimensional reduction of 4-D theory to a 2-D theory
using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For cosmic strings
Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2 apart from a numerical

constant. If one wants consistency with T ∝ 1/L2
p, one must have T ∝ 1/g2

K2nR2 for the cosmic
strings deformed to Kähler magnetic flux tubes. This looks rather plausible if the thickness of
deformed string in M4 degrees of freedom is given by p-adic length scale.

5 An attempt to understand preferred extremals of Kähler
action

There are pressing motivations for understanding the preferred extremals of Kähler action. For in-
stance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [31]. The problem is how-
ever how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify two
preferred complex coordinates whose existence is also suggested by number theoretical vision giving
preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The best one
could hope is a general solution of field equations in accordance with the hints that TGD is integrable
quantum theory.

A lot is is known about properties of preferred extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are heuristic
and rely heavily on physical intuition. The following considerations relate to the space-time regions
having Minkowskian signature of the induced metric. The attempt to generalize the construction also
to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.
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1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred coordi-
nates for Minkowskian space-time sheet and might allow to identify string world sheets for X4

as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual
defining local 2-plane M2 ⊂M4 and complex transversal complex coordinates (w,w) for a plane
E2
x orthogonal to M2

x at each point of M4. Clearly, hyper-complex analyticity and complex
analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic
2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are labelled
by CP2, which might be called CPmod2 [27]. The identification CP2 = CPmod2 motivates the
notion of M8−−M4×CP2 duality [7]. It also inspires a concrete solution ansatz assuming the
equivalence of two different identifications of the quaternionic tangent space of the space-time
sheet and implying that string world sheets can be regarded as strings in the 6-D coset space
G2/SU(3). The group G2 of octonion automorphisms has already earlier appeared in TGD
framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the CP2 =
CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2). String
model in both cases could mean just hypercomplex/complex analyticity for the coordinates of
the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic
2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map
preferred coordinates of H = M4 × CP2 to octonionic coordinate, form an arbitrary octonion
analytic function having expansion with real Taylor or Laurent coefficients to avoid problems
due to non-commutativity and non-associativity. Map the outcome to a point of H to get a
map H → H. This procedure is nothing but a generalization of Wick rotation to get an 8-D
generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the vanishing
of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world
sheets would correspond to commutative sub-manifolds of the space-time surface and of imbed-
ding space and would emerge naturally. The ends of braid strands at partonic 2-surface would
naturally correspond to the poles of the octonion analytic functions. This would mean a huge
generalization of conformal invariance of string models to octonionic conformal invariance and
an exact solution of the field equations of TGD and presumably of quantum TGD itself.

5.1 Basic ideas about preferred extremals

5.1.1 The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
action.

1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons terms
assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in the action
density implied automatically if conserved Kähler current is proportional to the instanton current
with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
are Beltrami flows [3] so that corresponding 1-forms J satisfy the condition J ∧ dJ = 0. These
conditions are satisfied if
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J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate varying
along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined by
the scalar functions involved and natural additional conditions are that the gradients of Ψ and
Φ are orthogonal:

∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc defines a
light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to
time-lik plane defined by local light-like momentum direction.

If Φ allows a contination to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of spacetime surface by Ψ and its dual (defining hyper-complex co-
ordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to provide
space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates
of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined
Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with
the mathematics of string models. The two complex coordinates assignable to the Yangian of
affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly
non-trivial challenge is to identify them appropriately.

5.1.2 Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [3] led to the realization that so called Hamilton-
Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized by partonic 2-
surfaces. m would be pair of light-like conjugate coordinates associated with an integrable distribution
of planes M2 and w would define a complex coordinate for the integrable distribution of 2-planes E2

orthogonal to M2. There is a great temptation to assume that these coordinates define prefered
coorinates for M4.
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1. The slicing is very much analogous to that for space-time sheets and the natural question is how
these slicings relate. What is of special interest is that the momentum plane M2 can be defined
by massless momentum. The scaling of this vector does not matter so that these planes are
labelled by points z of sphere S2 telling the direction of the line M2 ∩E3, when one assigns rest
frame and therefore S2 with the preferred time coordinate defined by the line connecting the tips
of CD. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate.
The complex scalings of the twistor (u, u)→ λu, u/λ) define the same plane. Projective twistor
like entities defining CP1 having only one complex component instead of three are in question.
This complex number defines with certain prerequisites a local coordinate for space-time sheet
and together with the complex coordinate of E2 could serve as a pair of complex coordinates
(z, w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing
in the expansion of the generators of quantum Yangian of quantum affine algebra [31].

2. The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define Ψc and conjugate light-like direction.
An attractive possibility is that Φ allows analytic continuation to a holomorphic function of w.
In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⊂ M4 = M2

x × E2
x representing momentum plane and polarization plane E2 ⊂

E2
x × T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional and parametrized by

SO(6)/SO(2)× SO(4) for a given E2
x. How can one achieve this selection and what conditions

it must satisfy? Certainly the choice must be integrable but this is not the only condition.

5.1.3 Space-time surfaces as quaternionic surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means
that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-time. It took
several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to
a preferred time axes (and rest frame) identified naturally as that connecting the tips of CD.
What modified gamma matrices mean depends on variational principle for space-time surface.
For volume action one would obtain induced gamma matrices. For Kähler action one obtains
something different. In particular, the modified gamma matrices do not define vector basis
identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [11]. A further condition is that each quaternionic space
defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at given
point. For instance, for massless extremals these densities are proportional to light-like vector
so that the situation is degenerate and the space in question reduces to 2-D hyper-complex
sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⊂ M4 for preferred extremals? For massless extremals [3] this condition
would be true. The orthogonal decomposition T (X4) = M2⊕⊥E2 can be defined at each point
if this is true. For massless extremals also the functions Ψ and Φ can be identified.
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2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such that
M2
x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time sheet even
when M2

x varies?

(a) Note first that G2 defines the Lie group of octonionic automorphisms and G2 action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of
G2 are related by G2 automorphism. Clearly, one must assign to each point of a string
world sheet in the slicing parameterizing the partonic 2-surfaces an element of G2. One
would have Minkowskian string model with G2 as a target space. As a matter fact, this
string model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units and
octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = −1/3 and
its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3) rotation
needed to rotate the standard basis to this basis and would actually correspond to the first
row of SU(3) rotation matrix. Hyper-complex analyticity is the basic property of the
solutions of the field equations representing Minkowskian string world sheets. Also now the
same assumption is highly natural. In the case of string models in Minkowski space, the
reduction of the induced metric to standard form implies Virasoro conditions and similar
conditions are expected also now. There is no need to introduce action principle -just the
hyper-complex analycitity is enough-since Kähler action already defines it.

3. The WZW model inspired approach to the situation would be following. The parametrization
corresponds to a map g : X2 → G2 for which g defines a flat G2 connection at string world sheet.
WZW type action would give rise to this kind of situation. The transition G2 → G2/SU(3)
would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection.
Similar procedure for CP2 = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2)
gauge field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts
gluons and electroweak gauge bosons assignable to string like objects so that the mathematical
picture would be consistent with physical intuition.

5.1.4 The two interpretations of CP2

An old observation very relevant for what I have called M8−H duality [7] is that the moduli space of
quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred hyper-complex
plane is CP2. Or equivalently, the space of two planes whose addition extends hyper-complex plane to
some quaternionic subspace can be parametrized by CP2. This CP2 can be called it CPmod2 to avoid
confusion. In the recent case this would mean that the space E2(x) ⊂ E2

x × T (CP2) is represented by
a point of CPmod2 . On the other hand, the imbedding of space-time surface to H defines a point of
”real” CP2. This gives two different CP2s.

1. The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x) would
be purely local and depend on the values of CP2 coordinates only. Second condition for E2(x)
would involve the gradients of imbedding space coordinates including those of CP2 coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would differ from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

http://en.wikipedia.org/wiki/G2_(mathematics)
http://en.wikipedia.org/wiki/WZW_model
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Does this mean that one can begin from vacuum extremal with constant values of CP2 coordi-
nates and makes them non-constant but allows to depend only on transversal degrees of freedom?
This condition is too strong even for simplest massless extremals for which CP2 coordinates de-
pend on transversal coorinates defined by ε ·m and ε · k. One could however allow dependence
of CP2 coordinates on light-like M4 coordinate since the modification of the induced metric is
light-like so that light-like coordinate remains light-like coordinate in this modification of the
metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general
dependence of CP2 points on the light-like coordinates assignable to the distribution of M2

x

would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but
not both.

5.2 What could be the construction recipe for the preferred extremals
assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2 identification
and by the tangent space of E2

x × CP2 are same. The challenge is to transform this condition to an
explicit form. CP2 = CPmod2 identification should be general coordinate invariant. This requires that
also the representation of E2 as (e2, e3) plane is general coordinate invariant suggesting that the use
of preferred CP2 coordinates -presumably complex Eguchi-Hanson coordinates- could make life easy.
Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the
situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X4

but not in general identical with the tangent space: this would be the case only if the action were
4-volume. I will use the notation Tmx (X4) about the modified tangent space and call the vectors of
Tmx (X4) modified tangent vectors. I hope that this would not cause confusion.

5.2.1 CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the tangent
vectors of Tmx (X4).

1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined by
the coordinate differentials dhk in some natural coordinates used. Complex Eguchi-Hanson
coordinates [1] are a natural candidate for CP2 and require complexified octonionic imaginary
units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 − ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should express
given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that one should
define the corresponding CP2 point by the bundle projection SU(3)→ CP2.

3. The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equivalent with
the pair (q1, q1). Here one must be however very cautious with the choice of coordinates. If the
choice of w is unique apart from constant the gradients should be unique. One can use also real
coordinates (x, y) instead of (w = x+ iy, w = x− iy) and the pair (e2, e3). One can project the
tangent vector pair to the standard vielbein basis which must correspond to the octonioni basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.
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5.2.2 Formulation of quaternionicity condition in terms of octonionic structure con-
stants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra.
The expressions for octonionic resp. quaternionic structure constants can be found at [4] resp. [5].

1. The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (5.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [4] gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (5.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper
indices. Summation convention is assumed. Also the contribution of the real unit is present in
the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (E2, E3) is of the form(

f1 1
−1 f1

)
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to
the highly symmetric properties of the structure constants. In fact the equations can be written
as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

5.2.3 Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under SU(3).
Note the analogy of triplet with color triplet of quarks. One can write complexified basis as
(1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind o fline can
be used to form pair of complexified unit and its conjugate. In the tangent space of M4 × CP2

the basis vectors q1, and q2 are mixtures of E2
x and CP2 tangent vectors. q3 involves only CP2

tangent vectors and there is a temptation to interpret it as the analog of the quark having no
color isospin.

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Quaternions
http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Octonion
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2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark in
the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform SU(3)
rotations to get a new basis. The action of the rotation is by 3× 3 special unitary matrix. The
over all phases of its rows do not matter since they induce only a rotation in (e2, e3) plane not
affecting the plane itself. The action of SU(3) on q1 is simply the action of its first row on
(q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (5.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase does
not matter a point of CP2 is in question. The new real octonion units are given by the formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(5.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with z3 6= 0
are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence can be
expressed explicitly as first order differential equations. The conditions state the equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (5.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization of the
tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of
the tangent vector. After this the vectors can be equated. This allows to expresses the contractions
of the partial derivatives with vielbein vectors with the 6 components of e2 and e3. Each condition
gives 6+6 first order partial differential equations which are non-linear by the presence of the overal
normalization factor for the right hand side. The equations are invariant under scalings of (x, y). The
very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamiltonin-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2) × U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.

5.2.4 Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent space.
The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point of G2/SU(3)
defining what one means with standard quaternionic plane at given point of string world sheet. The
hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic
2-surfaces central for the proposed mathematical applications of TGD [13, 14, 25, 32]. This duality
suggests that the solutions to the CP2 = CPmod2 conditions could reduce to holomorphy with respect
to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The dependence
on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regaded as dual
string models in G2/SU(3) and SU(3)/U(2) and also to string model in M4 and X4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces.
TGD seems to yield an inflation of string models! This not actually surprising since the slicing of
space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds
of maps having interpretation in terms of string orbits.
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5.3 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When CP2 projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex CP2 coordinates analogous to the Hamilton-Jacobi coordinates for
M4. Complex Eguchi-Hanson coordinates transforming linearly under U(2) ⊂ SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kähler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since CP2 projection of space-time sheet need not cover
the entire CP2.

2. For string like objects X4 = X2 × Y 2 ⊂ M4 × CP2 with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M4 and complex coordinate in CP2.
If X2 has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of CP2 allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M4 and
CP2 but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as ”romantic stuff” [27].

1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M4

coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M4. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in CP2 degrees of freedom followed
by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.

The problem is that one decouples M4 and CP2 degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E2(x) corresponds to subspace of
E2
x × T (CP2). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M4 ×CP2

coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of CP2).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

5.3.1 Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?



5.3 Could octonion analyticity solve the field equations? 47

1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Iq2: q1 and q2 are quaternionis and I is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [27] but have not
managed to build any satisfactory scenario.

3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [31].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.

4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. I

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of CD. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
2-surface represented by a collection of punctures. There is a strong temptation to assume
that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.



5.3 Could octonion analyticity solve the field equations? 48

5.3.2 What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
Physically this would correspond to the choice of momentum plane M2

x for a position dependent
light-iike momentum defining the plane of non-physical polarizations.

This question is inspired by the general solution ansatz based on the slicing of space-time sheets
which involves the dependence of the choice of the momentum plane M2

x on the point of string world
sheet. This dependence is parameterized by a point of G2/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ci of the
quaternionic coordinate q1 = c1 + Ic2 of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
CP2 would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M4 defined by Hamiton-Jacobi coordinates [3], this slicing indeed exists.

5.3.3 Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of CDs is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting c2 = 0,
where c2 is the imaginary part of the quaternion coordinate q = c1 + Ic2. Their intersections
with CD boundaries are generally 1-dimensional and represent space-like strings.

2. Partonic 2-surfaces could correspond to the intersections of Re(c1) = constant 3-surfaces with
the boundaries of CD. The variation of Re(c1) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of CD would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(c1), naturally Re(c1) = 0.

What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting c1 = 0 (or c1 = constant) in the decomposition
q = c1 + ic2. This option is consistent with the above assumption if Im(c1) = 0 holds true at
the boundaries of CD. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.

3. One can of course wonder whether also the poles of c1 might be relevant. The most natural idea
is that the value of Re(c1) varies between 0 and ∞ between the ends of the orbit of partonic
2-surface. This would mean that c1 has a pole at the other end of CD (or light-like orbit
of partonic 2-surface). In light of this the earlier proposal [25] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points q = c1 + Ic2 = 0
and q = ∞ + Ic2, where ∞ means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.
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5.3.4 Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.

(a) H −M8 correspondence is based on the observation that quaternionic sub-spaces of octo-
nions containing preferred complex sub-space are labelled by points of CP2. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CP2 (CP2 = CPmod condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.

Here one should however understand the role of the M4 coordinates. What is the func-
tional form of M4 coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M4

coordinates for surfaces representable as graphs for maps M4 → CP2? What about other
cases such as cosmic strings [8]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(c) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for Kähler action rather than for
minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kähler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.

(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP2 point so that CP2 = CPmod2

identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.

(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP2

part of field equations coming from the variation of Kähler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

(c) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
gamma matrices this cannot be the case. One cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether CP2 = CPmod2 condition implies the
integrability automatically.
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5.3.5 Volume action or Kähler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.

1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kähler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M4 translations would define Beltrami flows for which the 1-forms would be gradients of linear
M4 coordinates. If M4 coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kähler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kähler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kähler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kähler action
which are also quaternionic 4-surfaces.

1. Preferred extremal property for Kähler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kähler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of CP2 type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kähler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...

5.3.6 Are quaternionicities defined in terms of induced gamma matrices resp. octonion
real-analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of
7 octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is
non-assciative Malcev algebra [3] which can be seen as a Lie algebra over non-associative number

http://en.wikipedia.org/wiki/Malcev_algebra
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field (one speaks of 7-dimensional cross product [7]). One must use instead of vector fields either
octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The use
of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M4 coordinates or possibly Hamilton-Jacobi coordinates and CP2 complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2)× U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

5.3.7 Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.

1. The above considerations are restricted to Minkowskian regions of space-time sheets. What
happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

2. It would be nice to find a justification for the notion of CD from basic principles. The condition
qq = 0 implies q = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies qq = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/qq having poles at
light-cone boundaries or CD boundaries rather than at single point as in Euclidian realm.

3. This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of CD along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of CD meet remains after this
identification. The structure would be homologically very much like CP2 which is obtained by
compactifying E4 by adding a 2-sphere at infinity. Could this CD − CP2 correspondence have
some deep physical meaning? Do the boundaries of CD somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

4. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider
the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of CDs. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced

http://en.wikipedia.org/wiki/Seven-dimensional_cross_product
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by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.

5.3.8 How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df/dq and df/do make sense hold true?
The answer is ”No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

2. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make
sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df/dz locally, the answer is ”No”.

3. Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of q = c1 + Ic2 could be regarded as an analytic function of complex arguments c1
and c2. This is not the case. The product of two octonions decomposed to two quaternions as
oi = qi1 + Iqi2 , i = a, b reads as

oaob = qa1qb1 − qa2qb2 + I(qa1qb2 − qa2qb1) . (5.6)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas oa = ob = q1 + Iq2 one has

o2 = q2
1 − q2q2 + I(q1q2 − q2q1)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part q2 vanishes. By similar
argument real part of quaternion real-analytic function q = c1 + Ic2 fails to be analytic unless
one restricts the consideration to a surface at which one has c2 = 0. These negative results are
obviously consistent with the effective 2-dimensionality.

4. One must however notice that physicists use often what might be called analytization trick [1]
working if the non-analytic function f(x, y) = f(z, z) is differentiable. The trick is to inter-
pret z and z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dc1dc1dc2dc2 one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ci and
ci are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece
of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

http://en.wikipedia.org/wiki/Analytization_trick
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1. The canonical Mandelbrot set corresponds to the set of the complex parameters c in f(z) = z2+c
for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case c
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

2. Julia set corresponds to the boundary of the Fatou set in which the dynamics defined by the
iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

6 Does modified Dirac action define the fundamental action
principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of the
theory having interpretation as the exponent of Kähler function of world of classical worlds (WCW)
expressible and that Kähler function reduces to Kähler action for a preferred extremal of Kähler
action.

6.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds
of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that corre-
sponding fermionic currents are conserved. There is infinite hierarchy of these currents and they
define fermionic counterparts for zero modes. Space-time sheets can be also regarded as hyper-
quaternionic surfaces. What these statements precisely mean has become clear only during this
year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the modified Dirac equation. The requirement that there are deformations
of the space-time surface -actually infinite number of them- giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations. The precise form of the modified Dirac equation is not however completely fixed
without further input. Quantal equations involve also generalized Feynman rules for M -matrix
generalizing S-matrix to a ”complex square root” of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is
certainly the basic goal of quantum TGD.

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Julia_set
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3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic duality
[11] , [5] leads to a detailed understanding of how TGD reduces to almost topological quantum
field theory [11] , [5] . If Kähler current defines Beltrami flow [3] it is possible to find a gauge
in which Coulomb contribution to Kähler action vanishes so that it reduces to Chern-Simons
term. If light-like 3-surfaces and ends of space-time surface are extremals of Chern-Simons
action also effective 2-dimensionality is realized. The condition that the theory reduces to
almost topological QFT and the hydrodynamical character of field equations leads to a detailed
ansatz for the general solution of field equations and also for the solutions of the modified Dirac
equation relying on the notion of Beltrami flow for which the flow parameter associated with
the flow lines defined by a conserved current extends to a global coordinate. This makes the
theory is in well-defined sense completely integrable. Direct connection with massless theories
emerges: every conserved Beltrami currents corresponds to a pair of scalar functions with the
first one satisfying massless d’Alembert equation in the induced metric. The orthogonality of
the gradients of these functions allows interpretation in terms of polarization and momentum
directions. The Beltrami flow property can be also seen as one aspect of quantum criticality
since the conserved currents associated with critical deformations define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also
in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. It however seems
that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of
the field equations defined by Kähler action means that the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD×CP2, where CD denotes causal
diamond defined as intersection of future and past directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded as a
purely classical Dirac equation. The modified Dirac operators associated with quarks and leptons carry
fermion number but the Dirac equations are well-defined. An orthogonal basis of solutions of these
Dirac operators define in zero energy ontology a basis of zero energy states. The M -matrices defining
entanglement between positive and negative energy parts of the zero energy state define what can be
regarded as analogs of thermal S-matrices. The M-matrices associated with the solution basis of the
WCW Dirac equation define by their orthogonality unitary U-matrix between zero energy states. This
matrix finds the proper interpretation in TGD inspired theory of consciousness. WCW Dirac equation
as the analog of super-Virasoro conditions for the ”gamma fields” of superstring models defining super
counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

6.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges
of quantum TGD. The question leading to a considerable progress in the problem was simple: Under
what conditions the modified Dirac action allows to assign conserved fermionic currents with the
deformations of the space-time surface? The answer was equally simple: These currents exists only
if these deformations correspond to vanishing second variations of Kähler action - which is what
criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number of critical
deformations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings
of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of
type II1.
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6.2.1 Quantum criticality and fermionic representation of conserved charges associated
with second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development
of the understanding of conservation laws has been slow. Modified Dirac action provides excellent
candidates for quantum counterparts of Noether charges. Unfortunately, the isometry charges vanish
for Cartan algebras. The only manner to obtain non-trivial isometry charges is to add a direct coupling
to the charges in Cartan algebra as will be found later. This addition involves Chern-Simons Dirac
action so that the original intuition guided by almost TQFT idea was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler
action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge
expressible as bilinears of fermionic oscillator operators only if the first variation of the modified
Dirac action under this deformation vanishes. The vanishing of the first variation for the modified
Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This
can be seen by the explicit calculation of the second variation of the modified Dirac action and
by performing partial integration for the terms containing derivatives of Ψ and Ψ to give a total
divergence representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral of the
quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (6.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time
coordinates. This term must vanish:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the modified Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined by
the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (6.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the stan-
dard conserved fermion current

Jα = ΨΓαΨ . (6.3)
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Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for Ψ
and its conjugate as well as absence of mass term essential for super-conformal invariance [6, 8]
. Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping Ψ and its
conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ. The third
term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (6.4)

These currents provide a representation for the algebra defined by the conserved charges analo-
gous to a fermionic representation of Kac-Moody algebra [2] .

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same procedure gives
three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined by a
potential function for which the rank of the matrix defined by second derivatives of the potential
function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence
of quantum theory since fermionic anti-commutation relations in principle can be fixed from
the condition that the algebra in question is equivalent with the algebra formed by the vector
fields defining the deformations of the space-time surface defining second variations. Quantum
criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr
orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding charges
are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a Killing
vector field which is constant in these coordinates. Therefore one cannot represent isometry
charges as fermionic bilinears. Four-momentum and color quantum numbers are defined for
Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-
conformal algebras. In the case of color algebra the charges in the complement of the Cartan
algebra can be constructed in standard manner as extension of those for the Cartan algebra
using free field representation of Kac-Moody algebras. In string theories four-momentum
appears linearly in bosonic Kac-Moody generators and in Sugawara construction [16] of
super Virasoro generators as bilinears of bosonic Kac-Moody generators and fermionic
super Kac-Moody generators [2] . Also now quantized transversal parts for M4 coordinates
could define a second quantized field having interpretation as an operator acting on spinor
fields of WCW. The angle coordinates conjugate to color isospin and hyper charge take the
role of M4 coordinates in case of CP2.
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(b) Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and isom-
etry invariant manner. As will be shown later, this is possible. The interpretation is as
measurement interaction guaranteeing also the stringy character of the fermionic propaga-
tors. The values of the couplings involved are fixed by the condition of quantum criticality
assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transforma-
tion K → K + f + f , where f is a holomorphic function of WCW coordinates depending
also on zero modes.

(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-surfaces
at the ends of the throats. Hence the modified Dirac equation in the interior of the space-
time sheet is not affected and nothing changes as far as quantum criticality in interior is
considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations satisfy
d’Alembert type equation in the induced metric so that the analogs of massless fields are in
question. Mass term is present only if some dimensions are compact. The vanishing of excitations
at light-like boundaries is a natural boundary condition and might well imply that the solution
spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial
theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations van-
ishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation for
second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous to
massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also for the
vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates.
A possible interpretation is as the classical analog of Higgs field. For the deformations of non-
vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind
of terms indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of
inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of inclusions
of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would corre-
spond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe.
The natural guess would be that as one deforms the vacuum extremal the previously critical
degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold
could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic
string like objects any complex manifold of CP2 defines cosmic string like objects so that there
is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is
arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action
for preferred extremals means that the critical variations are orthogonal to all deformations of
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the space-time surface with respect to the configuration space metric and thus correspond to
zero modes. This conforms with the fact that configuration space metric vanishes identically for
canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees of freedom so
that the super-conformal algebra associated with the zero modes has genuine physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamilto-
nians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond to
this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give con-
figuration space metric as their anti-commutator. This would also lead to a conflict with the
effective 2-dimensionality stating that the configuration space line-element is expressible as sum
of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation rela-
tions.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the
recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe.
For some mysterious reason I failed to realize that quantum criticality realized as the vanishing of
the second variation makes possible a more or less unique identification of preferred extremals and
considered alternative identifications such as absolute minimization of Kähler action which is just the
opposite of criticality. Both the super-symmetry of DK and conservation Dirac Noether currents for
modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized
by the matrix defined by the second derivatives of the potential function and the rank of sys-
tem classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the
complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies, when
the numbers of behavior and control variables are small (smaller than 5). In the recent case the
situation is infinite-dimensional and the criticality conditions give additional field equations as
existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of
criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection the
matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the matrix

(Jαk +J α
k )(Jβl+J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the formulation of

Equivalence Principle in string picture demonstrated that the reduction of stringy dynamics to
that for free strings requires that second variation with respect to M4 coordinates vanish. This
condition would guarantee the conservation of fermionic Noether currents defining gravitational
four-momentum and other Poincare quantum numbers but not those for gravitational color
quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random
light-like curve as M4 projection have vanishing second variation with respect to M4 coordinates
(this follows from the vanishing of Kähler energy momentum tensor, second fundamental form,
and Kähler gauge current). In this case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in terms
of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries
vanish for the modified Dirac action. For vacuum extremals the dimension of the critical manifold
is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases
step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of
inclusions of hyper-finite factors of type II1. Also the conserved charges associated with Super-
symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold
defined by the spectrum of second variations.
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4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the hi-
erarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [10] with degrees of freedom below
the measurement resolution identified as gauge degrees of freedom.

5. A breakthrough in understanding of the criticality was the discovery that the realization that
the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of Planck
constants could correspond directly to a similar hierarchy of coverings forced by the factor that
classical canonical momentum densities correspond to several values of the time derivatives
of the imbedding space coordinates led to a considerable progress if the understanding of the
relationship between criticality and hierarchy of Planck constants [12] , [2] . Therefore the
problem which led to the geometrization program of quantum TGD, also allowed to reduce the
hierarchy of Planck constants introduced on basis of experimental evidence to the basic quantum
TGD. One can say that the 3-surfaces at the ends of CD resp. wormhole throats are critical
in the sense that they are unstable against splitting to nb resp. na surfaces so that one obtains
space-time surfaces which can be regarded as surfaces in na × nb fold covering of CD × CP2.
This allows to understand why Planck constant is effectively replaced with nanb~0 and explains
charge fractionization.

6.2.2 Preferred extremal property as classical correlate for quantum criticality, holog-
raphy, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.
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3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [1] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to lead
”to the edge”. The challenge is to understand how system ends up to a critical state, which by
definition is unstable. Mechanisms for this have been discovered and based on phase transitions
occurring in a wide range of parameters so that critical point extends to a critical manifold. In
TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality
for the preferred extremals of Kähler action would mean that classically all systems are critical
in well-defined sense and the question is only about the degree of criticality. Evolution could
be seen as a process leading gradually to increasingly critical systems. One must however
distinguish between the criticality associated with the preferred extremals of Kähler action and
the criticality caused by the spin glass like energy landscape like structure for the space of the
maxima of Kähler function.

6.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is
essential to make trials, even if one is aware that they are probably wrong. When stares long enough
to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually
be and it is soon clear what those other crosswords are. In the following I describe an example in
which this analogy is rather concrete. Let us begin by listing the problems.

1. The condition that modified Dirac action allows conserved charges leads to the condition that
the symmetries in question give rise to vanishing second variations of Kähler action. The in-
terpretation is as quantum criticality and there are good arguments suggesting that the critical
symmetries define an infinite-dimensional super-conformal algebra forming an inclusion hierar-
chy related to a sequence of symmetry breakings closely related to a hierarchy of inclusions
of hyper-finite factors of types II1 and III1. This means an enormous generalization of the
symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin
(more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The
trial for the crossword in absence of nothing better would be the following argument. By the
abelianity of these charges the vanishing of quantal representation of four-momentum and color
Cartan charges is not a problem and that classical representation of these charges or their
super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that
one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality
suggests that off mass shell propagation takes place along wormhole throats. The reduction to
almost topological QFT with Kähler function reducing to Chern-Simonst type action implied
by the weak form of electric-magnetic duality and a proper gauge choice for the induced Kähler
gauge potential implies effective 3-dimensionality at classical level. This inspires the question
whether Chern-Simons type action resulting from an instanton term could define the modified
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gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and the ends of the space-time sheet at the boundaries of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole throats
would realize effective 2-dimensionality as conditions on the boundary values of the 4-D Dirac
equation but would would not allow off mass shell propagation. Therefore one could argue that
effective 2-dimensionality in this sense holds true only for incoming and outgoing particles.

The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality
suggests that Kähler function corresponds to an extremum of this action with a constraint term
due to the weak form of electric-magnetic duality. Without this term the extrema of Chern-
Simons action have 2-D CP2 projection not consistent with the weak form of electric-magnetic
duality. The extrema are not maxima of Kähler function: they are obtained by varying with
respect to tangent space data of the partonic 2-surfaces. Lagrange multiplier term induces also
to the modified gamma matrices a contribution which is of the same general form as for any
general coordinate invariant action.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the quan-
tum state. One could argue that by multiplying WCW spinor field by a suitable phase factor
depending on the charges of the state, the correspondence follows from stationary phase approx-
imation. This crossword looks unconvincing. A more precise connection between quantum and
classical is required.

4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom
assignable to the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach
experiment is an excellent example of the situation. The generalization of the imbedding space
concept by replacing it with a book like structure implies that imbedding space geometry at
given page and for given causal diamond (CD) carries information about the choice of the
quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2 associated with
singular covering/factor space of CD resp. CP2 ). This is a big step but not enough. Modified
Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP
characterizing the outcome of quantum jump sequence should have space-time correlate. How
to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of the state
to the modified Dirac action in turn determining vacuum functional as an exponent Kähler function
identified as Kähler action for the preferred extremal assumed to be dictated by by quantum criticality
and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant
and Poincare invariant modification of the modified Dirac action consistent with the vacuum degen-
eracy of Kähler action allow to achieve this information flow somehow? In the following one manner
to achieve this modification is discussed. It must be however emphasized that I have considered many
alternatives and the one discussed below finds its justification only from the fact that it is the simplest
one found hitherto.

6.3.1 The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action in
M4 × CP2. One can consider two options according to whether the term is assigned with interior or
with a 3-D light-like 3-surface and last years have been continual argumentation about which option
is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding
space level.
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Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (6.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing
vector field of the isometry. gAB is the inverse of the tensor gAB defined by the local inner
products of Killing vectors fields in M4 and CP2. The space-time projections of the Killing
vector fields jBα have interpretation as classical color gauge potentials in the case of SU(3). In
M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to the gradients of linear
M4 coordinates in case of translations. Modified gamma matrices could be assigned to Kähler
action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (6.6)

The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (6.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so
that gAB exists only when one considers only four conserved charges. In the case of M4 this is
achieved by a restriction to translation generators QA = pA. gAB reduces to Minkowski metric
and Killing vector fields are constants. The Cartan sub-algebra could be however replaced by
any four commuting charges in the case of Poincare algebra (second one corresponds to time
translation plus translation, boost and rotation in given direction). In the case of SU(3) one must
restrict the consideration either to U(2) sub-algebra or its complement. CP2 = SU(3)/SU(2)
decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan
algebra is enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra of M4 × SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα.
This property might hold true for any measurement interaction term. This also suggests that the
change in Kähler function is only the transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [12] , [2] the current jαKφ is conserved, which implies that the
change of the Kähler action is trivial. These properties characterize the gauge transformations
respecting the gauge in which Coulombic interaction term of the Kähler action vanishes so
that Kähler action reduces to 3-dimensional generalized Chern-Simons term if the weak form of
electric-magnetic duality holds true guaranteeing among other things that the induced Kähler
field is not too singular at the wormhole throats [12] , [2] . The scalar function assignable to the
measurement interaction terms does not have this property and this is what is expected since it
must change the value of the Kähler function and therefore affect the preferred extremal.
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Concerning the precise form of the modified Dirac action the basic clue comes from the observation
that the measurement interaction term corresponds to the addition of a gauge part to the induced CP2

Kähler gauge potential Aα. The basic question is what part of the action one assigns the measurement
interaction term.

1. One could define the measurement interaction term using either the four-dimensional instanton
term or its reduction to Chern-Simons terms. The part of Dirac action defined by the instanton
term in the interior does not reduce to a 3-D form unless the Dirac equation defined by the
instanton term is satisfied : this cannot be true. Hence Chern-Simons term is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed since
they would imply that the CP2 projection of the wormhole throat and space-like 3-surface are
2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD and incoming
and outgoing particles but not for off mass shell particles. This is however not a problem since
DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does not contain second
derivatives. This is due to the topological character of this term. For Kähler action second
derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics results as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction
corresponds to a mere gauge transformation for ASα and is trivial. Therefore it seems that one
must choose between DK or DC−S . At least formally the measurement interaction term asso-
ciated with DK is gauge equivalent with its negative DC−S . The addition of the measurement
interaction to DK changes the basis for the 4-D induced spinors by the phase exp(−iQKφ) and
therefore also the basis for the generalized eigenstates of DC−S and this brings in effectively the
measurement interaction term affecting the Dirac determinant.

3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the
instanton term and identified as a product of the generalized eigenvalues of this operator. The
modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of the
instanton term is real and one uses the Dirac action Ψ(D→ − D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (6.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equivalent
with the vanishing of the divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved. Also if
the Chern-Simons term is imaginary - as a naive idea about dissipation would suggest- the Dirac
equation fails to be consistent with the conjugation.

4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigen modes lf DC−S should be such
that one obtains the counterpart of Dirac propagator which is purely algebraic and does not
therefore depend on the coordinates of the throat. This is satisfied if the generalized eigenvalues
are expressible in terms of covariantly constant combinations of gamma matrices and here only
M4 gamma matrices are possible. Therefore the eigenvalue equation reqards as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(6.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has
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(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (6.10)

The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues
correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues.

λ is completely analogous to mass. For incoming lines this mass would vanish so that all
incoming particles irrespective their actual quantum numbers would be massless in this sense
and the propagator is indeed that for a massless particle. Note that the eigen modes define
the boundary values for the solutions of DKΨ = 0 so that the values of λ indeed define the
counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [29] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

6.3.2 Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as func-
tions of incoming quantum numbers plus the need to construct the measurement interactions makes
the practical application of the theory hopelessly difficult? Could the resulting pseudo-momentum
λk correspond to the actual four-momentum? Could one drop the measurement interaction term
altogether and assume that the quantum classical correspondence is through the identification of the
eigenvalues as the four-momenta of the on mass shell particles propagating at the wormhole throats?
Could one indeed assume that the momenta have a continuous spectrum and thus do not depend on
the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.

1. Only the information about four-momentum would be fed into the space-time geometry. TGD
however allows much more general measurement interaction terms and it would be very strange
if the space-time geometry would not correlate also with the other quantum numbers. Mass
formulas would of course contain information also about other quantum numbers so that this
claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equa-
tion [25] , [4] force the conclusion that the spectrum of pseudo four-momentum is restricted
to a preferred plane M2 of M4 and this excludes the interpretation of λk as a genuine four-
momentum. It also improves the hopes that the sum over pseudo-momenta does not imply
divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of course
also imply that Dirac determinant defined in terms of ζ function regularization is independent
of the space-time surface and could not be identified with the exponent of Kähler function. One
must of course take the identification of exponent of Kähler function as Dirac determinant as an
additional conjecture which is not necessary for the calculation of Kähler function if the weak
form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum can be
also space-like propagators diverge for massless particles. One might overcome this problem by
assuming small thermal mass (from p-adic thermodynamics [19] ) and this is indeed assumed to
reduce the number of generalized Feynman diagrams contributing to a given reaction to finite
number.
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Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It however
seems that this breaking of gauge invariance is only apparent.

1. One must distinguish between genuine U(1) gauge transformations carried out for the induced
Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge potential
Ak of S2 × CP2 induced by symplectic transformations deforming the space-time surface and
affect also induced metric. This delicacy of U(1) gauge symmetry explains also the apparent
breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the presence of explicit
terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi ,Kξi
) =

(∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K → K+f+f , where f is a
holomorphic function. Kähler gauge potential has a unique gauge in which the Kähler function
of CP2 is U(2) invariant and contains no holomorphic part. Hence Ak is defined in a preferred
gauge and is a gauge invariant quantity in this sense. Same applies to S2 part of the Kähler
potential if present.

3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of
Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy
Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole throats and at the
ends of the space-time surface DC−S is gauge invariant. The gauge transformations for which φ
does not satisfy this condition are identified as representations of critical deformations of space-
time surface so that the change of Aα would code for this kind of deformation and indeed affect
the modified Dirac operator and Kähler function (the change would be due to the change of zero
modes).

6.3.3 Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where
the modified gamma matrices vanish. A physical analogy for the system consider is a charged
particle in an external magnetic field. The effective metric defined by the anti-commutators of
the modified gamma matrices so that standard intuitions might not help much. What one would
naively expect would be analogs of bound states in magnetic field localized into regions inside
which the magnetic field is non-vanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of the
3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms with
the properties of Kähler action. The solutions of the modified Dirac equation with a vanishing
eigenvalue λ would naturally correspond to incoming and outgoing particles.

3. D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality requiring
D(CP2) = 3. The conclusion is wrong: the variations of Chern-Simons action are subject to the
constraint that electric-magnetic duality holds true expressible in terms of Lagrange multiplier
term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (6.11)

This gives a constraint force to the field equations and also a dependence on the induced 4-metric
so that one has only almost topological QFT. This term also guarantees the M4 part of WCW
Kähler metric is non-trivial. The condition that the ends of space-time sheet and wormhole
throats are extrema of Chern-Simons action subject to the electric-magnetic duality constraint
is strongly suggested by the effective 2-dimensionality.
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4. Electric-magnetic duality constraint gives an additional term to the Dirac action determined
by the Lagrange multiplier term. This term gives an additional contribution to the modified
gamma matrices having the same general form as coming from Kähler action and Chern-Simons
action. In the following this term will not be considered. For the extremals it only affects the
modified gamma matrices and leaves the general form of solutions unchanged.

In absence of the constraint from the weak form of electric-magnetic duality the explicit expression
of DC−S is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (6.12)

Note ε̂αβγ = does not depend on the induced metric.
The extremals of Chern-Simons action without constraint term satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (6.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is
2-dimensional. This implies a vanishing of Chern-Simons action in absence of the constraint term
realizing electric-magnetic duality, which is therefore absolutely essential in order for having a non-
vanishing WCW metric.

Consider now the situation in more detail.

1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [12] , [2] leads to the condition B ∧ dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (6.14)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the
coordinate r:

DrΨ = 0 . (6.15)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates.

If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds
to a zero mode for DC−S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned
to light-like curves indeed defines a global coordinate. What is strange that there is no correlation
between the behaviors with respect longitudinal coordinate and transversal coordinates. System
would be like a collection of totally uncorrelated point like particles reflecting the flow of the
current along flux lines. It is difficult to say anything about the spectrum of the generalized
eigenvalues in this case: it might be that the boundary conditions at the ends of the flow lines
fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this case very
special.
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6.3.4 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests an
interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured observ-
ables. For instance, one could choose the Cartan algebra of Poincare group to consist of energy
and momentum, angular momentum and boost (velocity) in particular direction as generators
of the Cartan algebra of Poincare group. In fact, the choices of a preferred plane M2 ⊂ M4

and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra to a high degree
are implied by the replacement of the imbedding space with a book like structure forced by the
hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that one
maps the observables to Cartan algebra coupled to critical current characterizing the observable
in question. The coupling should have interpretation as a replacement of the induced Kähler
gauge potential with its gauge transform. Quantum classical correspondence encourages the
identification of the classical charges associated with Kähler action with quantal Cartan charges.
This would support the interpretation in terms of a measurement interaction feeding information
to classical space-time physics about the eigenvalues of the observables of the measured system.
The resulting field equations remain second order partial differential equations since the second
order partial derivatives appear only linearly in the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this
correlation in terms of the properties of quantum states: the coupling of electro-weak charges to
Chern-Simons term could give the correlation in stationary phase approximation. It would be
however very strange if the coupling of electro-weak charges with the geometry of the space-time
sheet would not have the same universal description based on quantum measurement theory as
isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered
question motivated by the fact that electro-weak gauge group identifiable as the holonomy
group of CP2 can be identified as U(2) subgroup of color group. Could the electro-weak
charges be identified as classical color charges? This might make sense since the color
charges have also identification as fermionic charges implied by quantum criticality. Or
could electro-weak charges be only represented as classical color charges by mapping them
to classical color currents in the measurement interaction term in the modified Dirac action?
At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All the
following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (6.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding
to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural to couple
of electromagnetic charge to the the projection of Killing vector field of color hyper charge
and coupling it to the current defined by Oem = a+bJ . This allows to interpret the puzzling
finding that electromagnetic charge can be identified as anomalous color hyper-charge for
induced spinor fields made already during the first years of TGD. There exist no conserved
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axial isospin currents in accordance with CVC and PCAC hypothesis which belong to the
basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple of
the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1 color
partial waves). If electro-weak resp. couplings to H-chirality are proportional to 1 resp.
Γ9, the fermionic currents assigned to color and electro-weak charges can be regarded as
independent. This explains why the possibility of both vectorial and axial couplings in 8-D
sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical space-
time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0= kR/~0

and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant evolution
should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising
that quantum criticality is needed to produce a correlation between quantal degrees of free-
dom and macroscopic degrees of freedom. Note that quantum classical correspondence can be
regarded as an abstract form of entanglement induced by the entanglement between quantum
charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation
in terms of measurement theory coupling short and long length scales suggests that the measure-
ment interaction terms are localizable at the wormhole throats. This would favor Chern-Simons
term or possibly instanton term if reducible to Chern-Simons terms. The breaking of CP and
T might relate to the fact that state function reductions performed in quantum measurements
indeed induce dissipation and breaking of time reversal invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in the
superposition corresponds to different space-time sheet already before the realization of state
function reduction. This relates interestingly to the question whether state function reduction
really occurs or whether only a branching of wave function defined by WCW spinor field takes
place as in multiverse interpretation in which different branches correspond to different observers.
TGD inspired theory consciousness requires that state function reduction takes place. Maybe
multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this
does not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real parts
of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z), where Z
denotes complex coordinates of WCW, the Kähler metric remains the same. The function f can
depend also on zero modes. If this is the case then one can allow in given CD superpositions
of WCW spinor fields for which the measurement interactions are different. This condition
is expected to pose non-trivial constraints on the measurement action and quantize coupling
parameters appearing in it.
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6.3.5 New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite a
radical revision of the ideas about matter and antimatter.

1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential cou-

pling to fermion number. Since the additional terms in the modified Dirac operator induce
stringy propagation, a natural interpretation of the coupling to the induced spinor fields is in
terms of gravitation. One might perhaps say that the measurement of four momentum in-
duces gravitational interaction. Besides momentum components also color charges take the role
of gravitational charges. As a matter fact, any observable takes this role via coupling to the
projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.

2. The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish. In
this framework matter antimatter asymmetry would be due to the fact that matter (antimatter)
corresponds to positive (negative) energy parts of zero energy states for massive systems so that
the contributions to the net gravitational four-momentum are of same sign. Could antimatter
be unobservable to us because it resides at negative energy space-time sheets? As a matter fact,
I proposed already years ago that gravitational mass is essentially the magnitude of the inertial
mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and
anti-fermion at the same space-time sheet (say represented by generators of super Kac-Moody
algebra). Therefore the only possible identification of gauge bosons is as wormhole contacts.
If the fermion and anti-fermion at the opposite throats of the contact correspond to positive
and negative energy states the net gravitational energy receives a positive contribution from
both sheets. If both correspond to positive (negative) energy the contributions to the net four-
momentum have opposite signs. It is not yet clear which identification is the correct one.

6.4 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric
changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordi-
nate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally

good choice. In particular, it should give rise to same Kähler metric but not necessarily the same
exponent of Kähler function identified as the product of the generalized eigenvalues of DC,S at Y 3

l .
General Coordinate Invariance requires that the components of Kähler metric of configuration

space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configu-
ration space. This is the case if the flow corresponds to the addition of sum of holomorphic function
f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down to the scaling
of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (6.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations
correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral
flow of ground state conformal weights if the squares of λi correspond to ground state conformal
weights.
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7 Representations for the configuration space gamma ma-
trices in terms of super-symplectic charges at light cone
boundary

During years I have considered several variants for the representation of WCW gamma matrices and
each of these proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians should
play any role in the construction or whether one can use only the generalization of flux Hamil-
tonians. Magnetic flux Hamiltonians do not refer to the space-time dynamics implying genuine
2-dimensionality, which is a catastrophe. If the sum of the magnetic and electric flux Hamil-
tonians and the weak form of self duality is assumed effective 2-dimensionality is achieved.
The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct
anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux
Hamiltonians.

2. In the original proposal for WCW gamma matrices the covariantly constant right handed spinors
played a key role. This led to interpretational problems with quarks. Are they needed at all or
do leptons and quarks define somehow equivalent representations? I discovered only recently a
brutally simple but deadly objection against this approach: the resulting WCW gamma matrices
do not generate all WCW spinors from Fock vacuum. Therefore all modes of the induced spinor
fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly constant
right handed neutrino with the collection of quark spinor modes qn resp. leptonic spinor modes Ln
multiplied by the contractions JA+ = jAkΓk resp. its conjugate JA− = jAkΓk. It is essential that
only of these contractions is used for a given H-chirality.

1. If the anti-commutator of the spinor fields is or form J = Jαβε
αβδ2(x, y) at X2 for magnetic

flux Hamiltonians and appropriate generalization of this fro the sum of magnetic and electric

flux Hamiltonians, the ”half-Poisson bracket” ∂kHAJ
kl∂lHB from the quark spinor field and

its conjugate as anti-commutator from the leptonic spinor field can combine to the full Poisson
bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the
contractions of the eigenmodes resulting in the contraction satisfy qmγ

0qn = Lmγ
0Ln = Φmn.

The resulting Hamiltonians define an X2-local algebra: that this extension is needed became
obvious already earlier. A stronger condition is that the spinors can be expressed in terms of
scalar function bases {Φm} so that one would have qm,i = {Φm}qi and Lm,i = {Φm}Li so that
one would assign to the super-currents the local Hamiltonians ΦmHA.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma
matrices since this the resulting objects to not have a well defined fermion number and cannot
be used to generate physical states from vacuum. How seriously this argument should be taken
is not clear to me at this moment. One could of course consider also a scenario in which one
divides leptonic (or quark) modes to two classes analogous to quark and lepton modes and uses
JA+

resp. JA− for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used, that
lepton-quark degeneracy is absolutely essential for the construction of WCW geometry, and that the
original super-symmetrization of the flux Hamiltonians combined with weak electric-magnetic duality
is the correct approach. There are also fermionic Noether charges and their super counterparts implied
by the criticality but these can be assigned with zero modes.

This section represents both the earlier version of the construction of configuration gamma ma-
trices and the construction introducing explicitly the notion of finite measurement resolution. The
motivation for the latter option is that if the number the generalized eigen modes of modified Dirac
operator is finite, strictly local anti-commutation relations fail unless one restricts the set of points
included to that corresponding to number theoretic braid. In the following integral expressions for
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configuration space Hamiltonians and their super-counterparts are derived first. After that the moti-
vations for replacing integrals with sums are discussed and the expressions for Hamiltonians and super
Hamiltonians are derived.

7.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of the configuration space gamma matrices and super charges it
is good to restate the basic facts about the magnetic flux representation of the configuration space
gamma matrices using the original approach based on 2-dimensional integrals.

7.2 Quantization of the modified Dirac action and configuration space ge-
ometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between Ψ and canonical momentum density ∂L/∂(∂tΨ).

7.2.1 Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for the
configuration space. Canonical transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fs,n,k defining the Lorentz covariant function basis HA, A ≡ (a, s, n, k) at the light cone
boundary: HA = Ha × f(s, n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind magnetic or electric flux via the following
formulas:

Qm/e(HA|X2) =

∫
X2

HAJm/e . (7.1)

Here the magnetic (electric) flux Jm (Je) denotes the flux associated with induced Kähler field and
its dual which is well-defined since X2 is part of 4-D space-time surface.

The flux Hamiltonians

Qi(HA|X2) = Qi(HA|X2) , A ≡ (a, s, n, k) (7.2)

provide a representation of WCW Hamiltonians as far as the ”kinetic” part of Kähler form is consid-
ered.

7.2.2 Anti-commutation relations between oscillator operators associated with same
partonic 2-surface

The construction of WCW gamma matrices leads to the anti-commutation relations given by

{Ψ(x)γ0,Ψ(x)} = [Je + Jm)δ2
x,y ,

Je =

∫
J03√g4 . (7.3)

Kähler magnetic flux Jm = εαβJαβ
√
g2 has no dependence on the induced metric.

If the weak- form of the electric-magnetic duality holds true, Kähler electric flux relates to it via
the formula

J03√g4 = KJ12 ,
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where K is symplectic invariant and identifiable in terms of Kähler coupling strength from classical
charge quantization condition for Kähler electric flux. The condition that the flux of F 03 = (~/gK)J03

defining the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2

K/~ = 4παK , where gK is Kähler coupling constant. Within experimental uncertainties one
has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite structure constant in electron length scale
and ~0 is the standard value of Planck constant. The arguments leading to the identification ε± 1 at
the opposite boundaries of CD are discussed in [12] , [2] . An alternative identification is as ε = 0 but
predicts that WCW is trivial in M4 degrees of freedom if Kähler function reduces to Chern-Simons
terms.

The general form of the anti-commutation relations is therefore

{Ψ(x)γ0,Ψ(x)} = (1 +K)Jδ2
x,y . (7.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and
J1 vanish so that spinor fields become non-dynamical. One can criticize the non-vanishing of the
anti-commutator for vacuum extremals of Kähler action.

For the latter option the fermionic counterparts of local flux Hamiltonians can be written in the
form

HA,±,n = εq(A,∓, n)HA,±,q,n + εL(A,±)HA,∓,L,n ,

HA,+,q,n =

∮
ΨJA+qnd

2x ,

HA,−,q,n =

∮
qnJ

A
−Ψd2x ,

HA,−,L,n =

∮
ΨJA+Lnd

2x ,

HA,+,L,n =

∮
LnJ

A
−Ψd2x ,

JA+ = jAkΓk , JA− = jAkΓk . (7.5)

The commutative parameters εq(A,±, n) resp. εL(A,±, n) are assumed to carry quark resp. lepton
number opposite to that of HA,∓,q,n resp. HA,∓,L,n and satisfy εi(A,+, n)εi(A,−, n) = 1. One en-
counters a hierarchy discrete algebras satisfying this condition in the construction of a symplectic
analog of conformal quantum field theory required by the construction of quantum TGD [22] . Asso-
ciativity condition fixes uniquely the commutative multiplication of these units and analogs of plane
waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is sat-
isfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and i labels
spinor components. This would give

qn = qm,i = Φmqi ,

Ln = Lm,i = ΦmLi ,

qiγ
0qj = Liγ

0Lj = gij . (7.6)

Suppose that the inner products gij are constant. The simplest possibility is gij = δij Under these
assumptions the anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltonians.

{HA,+,n, HA,−,n} = gij

∮
ΦmΦnHAJd

2x . (7.7)

The product of scalar functions can be expressed as

ΦmΦn = c k
mnΦk . (7.8)
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Note that the notion of symplectic QFT [6] led to a scalar function algebra of similar kind consisting
of phase factors and there excellent reasons to consider the possibility that there is a deep connection
with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras lo-
calized to the regions where the induced Kähler form is non-vanishing implying that the algebras
associated with different region form to a direct sum. Also the contributions to configuration space
metric are direct sums. The symplectic algebras associated with different region can be truncated
to finite-dimensional spaces of symplectic algebras associated with the regions in question. As far
as coordinatization of the reduced configuration space is considered, these symplectic sub-spaces are
enough. These truncated algebras naturally correspond to the hyper-finite factor property of the
Clifford algebra of configuration space.

7.2.3 Generalization of WCW Hamiltonians and anti-commutation relations between
flux Hamiltonians belonging to different ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [5, 4] , [3]

Q(HA) =

∫
HAJd

2x . (7.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X2 with an integral over the projection of X2 to
a sphere S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come
as two varieties corresponding to homologically trivial and non-trivial spheres. The projection
is defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in the
rest system defined by the time-like vector connecting the tips of CD. Either spheres or possibly
both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [6] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
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the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int = (1 +K)

∫
S2
±

HAXδ
2(s+, s−)d2s± = (1 +K)

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± .(7.10)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = J+
kl + J−kl ,

Jkl± = ∂αs
k∂βs

lJαβ± . (7.11)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing J with
X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anti-commutation relations defining correct anti-commutators

to flux Hamiltonians, one should pose anti-commutation relations consistent with the anti-
commutation relations of super Hamiltonians. In these anti-commutation relations Jδ2(x, y)
would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator operators at the
ends of the line are not independent and that the resulting Hamiltonian reduces to integral over
either end for H[A,B].

7.3 Expressions for configuration space super-symplectic generators in fi-
nite measurement resolution

The expressions of configuration space Hamiltonians and their super counterparts just discussed were
based on 2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic context
(for pe-adic numbers see [9] ). Sums would be more appropriate if one wants number theoretic
universality at the level of basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X2 with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surface X2 whose δM4

± projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection PM4(X2) with radial light-like
geodesics M± representing intersections of M2 ⊂ M4 ⊂ M8 with δM4

± × CP2 contribute to
the configuration space Hamiltonians and super Hamiltonians and therefore to the configuration
space metric.
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Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization of
the configuration space as one can expect on basis of the fact that configuration space Clifford algebra
provides representation for hyper-finite factors of type II1 whose inclusions provide a representation
for the finite measurement resolution. This means that the infinite-dimensional configuration space
can be represented as a finite-dimensional space in arbitrary precise approximation so that also also
configuration Clifford algebra and configuration space spinor fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{Ψ(xm)γ0,Ψ(xn)} = (1 +K)Jδxm,xn . (7.12)

Note that the constancy of γ0 implies a complete symmetry between the two points. The number of
points must be the maximal one consistent with the Kronecker delta type anti-commutation relations
so that information is not lost.

The question arises about the choice of the points xm. This choice should general coordinate
invariant. The number theoretic vision leads to the notion of number theoretic braid defined as the
set of points common to real and p-adic variant of X2. The points of the number theoretic braid are
excellent candidates for points xn. The p-adic variant exists only if X2 is defined by rational functions
with coefficients which are possibly algebraic and thus make sense both in real and p-adic sense. These
points belong to the algebraic extension of rational numbers appearing in the representation of X2 as
an algebraic surface but one can consider quite generally the possibility that the points of the number
theoretic braid are rational or in a finite algebraic extension of rationals. What is important that if
one restricts the consideration to rational points this criterion makes sense even if X2 is not algebraic.
In the generic case one can expect that the number of these points is finite.

7.4 Configuration space geometry and hierarchy of inclusions of hyper-
finite factors of II1

The configuration space metric defined as anti-commutators of the configuration space gamma matrices
is extremely degenerate since it effectively corresponds to a quadratic form in N -dimensional space,
where Nm is the total number of the eigenmodes of DK . Since two Hamiltonians whose values and
corresponding Killing vector fields co-incide at the points of B are equivalent for given ray M±, it
is natural to pose a cutoff in the number of Hamiltonians used for the representation of reduced
configuration space in given region inside which induced Kähler form is non-vanishing. The natural
manner to pose this cutoff is by ordering the representations with respect to dimension and eigenvalue
of Casimir operator for the irreducible representations of SO(3) × SO(4) in case of M8 and for the
representations of SO(3)× SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the configuration space as Kähler
manifold with spinor structure with a truncation of the Clifford algebra to a finite dimensional Clifford
algebra. This is in spirit with the proposed interpretation of the inclusion sequence of hyper-finite
factors of type II1 and with the very notion of hyper-finiteness. A surprisingly concrete connection of
the configuration space geometry with generalized eigenvalue spectrum of DK(X3) and basic quantum
physics results. For instance, from the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (7.13)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of

DK(X3), the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(7.14)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space.

A good candidate for these complex coordinates are the complex coordinates of S2 × S, S =
CP2 or E4, for the points of B so that a close connection with the geometry of imbedding space is
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obtained. Once these coordinates have been specified G can be contracted with the Killing vector
fields of configuration space isometries defining the coordinates for the truncated configuration space.
By studying the behavior of eigenvalue spectrum under small deformations of X3

l by symplectic
transformations of δCD × S the components of G can be estimated.

8 Super-conformal symmetries at space-time and configura-
tion space level

The physical interpretation and detailed mathematical understanding of super-conformal symmetries
has developed rather slowly and has involved several side tracks. In the following I try to summarize the
basic picture with minimal amount of formulas with the understanding that the statement ”Noether
charge associated with geometrically realized Kac-Moody symmetry” is enough for the reader to write
down the needed formula explicitly.

8.1 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

8.1.1 Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

8.1.2 Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms indeed act in a
natural manner in δCH, the the space of 3-surfaces in δM4

+ × CP2. Configuration space is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend on the topology
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of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X3 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.

8.2 Isometries of configuration space geometry as symplectic transforma-
tions of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (8.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and

one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (8.2)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.
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4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (8.3)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (8.4)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.

5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (8.5)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

8.3 SUSY algebra defined by the anticommutation relations of fermionic
oscillator operators and WCW local Clifford algebra elements as chiral
super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana spinors
appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric standard model
(MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An undesirable conse-
quence is chiral anomaly in the case that the numbers of left and right handed spinors are not same.
For D = 11 and D = 10 these anomalies cancel which led to the breakthrough of string models and
later to M-theory. The probable reason for considering these dimensions is that standard model does
not predict right-handed neutrino (although neutrino mass suggests that right handed neutrino exists)
so that the numbers of left and right handed Weyl-spinors are not the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-defined sense
disappears from the spectrum as a zero mode so that the number of right and left handed chiralities
in M4 ×CP2 would not be same. For light-like 3-surfaces covariantly constant right-handed neutrino
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does not however solve the counterpart of Dirac equation for a non-vanishing four-momentum and
color quantum numbers of the physical state. Therefore it does not disappear from the spectrum
anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4 × CP2 makes them impossible. The conclusion
that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are indeed
possible and if the number of right and left handed Weyl spinors is same super-symmetry is possible.
In 8-D context right and left-handed fermions correspond to quarks and leptons and since color in
TGD framework corresponds to CP2 partial waves rather than spin like quantum number, also the
numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anticommutations of fermionic oscillator operators associated with the modes of the induced spinor
fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY with large N
is in question allowing spins higher than two and also large fermion numbers. Recall that N ≤ 32 is
implied by the absence of spins higher than two and the number of real spinor components is N = 32
also in TGD. The situation clearly differs from that encountered in super-string models and SUSYs
and the large value of N allows to expect very powerful constraints on dynamics irrespective of the fact
that SUSY is broken. Right handed neutrino modes define a sub-algebra for which the SUSY is only
slightly broken by the absence of weak interactions and one could also consider a theory containing a
large number of N = 2 super-multiplets corresponding to the addition of right-handed neutrinos and
antineutrinos at the wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could be
formulated in terms of modified gamma matrices using octonionic representation and assuming that
they span local quaternionic sub-algebra at each point of the space-time sheet. SUSY algebra has
standard interpretation with respect to spin and isospin indices only at the partonic 2-surfaces so that
the basic algebra should be formulated at these surfaces. Effective 2-dimensionality would require
that partonic 2-surfaces can be taken to be ends of any light-like 3-surface Y 3

l in the slicing of the
region surrounding a given wormhole throat.

8.3.1 Super-algebra associated with the modified gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor fields
are naturally formulated in terms of the modified gamma matrices. Super-conformal symmetry sug-
gests that the anti-commutation relations for the fermionic oscillator operators at light-like 3-surfaces
or at their ends are most naturally formulated as anti-commutation relations for SUSY algebra. The
resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (8.6)

Here pµ and Qµa are space-time projections of momentum and color charges in Cartan algebra. Their
action is purely algebraic. The anti-commutations are nothing but a generalization of the ordinary
equal-time anticommutation relations for fermionic oscillator operators to a manifestly covariant form.
The matrix Dm,n is expected to reduce to a diagonal form with a proper normalization of the oscillator
operators. The experience with extended SUSY algebra suggest that the anti-commutators could
contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-algebra.

1. If the super-algebra is defined at the 3-D ends of the intersection of X4 with the bound-
aries of CD, the modified gamma matrices appearing in the operator D appearing in the
anti-commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of super-
symmetry takes place and elegant description of massive states as effectively massless states
making also possible generalization of twistor is possible. One must however notice that also
massive representatives of SUSY exist.
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2. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [11] these options are equivalent for a large class of space-time
sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined by the
modified gamma matrices is degenerate, propagation takes place along 3-D light-like 3-surfaces. This
condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the standard
manner and the expressing a collection of local Clifford algebra element with varying values of fermion
numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition of a chiral super
field requires the introduction of super-covariant derivatives. Standard form for the anti-commutators
of super-covariant derivatives Dα make sense only if they do not affect the modified gamma matrices.
This is achieved if pk acts on the position of the tip of CD (rather than internal coordinates of the
space-time sheet). Qa in turn must act on CP2 coordinates of the tip.

8.3.2 Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically sensible
to super-pose local Clifford algebra elements with different fermion numbers. The extremely elegant
formulation of super-symmetric theories in terms of super-fields encourages to ask whether the local
Clifford algebra elements could allow expansion in terms of complex theta parameters assigned to
various fermionic oscillator operator in order to obtain formal superposition of elements with different
fermion numbers. One can also ask whether the notion of chiral super field might make sense.

The obvious question is whether it makes sense to assign super-fields with the modified gamma
matrices.

1. Modified gamma matrices are not covariantly constant but this is not a problem since the action
of momentum generators and color generators is purely algebraic space-time coordinates.

2. One can define the notion of chiral super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of cm
degrees of freedom, which are the most interesting as far as QFT limit is considered.

3. Kähler function of WCW as a function of complex coordinates could be extended to a chi-
ral super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients of
powers of theta would correspond to fermionic oscillator operators. Does this function define
the propagators of various states associated with light-like 3-surface? Configuration space com-
plex coordinates would correspond to the modes of induced spinor field so that super-symmetry
would be realized very concretely.

8.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

8.4.1 Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (8.7)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (8.8)
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8.4.2 Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (8.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (8.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (8.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (8.12)

8.4.3 A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (8.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (8.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (8.15)
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The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (8.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

8.4.4 Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (8.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are
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[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(8.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

8.4.5 Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the conserved
quantities having identification as configuration space Hamiltonians. Hamiltonians also correspond
to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed 2-form is satisfied
because X2-local conformal transformations of M4

±×CP2 are in question (X2-locality does not imply
any additional conditions).

8.4.6 The action of Kac-Moody algebra on spinors and fermionic representations of
Kac-Moody algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations on
spinors.

1. The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-Moody
symmetry and this can be done by a standard recipe. The first contribution to the charge comes
from the transformation of modified gamma matrices appearing in the modified Dirac action
associated with fermions. Second contribution comes from spinor rotation.

2. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak rota-
tion allowing to define the action of the Kac-Moody algebra JA on spinors.
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8.4.7 How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension which
can emerge from the freedom to add a constant term to Hamiltonians as in the case of super-symplectic
algebra. The expression of the Hamiltonians as closed forms could allow to understand how the central
extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions a
representations as a fermionic bilinear and the central extension of Kac-Moody algebra could emerge
in this construction just as it appears in Sugawara construction.

8.4.8 About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as causal
determinants, and thus contribute to the configuration space metric. In this case the symmetries
correspond to the isometries of the imbedding space localized with respect to the complex coordinate
of the 2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody type symmetry results.
Also the condition

√
g3 = 0 for the determinant of the induced metric seems to define a conformal

symmetry associated with the light like direction.
If is enough to localize only theH-isometries with respect toX3

l , the purely bosonic part of the Kac-
Moody algebra corresponds to the isometry group M4×SO(3, 1)×SU(3). The physical interpretation
of these symmetries is not so obvious as one might think. The point is that one can generalize the
formulas characterizing the action of infinitesimal isometries on spinor fields of finite-dimensional
Kähler manifold to the level of the configuration space. This gives rise to bosonic generators containing
also a sigma-matrix term bilinear in fermionic oscillator operators. This representation need not be
equivalent with the purely fermionic representations provided by induced Dirac action. Thus one has
two groups of local color charges and the challenge is to find a physical interpretation for them.

The following arguments support one possible identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor con-
nection. Hence one could argue that the U(2) generators of either SU(3) algebra might be
identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal gener-
ators would correspond to Higgs field. This interpretation would conform with the idea that
Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized by

central extension they would naturally correspond to the electro-weak gauge algebra and Higgs
bosons. This is also consistent with the fact that both leptons and quarks define fermionic Kac
Moody currents.

3. The fact that only quarks appear in the gamma matrices of the configuration space supports the
view that action of the generators of X3

l -local color transformations on configuration space spinor
fields represents local color transformations. If the action of X3

l -local SU(3) transformations
on configuration space spinor fields has trivial central extension term the identification as a
representation of local color symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment of 2-
dimensional boundary to a 3-surface characterizing the elementary particle. The precise identification
of this surface has remained open and one possibility is that the 2-surfaceX2 defining the light light-like
surface associated with an elementary particle horizon is in question. This assumption would conform
with the notion of elementary particle vacuum functionals defined in the zero modes characterizing
different conformal equivalences classes for X2.

8.4.9 The relationship of the Super-Kac Moody symmetry to the standard super-
conformal invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex H-
spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark like spinors
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acting as generators of complex dynamical super-symmetries. The super-symmetries generated by the
covariantly constant right handed neutrino appear with both M4 helicities: it however seems that
covariantly constant neutrino does not generate any global super-symmetry in the sense of particle-
sparticle mass degeneracy. Only righthanded neutrino spinor modes (apart from covariantly constant
mode) appear in the expressions of configuration space gamma matrices forming a subalgebra of the
full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generatorsG±(z) carrying U(1) charge. Now U(1) current would correspond to
right-handed neutrino number and super generators would involve contraction of covariantly constant
neutrino spinor with second quantized induced spinor field. The further facts that N = 2 algebra is
associated naturally with Kähler geometry, that the partition functions associated with N = 2 super-
conformal representations are modular invariant, and that N = 2 algebra defines so called chiral ring
defining a topological quantum field theory [10], lend a further support for the belief that N = 2
super-conformal algebra acts in super-symplectic degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (8.19)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information about
conformal algebras can be found from the appendix of [10].

For Ramond representation L0−c/24 or equivalently G0 must annihilate the massless states. This
occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and that

(k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance of a
fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+2). I have proposed that NS and Ramond
algebras could combine to a larger algebra containing also lepto-quark type generators but this not
necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark generators
acting effectively as half odd-integer Virasoro generators can be allowed. The algebra would contain
spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators would
act as symplectically extended isometry generators on configuration space Hamiltonians expressible
in terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody currents have conformal
weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended algebra
requires the inclusion of also second quantized induced spinor fields with h = 1/2 and their super-
partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ are labeled by
2× 4 spinor indices, super-partners would correspond to 2× (3 + 1) = 8 massless electro-weak gauge
boson states with polarization included. Their inclusion would make the theory highly predictive since
induced spinor and electro-weak fields are the fundamental fields in TGD.

8.5 Coset space structure for configuration space as a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
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configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (8.20)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (8.21)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.
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8.6 The relationship between super-symplectic and Super Kac-Moody al-
gebras, Equivalence Principle, and justification of p-adic thermody-
namics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) acting on light-like 3-surfaces has remained somewhat enigmatic due to
the lack of physical insights. This is not the only problem. The question to precisely what extent
Equivalence Principle (EP) remains true in TGD framework and what might be the precise mathe-
matical realization of EP is waiting for an answer. Also the justification of p-adic thermodynamics
for the scaling generator L0 of Virasoro algebra -in obvious conflict with the basic wisdom that this
generator should annihilate physical states- is lacking. It seems that these three problems could have
a common solution.

8.6.1 New vision about the relationship between SSV and SKMV

Consider now the new vision about the relationship between SSV and SKMV .

1. The isometries of H assignable with SKM are also symplectic transformations [5] (note that
I have used the attribute ”canonical” instead of ”symplectic” previously). Hence might con-
sider the possibility that SKM could be identified as a subalgebra of SS. If this makes sense,
a generalization of the coset construction obtained by replacing finite-dimensional Lie group
with infinite-dimensional symplectic group suggests itself. The differences of SSV and SKMV
elements would annihilate physical states and commute/anticommute with SKMV . Also the
generators On, n > 0, for both algebras would annihilate the physical states so that the differ-
ences of the elements would annihilate automatically physical states for n > 0.

2. The super-generator G0 contains the Dirac operator D of H. If the action of SSV and SKMV
Dirac operators on physical states are identical then cm of degrees of freedom disappear from
the differences G0(SCV )−G0(SKMV ) and L0(SCV )− L0(SKMV ). One could interpret the
identical action of the Dirac operators as the long sought-for precise realization of Equivalence
Principle (EP) in TGD framework. EP would state that the total inertial four-momentum and
color quantum numbers assignable to SS (imbedding space level) are equal to the gravitational
four-momentum and color quantum numbers assignable to SKM (space-time level). Note that
since super-symplectic transformations correspond to the isometries of the ”world of classical
worlds” the assignment of the attribute ”inertial” to them is natural.

8.6.2 Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already used
as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. In physical states the p-adic thermal expectation value of the SKM and SS conformal weights
would be non-vanishing and identical and mass squared could be identified equivalently either
as the expectation value of SKM or SS scaling generator L0. There would be no need to give
up Super Virasoro conditions for SCV − SKMV .

2. There is consistency with p-adic mass calculations for hadrons [20] since the non-perturbative SS
contributions and perturbative SKM contributions to the mass correspond to space-time sheets
labeled by different p-adic primes. The earlier statement that SS is responsible for the domi-
nating non-perturbative contributions to the hadron mass transforms to a statement reflecting
SS − SKM duality. The perturbative quark contributions to hadron masses can be calculated
most conveniently by using p-adic thermodynamics for SKM whereas non-perturbative contri-
butions to hadron masses can be calculated most conveniently by using p-adic thermodynamics
for SS. Also the proposal that the exotic analogs of baryons resulting when baryon looses its
valence quarks [17] remains intact in this framework.

3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. It seems that holonomic contributions
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that is electro-weak and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and spin degrees of of
freedom, would give 2+1=3 tensor factors corresponding to U(2)ew ×SU(2). SU(3) and SO(3)
(or SO(2) ⊂ SO(3) leaving the intersection of light-like ray with S2 invariant) would give 2
additional tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. Why mass squared corresponds to the thermal expectation value of the net conformal weight?
This option is forced among other things by Lorentz invariance but it is not possible to provide
a really satisfactory answer to this question yet. In the coset construction there is no reason to
require that the mass squared equals to the integer value conformal weight for SKM algebra.
This allows the possibility that mass squared has same value for states with different values
of SKM conformal weights appearing in the thermal state and equals to the average of the
conformal weight.

2. The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in p-
adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that the
assignment of ground state conformal weight to CP2 partial waves makes sense.

3. In the case of M4 degrees of freedom it is strictly speaking not possible to talk about momentum
eigen states since translations take parton out of δH+. This would suggests that 4-momentum
must be assigned with the tip of the light-cone containing the particle but this is not consistent
with zero energy ontology. Hence it seems that one must restrict the translations of X3

l to
time like translations in the direction of geometric future at δM4

+ × CP2. The decomposition
of the partonic 3-surface X3

l to regions X3
l,i carrying non-vanishing induced Kähler form and

the possibility to assign M2(x) ⊂M4 to the tangent space of X4(X3
l ) at points of X3

l suggests
that the points of number theoretic braid to which oscillator operators can be assigned can
carry four-momentum in the plane defined by M2(x). One could assume that the four-momenta
assigned with points in given region X3

i are collinear but even this restriction is not necessary.

4. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (8.22)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the QCD
based model of hadrons only longitudinal momenta and transverse momentum squared are used
as labels of parton states, which together with the presence of preferred plane M2 would suggest
that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (8.23)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

8.6.3 How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [15] . The only elegant
solution of the problems caused by this requirement seems to be p-adic: the conformal weights are
positive in the real sense but as p-adic numbers their dominating part is negative integer (in the real
sense), which can be compensated by the conformal weights of Super Virasoro generators.
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1. If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground state

conformal weight positive in the real sense. In complex case (instanton term) the most natural
formula is h = ±|λ|2.

2. The first option is based on the understanding of conformal excitations in terms of CP breaking
instanton term added to the modified Dirac operator. In this case the conformal weights are
identified as h = n − |λk|2 and the minus sign comes from the Euclidian signature of the
effective metric for the modified Dirac operator. Ground state conformal weight would be
non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce difficulties unless one
has h = |λi(1) − λi(2)|2, where i = 1, 2 refers to the two wormhole throats. In this case the
difference can vanish and its non-vanishing would be due to the symmetric breaking. This
scenario is assumed in p-adic mass calculations. Fermions are predicted to be always massive
since zero modes of D(X2) represent super gauge degrees of freedom.

3. In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit of
rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is integer.
This number is positive and large in the real sense. In p-adic sense the dominating part of
this number is −n and can be compensated by the net conformal weight n of Super Virasoro
generators acting on the ground state. xp2 represents the small Higgs contribution to the mass
squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ). By the basic
features of the canonical identification p > x ' p should hold true for gauge bosons for which
Higgs contribution dominates. For fermions x should be small since p-adic mass calculations are
consistent with the vanishing of Higgs contribution to the fermion mass. This would lead to the
earlier conclusion that xp2 and hence BK is large for bosons and small for fermions and that the
size of fermionic (bosonic) wormhole throat is large (small). This kind of picture is consistent
with the p-adic modular arithmetics and suggests by the cutoff for conformal weights implied
by the fact that both the number of fermionic oscillator operators and the number of points of
number theoretic braid are finite. This solution is however tricky and does not conform with
number theoretical universality.

8.7 Comparison of TGD and stringy views about super-conformal sym-
metries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

8.7.1 Basic differences between the realization of super conformal symmetries in TGD
and in super-string models

The realization super-symmetries in TGD framework differs from that in string models in several
fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matrices
carry either lepton or quark number. Majorana condition required by the hermiticity of super
generators which is crucial for super string models would be in conflict with the conservation of
baryon and lepton numbers and is avoided. This is made possible by the realization of bosonic
generators represented as Hamiltonians of symplectic transformations rather than vector fields
generating them. This kind of representation applies also in Kac-Moody sector since the local
transversal isometries localized in X3

l and respecting light-likeness condition can be regarded
as X2 local symplectic transformations, whose Hamiltonians generate also isometries. The
fermionic representations of super-symplectic and super Kac-Moody generators can be identified
as Noether charges in standard manner.

2. Super-symmetry generators can be identified as configuration space gamma matrices carrying
quark and lepton numbers and the notion of super-space is not needed at all. Therefore no
super-variant of geometry is needed. The distinction between Ramond and N-S representations
important for N = 1 super-conformal symmetry and allowing only ground state weight 0 an
1/2 disappears. Indeed, for N = 2 super-conformal symmetry it is already possible to generate
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spectral flow transforming these Ramond and N-S representations to each other (Gn is not
Hermitian anymore). This means that the interpretation of λ2

i (λi is generalized eigenvalue of
DK(X2)) as ground state conformal weight does not lead to difficulties.

3. Kac-Moody and symplectic algebras generate larger algebra obtained by making symplectic
algebra X2 local. This realization of super symmetries is what distinguishes between TGD and
super string models and leads to a totally different physical interpretation of super-conformal
symmetries. What makes spinor field mode a generator of gauge super-symmetry is that is c-
number and not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom. One must be here somewhat cautious since bound
state in the Coulomb potential associated with electric part of induced electro-weak gauge field
might give rise to an infinite number of bound states which eigenvalues converging to a fixed
eigenvalue (as in the case of hydrogen atom).

4. The finite number of spinor modes means that the representations of super-conformal algebras
reduces to finite-dimensional ones in TGD framework and the notion of number theoretic braid
indeed implies this. The physical interpretation is in terms of finite measurement resolution.

8.7.2 Basic super-conformal symmetries

The identification of explicit representations of super conformal algebras was for a long time plagued
by the lack of appropriate formalism. The modified Dirac operator DK associated with Kähler action
resolves this problem if one accepts the implications of number theoretic compactification supported by
what is known about preferred extremals of Kähler action and one can identify the charges associated
with symplectic and Kac-Moody algebra as Noether charges. Fermionic generators can in turn be
identified from the condition that they anticommute toX2 local Hamiltonians of corresponding bosonic
transformations. In case of Super Virasoro algebra Sugaware construction allows to construct super
generators G.

1. Covariantly constant right handed neutrino is the fundamental generator of dynamical super
conformal symmetries and appears in both leptonic and quark-like realizations of gamma matri-
ces. Γ matrices have also Super Kac-Moody counterparts and reduce in special case to symplectic
ones. Also super currents whose anti-commutators give products of corresponding Hamiltoni-
ans can be defined so that both ordinary product and Poisson bracket give rise to quark and
lepton like realizations of super-symmetries. Besides this there are also electric and magnetic
representations of the gamma matrices.

2. The zero modes of DK(X2) which do not depend on the light-like radial coordinate of X3
l de-

fine super conformal symmetries for which any c-number spinor field generates super conformal
symmetry. These symmetries are pure gauge symmetries but also them can be parameterized
by Hamiltonians and by functions depending only on the coordinates of the transverse section
X2 so that one obtains also now both function algebra and symplectic algebra localized with
respect to X2. Similar picture applies in both super-symplectic and super Kac-Moody sector.
In particular, one can deduce canonical expressions for the super currents associated with these
super symmetries. Since all charge states are possible for the generators of these super symme-
tries, these super symmetries naturally correspond to those assignable to electro-weak degrees
of freedom.

3. The notion of X2 local super-symmetry makes sense if the choice of coordinates x for X2

is specified by the inherent properties of X2 so that same coordinates x apply for all surfaces
obtained as deformations of X2. The regions, where induced Kähler form is non-vanishing define
good candidates for coordinate patches. The Hamilton-Jacobi coordinates associated with the
decomposition of M4 are a natural choice. Also geodesic coordinates can be considered. The
redundancy related to rotations of coordinate axis around origin can be reduced by choosing
second axis so that it connects the origin to nearest point of the number theoretic braid.

4. The diffeomorphisms of light-like coordinate of δM4
± and X3

l playing the role of conformal
transformations. One can construct fermionic representations of as Noether charges associated
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with modified Dirac action. The problem is however that that super-generators cannot be derived
in this manner so that these transformations cannot be regarded as symplectic transformations.
The manner to circumvent the difficulty is to construct fermionic super charges ΓA as gamma
matrices for both super symplectic and super Kac-Moody algebras in terms of generators jAkΓk
and corresponding Kac-Moody algebra elements TA as fermionic super charges. From these
operators super generators G can be constructed by the standard Sugawara construction allowing
to interpret operators G = TAΓA as Dirac operators at the level of configuration space. By
coset construction the actions of super-symplectic and super Kac-Moody Dirac operators are
identical. Internal consistency requires that the Virasoro generators obtained as anticommutator
L = {G,G†} are equal to the Virasoro generators derived as fermionic Noether charges.

8.7.3 Finite measurement resolution and cutoff in the spectrum of conformal weights

The basic properties of Kähler action imply that the number generalized eigenvalues λi of DK(X2)
is finite. The interpretation is that the notion of finite measurement resolution is coded by Kähler
action to space-time dynamics. This has also implications for the representations of super-conformal
algebras.

1. The fermionic representations of various super-algebras involve only finite number of oscillator
operators. Hence some kind of cutoff in the number of states reflecting the finiteness of the
measurement resolution is unavoidable. A cutoff reduce integers as labels of the generators of
super-conformal algebras to a finite number of integers. Finite field G(p, 1) for some prime p
would be a natural candidate. Since p-adic integers modulo p are in question the cutoff could
relate closely to effective p-adicity and p-adic length scale-hypothesis.

2. The interpretation of the eigenvalues of the modified Dirac operator as ground state confor-
mal weights raises the question how to represent states with conformal weights n + λ2

i , n > 0.
The notion of number theoretic braid allows to circumvent the difficulty. Since canonical anti-
commutation relations fail, one must replace the integral representations of super-conformal
generators with discrete sums over the points of number theoretic braid, the resulting represen-
tations of super-conformal algebras must reduce to representation of finite-dimensional algebras.
The cutoff on conformal weight must result from the fact that the higher Virasoro generators are
expressible in terms of lower ones. The cutoff is not a problem since n < 3 cutoff for conformal
weights gives an excellent accuracy in p-adic mass calculations. A not-very-educated guess but
the only one that one can imagine is that for p ' 2k, nmax = k defines the cutoff on allowed
conformal weights.

8.7.4 What are the counter parts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the com-
plex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two coun-
terparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [5] . Thus the real variable J replaces complex coordinate and effective 1-
dimensionality holds true also now but in different sense than for conformal field theories.

2. The slicing of X2 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number theo-
retical compactification implies string-parton duality and involves the super conformal fermionic
gauge symmetries associated with the coordinates u and w in the dual dimensional reductions
to stringy and partonic dynamics. These coordinates define the natural analogs of stringy coor-
dinate.

3. An further identification for TGD parts of conformal fields is inspired by M8−H duality. Con-
formal fields would be fields in configuration space. The counterpart of z coordinate could be
the hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of config-
uration space Clifford algebra elements. m would characterize the position of the tip of CD
and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and
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thus inclusions of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is
field in M4 center of mass degrees of freedom- would be needed to obtained associativity. The
arguments m at various level might correspond to arguments of N-point function in quantum
field theory.

8.7.5 Generalized coset representation

X2 local super-symplectic algebra as super Kac-Moody algebra as sub-algebra. Since X2 locality
corresponds to a full 2-D gauge invariance, one can conclude that SKM is in well defined sense sub-
algebra of super-symplectic algebra so that generalized coset construction makes sense and generalizes
Equivalence Principle in the sense that not only four-momenta but all analogous quantum numbers
associated with SKM and SS algebras are identical.

1. In this framework the ground state conformal weights associated with both super-symplectic
and super Kac-Moody algebras can be identified as squares of the eigenvalues λi of DK(X2).
This identification together with p-adic mass thermodynamics predicts that λ2

i gives to mass
squared a contribution analogous to the square of Higgs vacuum expectation. This identification
would resolve the long-standing problem of identifying the values of these ground state conformal
weights for super-conformal algebras and give a direct connection with Higgs mechanism.

2. The identification of SKM as a sub-algebra of super-symplectic algebra becomes more convincing
if the light-like coordinate r allows lifting to a light-like coordinate of H. This is achieved if r
is identified as coordinate associated with a light-like curve whose tangent at point x ∈ X3

l is
light-like vector in M2(x) ⊂ T (X4(X3). With this interpretation of SKM algebra as sub-algebra
of super-symplectic algebra becomes natural.

3. The existence of a lifting of SS and SKM algebras to entire H would solve the problems. The
lifting problem is obviously non-trivial only inM4 degrees of freedom. Suppose that the existence
of an integrable distribution of planes M2(x) and their orthogonal complements E2(x) belonging
to the tangent space of M4 projection PM4(X4(X3)) characterizes the preferred extremals with
Minkowskian signature of induced metric. In this case the lifting of the super-symplectic and
super Kac-Moody algebras to entire H is possible. The local degrees of freedom contributing
to the configuration space metric would belong to the integrable distribution of orthogonal
complements E2(x) of M2(x) having physical interpretation as planes of physical polarizations.
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