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Abstract

There are two basic approaches to quantum TGD. The first approach, which is discussed in
this article, is a generalization of Einstein’s geometrization program of physics to an infinite-
dimensional context. Second approach is based on the identification of physics as a generalized
number theory. The first approach relies on the vision of quantum physics as infinite-dimensional
Kähler geometry for the ”world of classical worlds” (WCW) identified as the space of 3-surfaces
in in certain 8-dimensional space. There are three separate approaches to the challenge of con-
structing WCW Kähler geometry and spinor structure. The first approach relies on direct guess
of Kähler function. Second approach relies on the construction of Kähler form and metric uti-
lizing the huge symmetries of the geometry needed to guarantee the mathematical existence of
Riemann connection. The third approach relies on the construction of spinor structure based on
the hypothesis that complexified WCW gamma matrices are representable as linear combinations
of fermionic oscillator operator for second quantized free spinor fields at space-time surface and
on the geometrization of super-conformal symmetries in terms of WCW spinor structure.

In this article the proposal for Kähler function based on the requirement of 4-dimensional Gen-
eral Coordinate Invariance implying that its definition must assign to a given 3-surface a unique
space-time surface. Quantum classical correspondence requires that this surface is a preferred ex-
tremal of some some general coordinate invariant action, and so called Kähler action is a unique
candidate in this respect. The preferred extremal has interpretation as an analog of Bohr orbit
so that classical physics becomes and exact part of WCW geometry and therefore also quantum
physics.

The basic challenge is the explicit calculation of WCW Kähler function K. Two assumptions
lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of
the causal diamond and with the light-like wormhole throats at which the signature of the induced
metric changes. The first assumption is the weak form of electric magnetic duality generalizing the
standard electric-magnetic duality. Second assumption is that the Kähler current for the preferred
extremals is proportional to instanton current so that the Coulomb interaction term in the Kähler
action vanishes and it reduces to Chern-Simons term. This requires the condition jK ∧ djK = 0
as integrability condition implying that the flow parameter of the flow lines of jK defines a global
space-time coordinate. This inspires a generalization of the earlier solution ansatz for the field
equations to a condition that various conserved currents are Beltrami fields proportional to the
instanton current. This would realize the vision about reduction to almost topological QFT.

Second challenge is the understanding of the space-time correlates of quantum criticality. The
realization that the hierarchy of Planck constant realized in terms of coverings of the imbedding
space follows from basic quantum TGD leads to a further understanding. The extreme non-
linearity of canonical momentum densities as functions of time derivatives of the imbedding space
coordinates implies that the correspondence between these two variables is not 1-1 so that it is
natural to introduce coverings of CD×CP2. This leads also to a precise geometric characterization
of the criticality of the preferred extremals.

Keywords: Kähler geometry, infinite-dimensional geometry, quantum criticality, electric-magnetic
duality, Chern-Simons action, topological QFT.

1 Introduction

The motivation or the construction of configuration space geometry is the postulate that physics
reduces to the geometry of classical spinor fields in the the ”world of the classical worlds” (WCW)
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identified as the infinite-dimensional configuration space of 3-surfaces of some subspace of M4×CP2.
The first candidates were M4

+ × CP2 and M4 × CP2, where M4 and M4
+ denote Minkowski space

and its light cone respectively. The recent identification of WCW is as the union of sub-WCWs
consisting of light-like 3-surface representing generalized Feynman diagrams in CD×CP2, where CD
is intersection of future and past directed light-cones of M4. The details of this identification will be
discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that configuration space possesses [28]. One of the basic features of the Kähler geometry is that it
is solely determined by the so called Kähler function, which defines both the Kähler form J and the
components of the Kähler metric g in complex coordinates via the formulas [29]:

J = i∂k∂l̄Kdz
k ∧ dz̄l ,

ds2 = 2∂k∂l̄Kdz
kdz̄l . (1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the configuration space

JmrJ
rn = −g n

m . (1.2)

As a consequence Kähler form defines also symplectic structure in configuration space [30].

1.1 Configuration space Kähler metric from Kähler function

The task of finding Kähler geometry for the configuration space reduces to that of finding the Kähler
function. The main constraints on the Kähler function result from the requirement of General Co-
ordinate Invariance (GCI) -or more technically Diff4 symmetry and Diff degeneracy. GCI requires
that the definition of the Kähler function assigns to a given 3-surface X3 a unique space-time surface
X4(X3), the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess inspired by quantum classical correspondence is that Kähler function is defined by what might
be called Kähler action, which is essentially Maxwell action with Maxwell field expressible in terms
of CP2 coordinates and that the space-time surface corresponds to a preferred extremal of Kähler
action.

One can end up with the identification of the preferred extremal via several routes. Kähler action
contains Kähler coupling strength as a temperature like parameter and this leads to the idea of
quantum criticality fixing this parameter. One could go even even further, and require that space-
time surfaces are critical in the sense that there exist an infinite number of vanishing second variations
of Kähler action defining conserved Noether charges. The approach based on the modified Dirac action
indeed leads naturally to this picture [10, A3]. Kähler coupling strength should be however visible in
the solutions of field equations somehow before one can say that these two criticalities have something
to do with each other. Since Kähler coupling strength does not appear in the field equations it can
make its way to thge field equations only via boundary conditions. This is achieved if one accepts the
weak form of self-duality [10, A4] generalizing the standard electric-magnetic duality [57]. The weak
form of electric-magnetic duality roughly states that for the partonic 2-surfaces the induced Kähler
electric field is proportional to the Kähler magnetic field strength. The proportionality constant turns
out to be essentially the Kähler coupling strength. The simplest hypothesis is that Kähler coupling
strength has single universal value for given value of Planck constant and the weak form of self-duality
fixes it.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy and in-
variance would be achieved by restricting the consideration to 3-surfaces Y 3 at the boundary ofM4

+ and
by defining Kähler function for 3-surfaces X3 at X4(Y 3) and diffeo-related to Y 3 as K(X3) = K(Y 3).
This reduction might be called quantum gravitational holography. The classical non-determinism of
the Kähler action introduces complications which might be overcome in zero energy ontology (ZEO).
ZEO and strong from of GCI lead to the effective replacement of X3 with partonic 2-surfaces at the
ends of CD plus the 4-D tangent space distribution associated with them as basic geometric objects
so that one can speak about effective 2-dimensionality and strong form of gravitational holography.
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1.2 Configuration space metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based on
symmetries. The work of Dan Freed [46] has demonstrated that the Kähler geometry of loop spaces is
unique from the existence of Riemann connection and fixed completely by the Kac Moody symmetries
of the space. In 3-dimensional context one has even better reasons to expect uniqueness. The guess
is that configuration space is a union symmetric spaces [26] labeled by zero modes not appearing in
the line element as differentials and having interpretations as classical degrees providing a rigorous
formulation of quantum measurement theory. The generalized conformal invariance of metrically 2-
dimensional light like 3-surfaces acting as causal determinants is the corner stone of the construction.
The construction works only for 4-dimensional space-time and imbedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2 [29].

1.3 Topics of the article

In the sequel I will first consider the basic properties of the configuration space, propose an identifi-
cation of the Kähler function as Kähler action for a preferred extremal of Kähler action and discuss
various physical and mathematical motivations behind the proposed definition. The key feature of
the Kähler action is the failure of classical determinism in its standard form, and various implications
of the failure are discussed. In the last section representing the progress that has taken place during
last months (and induced by the birds’s eye of view forced by the writing of this article series) the
weak form of electric-magnetic duality and the argument reducing the hierarchy of Planck constants
to the non-linearity of Kähler action are discussed. The basic results besides the understanding of
the hierarchy of Planck constants, are a concrete geometric understanding of the criticality of the
preferred extremals and the reduction of quantum TGD to almost topological TGD via the reduction
of Kähler action to Chern-Simons terms. This also leads to a generalization of the earlier solution
ansatz for field equations [16].

2 Configuration space

The view about configuration space or world of classical worlds (WCW) has developed considerably
during the last two decades. Here only the recent view is summarized in order to not load reader with
unessential details.

2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and configuration space or ”world of
classical worlds” (WCW), are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-
surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a
unique space-time surface X4(X3) allowing in this manner to realize GCI. During years these notions
have however evolved considerably.

2.1.1 The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [17,
18, 19].

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields [39] (including their algebraic extensions) representing the pages of the book. As matter
fact, this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [11, 9] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
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CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [14] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [15] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
products of singular coverings and possibly also factor spaces of CD and CP2 to form a book
like structure. There are good physical and mathematical arguments suggesting that only the
singular coverings should be allowed [19, A7]. The particles at different pages of this book
behave like dark matter relative to each other. This generalization also brings in the geometric
correlate for the selection of quantization axes in the sense that the geometry of the sectors of
the generalized imbedding space with non-standard value of Planck constant involves symmetry
breaking reducing the isometries to Cartan sub-algebra. Roughly speaking, each CD and CP2

is replaced with a union of CDs and CP2s corresponding to different choices of quantization
axes so that no breaking of Poincare and color symmetries occurs at the level of entire WCW.

2.1.2 The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the recent view
is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiva-
lence implied by GCI. There was a problem related to the realization of GCI since it was not at
all obvious why the preferred extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should
satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identification
resolves the above mentioned problem) and understanding the conformal symmetries of the
theory (for super-conformal theories see [42]). Light-like 3-surfaces can be regarded as orbits of
partonic 2-surfaces. Therefore it seems that one must choose between light-like and space-like
3-surfaces or assume generalized GCI requiring that equivalently either space-like 3-surfaces or
light-like 3-surfaces at the ends of CDs can be identified as the fundamental geometric objects.
General GCI requires that the basic objects correspond to the partonic 2-surfaces identified as
intersections of these 3-surfaces plus common 4-D tangent space distribution. At the level of
WCW metric this means that the components of the Kähler form and metric can be expressed
in terms of data assignable to 2-D partonic surfaces. Since the information about normal space
of the 2-surface is needed one has only effective 2-dimensionality. Weak form of self-duality
[7, A2] however implies that the normal data (flux Hamiltonians associated with Kähler electric
field) reduces to magnetic flux Hamiltonians. This is essential for conformal symmetries and
also simplifies the construction enormously.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to
generalize the notion of imbedding space and also to the fact that for non-standard values of
Planck constant there is symmetry breaking due to preferred plane M2 preferred homologically
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trivial geodesic sphere of CP2 having interpretation as geometric correlate for the selection of
quantization axis. For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces correspond
to preferred extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits. Kähler function
K(X3) defining the Kähler geometry of the world of classical worlds would correspond to the Kähler
action for the preferred extremal. The precise identification of the preferred extremals actually has
however remained open.

The study of the modified Dirac equation led to the realization that classical field equations for
Kähler action can be seen as consistency conditions for the modified Dirac action and led to the
identification of preferred extremals in terms of criticality. This identification follows naturally also
from quantum criticality.

1. The conjecture was that generalized eigen modes of the modified Dirac operator DC−S associated
with Chern-Simons action [51] code for the information about preferred extremal of Kähler action
and that vacuum functional identified as Dirac determinant defined as product of generalized
eigenvalues equals to exponent of Kähler action for a preferred extremal [9, A3].

2. The next step of progress was the realization that the requirement that the conservation of the
Noether currents associated with the modified Dirac equation requires that the second variation
of the Kähler action vanishes. In strongest form this condition would be satisfied for all variations
and in weak sense only for those defining dynamical symmetries. The interpretation is as a space-
time correlate for quantum criticality and the vacuum degeneracy of Kähler action makes the
criticality plausible. The weak form of electric-magnetic duality gives a precise formulation
for how Kähler coupling strength is visible in the properties of the preferred extremals. A
generalization of the ideas of the catastrophe theory to infinite-dimensional context results [8].
These conditions make sense also in p-adic context and have a number theoretical universal
form.

The notion of number theoretical compactication led to important progress in the understanding
of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂M4 having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M2 degrees of freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature ofM8 (for classical numbers
fields see [36, 37, 38]). The condition M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space
at X3

l , and one has good hopes that the boundary value problem is well-defined and could
fix X4(X3) at least partially as a preferred extremal of Kähler action. This picture is rather
convincing since the choice M2(x) ⊂M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to X3
l follows under

certain conditions on the induced metric of X4(X3
l ). This decomposition exists for known

extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.
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4. The weakest form of number theoretic compactification [18, A6] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

If one takes M−H duality seriously, one must conclude that one can choose any partonic 2-surface
in the slicing of X4 as a representative. This means gauge invariance reflect in the definition of Kähler
function as U(1) gauge transformation K → K + f + f having no effect on Kähler metric and Kähler
form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4

±×CP2. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces
X2 ⊂ δM4

+ × CP2. The generalization to the actual physical situation requires the replacement of
X2 ⊂ δM4

+ × CP2 with unions of partonic 2-surfaces located at light-like boundaries of CDs and
sub-CDs.

2.1.3 The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the basis question is ”M4
+ or M4?” and that this question

had been settled in favor of M4
+ by the fact that M4

+ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to δM4

+ × CP2 were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac-Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. It must be however emphasized that
Kähler function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is
topologically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have
parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending
on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that
geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck constants
are not relevant for the basic construction, it reduces to a high degree to a study of a simple special
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case corresponding to a line of generalized Feynman diagram. One can also deduce the free part of
the metric by restricting the consideration to partonic 2-surfaces at single end of generalized Feynman
diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4

± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic
group of δM4

±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space as-
sociated with given CD in terms of the generalization of coset construction [45] for super-
symplectic and super Kac-Moody type algebras (symmetries respecting light-likeness of light-
like 3-surfaces). Recall that super Kac-Moody algebras [43] and super-Virasoro algebras [42] are
central also for string models. Configuration space in quantum fluctuating degrees of freedom
for given values of zero modes can be regarded as being obtained by dividing symplectic group
with Kac-Moody group. Formally, the local coset space S2 × CP2 is in question: this was one
of the first ideas about configuration space which I gave up as too naive!

4. Generalized coset construction [45] and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level: the identical actions of Super Vira-
soro generators for super-symplectic and super Kac-Moody algebras implies that inertial and
gravitational four-momenta are identical.

2.2 Constraints on the configuration space geometry

The constraints on the WCW result both from the infinite dimension of the configuration space and
from physically motivated symmetry requirements. There are three basic physical requirements on the
configuration space geometry: namely four-dimensional GCI in strong form, Kähler property and the
decomposition of configuration space into a union ∪iG/Hi of symmetric spaces G/Hi, each coset space
allowing G-invariant metric such that G is subgroup of some ’universal group’ having natural action
on 3-surfaces. Together with the infinite dimensionality of the configuration space these requirements
pose extremely strong constraints on the configuration space geometry. In the following we shall
consider these requirements in more detail.

2.2.1 Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimination
of the time like and longitudinal vibrational degrees of freedom of string. Also in the present case the
elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity and Diff4

invariance provides an obvious manner to do the job.
In the standard path l integral formulation the realization of Diff4 invariance is an easy task at the

formal level. The problem is however that path integral over four-surfaces is plagued by divergences
and doesn’t make sense. In the present case the configuration space consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one should
somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4 is it must
leave the configuration space metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of the configuration space so that 3-surface and its Diff4 image have zero distance. The
conclusion is that configuration space metric should be both Diff4 invariant and Diff4 degenerate.
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The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the configuration space metric somehow
associates a unique space time surface to a given 3-surface for Diff4 to act on. The obvious physical
interpretation of this space time surface is as ”classical space time” so that ”Classical Physics” would
be contained in configuration space geometry. In fact, this space-time surface is analogous to Bohr
orbit so that semiclassical quantization rules become an exact part of the quantum theory. It is this
requirement, which has turned out to be decisive concerning the understanding of the WCW geometry.

2.2.2 Decomposition of the configuration space into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan sug-
gests that configuration space should possess decomposition into a union of coset spaces CH = ∪iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional isom-
etry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean that
3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is exponent
of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond to maxima of
Kähler function for a given orbit, are in a preferred position physically. For instance, one can imagine
of calculating functional integral around this maximum perturbatively. Symmetric space property [26]
actually allows also much more powerful non-perturbative approach based on harmonic analysis [27]
in symmetric spaces [10]. The sum of over i means actually integration over the zero modes of the
metric (zero modes correspond to coordinates not appearing as coordinate differentials in the metric
tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. De-
noting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries and
that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2

should be all what is needed to construct configuration space geometry. The group G can be identified
as some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, configuration space must decompose
into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance,
the elements of the Lie-algebra of G invariant under configuration space complexification correspond
to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.

2.2.3 Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification and
that there exists a covariantly constant two-form Jkl, which can be regarded as a representation of
the imaginary unit in the tangent space of the configuration space:

J r
k Jrl = −Gkl . (2.1)

There are several physical and mathematical reasons suggesting that configuration space metric should
possess Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is basic
mathematical operation of quantum theory.
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2. Kähler property turns out to be a necessary prerequisite for defining divergence free configuration
space integration. We will leave the demonstration of this fact later although the argument as
such is completely general.

3. Kähler property very probably implies an infinite-dimensional isometry group. The study of the
loop groups Map(S1, G) [46] shows that loop group allows only single Kähler metric with well
defined Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defining
formula for the connection is given by the expression

2(∇XY,Z) = X(Y,Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (2.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely provided
the tangent space of Map is complete with respect to Riemann metric. In the finite-dimensional
case completeness means that the inverse of the covariant metric tensor exists so that one can
solve the components of connection from the conditions stating the covariant constancy of the
metric. In the case of the loop spaces with Kähler metric this is however not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector fields
defined by the Lie-algebra of local G then the first three terms drop away since the scalar
products of left invariant vector fields are constants. The expression for the covariant derivative
is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (2.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry group
of the configuration space to be Map(X3,M4×SU(3))! Any symmetry group, whose Lie algebra
is complete with respect to the configuration space metric ( in the sense that any tangent space
vector is expressible as superposition of isometry generators modulo a zero norm tangent vector)
is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of the
metric turns out to be even larger than in 1-dimensional case due to the four-dimensional Diff
degeneracy. So we expect that the metric ought to possess some infinite-dimensional isometry
group and that the above formula generalizes also to the 3-dimensional case and to the case of
local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance would imply
the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underes-
timated. For example, one natural looking manner to construct physical theory would be based
on the idea that configuration space geometry is dynamical and this approach is followed in the
attempts to construct string theories [56]. Various physical considerations (in particular the need
to obtain oscillator operator algebra) seem to imply that configuration space geometry is neces-
sarily Kähler. The above result however states that configuration space Kähler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the configuration
space metric must somehow associate a unique classical space time and ”classical physics” to a
given 3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that con-
figuration space is not only symmetric space but also (contact) Kähler manifold inheriting its
(degenerate) Kähler structure from the imbedding space suggests that spaces, which are products
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of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the only
possible candidates for H. The reason for the unique position of the four-dimensional Minkowski
space turns out to be that the boundary of the light cone of D-dimensional Minkowski space
is metrically a sphere SD−2 despite its topological dimension D − 1: for D = 4 one obtains
two-sphere allowing Kähler structure and infinite parameter group of conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model in
terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not necessarily
Map!) correspond to the ordinary representations of the corresponding centrally extended
group [44]. The representations of Kac-Moody group indeed play central role in string
models [53, 54] and configuration space approach would explain their occurrence, not as a
result of some quantization procedure, but as a consequence of symmetry of the underlying
geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the configuration
space.

(c) The ”fermionic” fields ( Ramond fields, [53, 54]) should correspond to gamma matrices
of the configuration space. Fermionic oscillator operators would correspond simply to
contractions of isometry generators jkA with complexified gamma matrices of configuration
space

Γ±
A = jkAΓ±

k

Γ±
k = (Γk ± JklΓl)/

√
2 (2.4)

(Jkl is the Kähler form of the configuration space) and would create various spin excita-
tions of the configuration space spinor field. Γ±

k are the complexified gamma matrices,
complexification made possible by the Kähler structure of the configuration space.

This suggests that some generalization of the so called Super Kac Moody algebra of string models
[53, 54] should be regarded as a spectrum generating algebra for the solutions of field equations in
configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy counter
argument against the whole idea. Kähler structure necessitates complex structure in the tangent space
of the configuration space. In CP2 degrees of freedom no obvious problems of principle are expected:
configuration space should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only two
Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field theories:
only two of the four possible polarizations of gauge boson correspond to physical degrees of freedom:
mathematically the wrong polarizations correspond to zero norm states and transverse states span a
complex Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case
of D-dimensional Minkowski space only D−2 transversal degrees of freedom are physical. The solution
to the problem seems therefore obvious: configuration space metric must be degenerate so that each
vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution to
this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each
3-surface a unique classical space time: classical physics is described by the geometry of the
configuration space and d the geometry of the configuration space is determined uniquely by the
requirement of mathematical consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to four
and is due to the effective 3-dimensionality of light-cone boundary.
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3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry group
G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is played by the
fact that the boundary of the four-dimensional light cone, which, despite being topologically
3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore allows infinite-
parameter groups of isometries as well as conformal and symplectic symmetries and also Kähler
structure unlike the higher-dimensional light cone boundaries. Therefore configuration space
metric is Kähler only in the case of four-dimensional Minkowski space and allows symplectic
U(1) central extension without conflict with the no-go theorems about higher dimensional central
extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH = δM4

+×
CP2. The corresponding Lie algebra can be regarded as a loop algebra associated with the
symplectic group of S2 × CP2, where S2 is rM = constant sphere of light cone boundary.
Thus the finite-dimensional group G defining loop group in case of string models extends to
an infinite-dimensional group in TGD context. This group has a monstrous size. The radial
Virasoro localized with respect to S2×CP2 defines naturally complexification for both G and H.
The general form of the Kähler metric deduced on basis of this symmetry has same qualitative
properties as that deduced from Kähler function identified as preferred extremal of Kähler action.
Also the zero modes, among them isometry invariants, can be identified.

4. The construction of the configuration space spinor structure is based on the identification of
the configuration space gamma matrices as linear superpositions of the oscillator operators
associated with the second quantized induced spinor fields. The extension of the symplectic
invariance to super symplectic invariance fixes the anti-commutation relations of the induced
spinor fields, and configuration space gamma matrices correspond directly to the super genera-
tors. Physics as number theory vision suggests strongly that configuration space geometry exists
for 8-dimensional imbedding space only and that the choice M4

+×CP2 for the imbedding space
is the only possible one.

3 Identification of the Kähler function

There are three approaches to the construction of the WCW geometry: a direct physics based guess
of the Kähler function, a group theoretic approach based on the hypothesis that CH can be regarded
as a union of symmetric spaces, and the approach based on the construction of WCW spinor structure
first by second quantization of induced spinor fields. Here the first approach is discussed.

3.1 Definition of Kähler function

3.1.1 Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (3.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the gauge
symmetry

K → K + f + f . (3.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.
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3.1.2 Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its relationship
to the gauge fields as they are defined in gauge theories. Kähler form J is related to the corresponding
Maxwell field F via the formula

J = xF , x =
gK
~

. (3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierarchy of Planck constants [15].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
αK = g2

K/4π~ together the large Planck constant means weaker interactions and convergence of the
functional integral defined by the exponent of Kähler function and one can argue that the convergence
of the functional integral is what forces the hierarchy of Planck constants. This is in accordance with
the vision that Mother Nature likes theoreticians and takes care that the perturbation theory works
by making a phase transition increasing the value of the Planck constant in the situation when
perturbation theory fails. This leads to a replacement of the M4 (or more precisely, causal diamond
CD) and CP2 factors of the imbedding space (CD×CP2) with its r = ~/~0-fold singular covering (one
can consider also singular factor spaces). If the components of the space-time surfaces at the sheets
of the covering are identical, one can interpret r-fold value of Kähler action as a sum of r identical
contributions from the sheets of the covering with ordinary value of Planck constant and forget the
presence of the covering. Physical states are however different even in the case that one assumes that
sheets carry identical quantum states and anyonic phase could correspond to this kind of phase [22].

3.1.3 Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional
to

∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well defined

for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time
surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kähler action
SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is defined
in such a manner that the action density is negative for the Euclidian signature of the induced metric
and such that for a Minkowskian signature of the induced metric Kähler electric field gives a negative
contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (3.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [18, A6] the absolute value of the action in each region where action
density has a definite sign, the value of αK can depend on space-time sheet.

3.1.4 Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+ × CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the light-
cone boundary δM4

+ ×CP2. Define the value K(X3) of Kähler function K as the value of the Kähler
action for some preferred extremal in the set of four-surfaces containing X3 as a sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (3.6)
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The most plausible identification of preferred extremals is in terms of quantum criticality in the sense
that the preferred extremals allow an infinite number of deformations for which the second variation of
Kähler action vanishes. Combined with the weak form of electric-magnetic duality forcing appearance
of Kähler coupling strength in the boundary conditions at partonic 2-surfaces this condition might be
enough to fix preferred extremals completely.

3.2 What are the values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the Theory
of Everything should be unique it would be highly desirable to find arguments fixing the normalization
or equivalently the possible values of the Kähler coupling strength αK . Also a discrete spectrum of
values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that Abelian
extension of the isometry group results by coupling spinors of the configuration space to a multiple
of Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler form
is co-homologically non-trivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition fixing
the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) appearing
in the definition of the partition function of a statistical system and S-matrix elements and other
interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore analogous

to the thermal averages of various observables. αK is completely analogous to temperature. The
critical points of a statistical system correspond to critical temperatures Tc for which the partition
function is non-analytic function of T −Tc and according RGE hypothesis critical systems correspond
to fixed points of renormalization group evolution. Therefore, a mathematically more precise manner
to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary S-matrix elements)
become non-analytic at 1/αK − 1/αcK .

This analogy suggests also a physical motivation for the unique value or value spectrum of αK . Be-
low the critical temperature critical systems suffer something analogous to spontaneous magnetization.
At the critical point critical systems are characterized by long range correlations and arbitrarily large
volumes of magnetized and non-magnetized phases are present. Spontaneous magnetization might
correspond to the generation of Kähler magnetic fields: the most probable 3-surfaces are Kähler mag-
netized for subcritical values of αK . At the critical values of αK the most probable 3-surfaces contain
regions dominated by either Kähler electric and or Kähler magnetic fields: by the compactness of CP2

these regions have in general outer boundaries.
This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and

with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most probable
3-space. In fact, this hierarchical structure is in accordance with the basic ideas about renormalization
group invariance. This hypothesis has highly non-trivial consequences even at the level of ordinary
condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the Kähler
form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 4 super-
symmetric field theories duality transformation relates the strong coupling limit for ordinary particles
with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self-dual these
limits must be identical so that action and coupling strength must be RG invariant quantities. This
form of self-duality cannot hold true in TGD. The weak form of self-duality discussed in [7, A2] roughly
states that for the partonic 2-surface the induce Kähler electric field is proportional to the Kähler
magnetic field strength. The proportionality constant is essentially Kähler coupling strength. The
simplest hypothesis is that Kähler coupling strength has single universal valiue and the weak form
of self-duality fixes it. The proportionality αK = g2

K/4π~ and the proposed quantization of Planck
constant requiring a generalization of the imbedding space imply that Kähler coupling strength varies
but is constant at a given page of the ”Big Book” defined by the generalized imbedding space [15] .
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3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kähler action is the most obvious guess for the principle selecting the preferred extremals
and has been taken as a working hypothesis for about one and half decades. Quantum criticality of
Quantum TGD should have however led to the idea that preferred extremals are critical in the sense
that space-time surface allows deformations for which second variation of Kähler action vanishes so
that the corresponding Noether currents are conserved.

Further insights emerged through the realization that Noether currents assignable to the modified
Dirac equation are conserved only if the first variation of the modified Dirac operator DK defined
by Kähler action vanishes. This is equivalent with the vanishing of the second variation of Kähler
action -at least for the variations corresponding to dynamical symmetries having interpretation as
dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge
symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to
a precise identification of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and criti-
cality.
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1. Does one assign criticality with the partonic 2-surfaces at the ends of CDs? Does one restrict
it with the throats for which light-like 3-surface has also degenerate induced 4-metric? Or does
one assume stronger form of holography requiring a slicing of space-time surface by partonic
2-surfaces and string world sheets and assign criticality to all partonic 2-surfaces. This kind of
slicing is suggested by the study of the extremals [16], required by the number theoretic vision
(M8 −H duality [19, A7]), and also by the purely physical condition that a stringy realization
of GCI is possible.

2. What is the exact meaning of the preferred extremal property? The assumption that the vari-
ations of Kähler action leaving 3-surfaces at the ends of CDs invariant would not be consistent
with the effective 2-dimensionality. The assumption that the critical deformations leave invari-
ant only partonic 2-surfaces would imply genuine 2-dimensionality. Should one assume that
critical deformations leave invariant partonic 2-surface and 3-D tangent space in the direction of
space-like 3-surface or light-like 3-surface but not both. This would be consistent with effective
3-dimensionality and would explain why Kac-Moody symmetries associated with the light-like
3-surfaces act as gauge symmetries. This is also essential for the realization of Poincare invari-
ance since the quantization of the light-cone proper time distance between CDs implies that
infinitesimal Poincare transformations lead out of CD unless compensated by Kac-Moody type
transformations acting like gauge transformations. In the similar manner it would explain why
symplectic transformations of δCD act like gauge transformations.

3. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the
throats of light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like
throats are very singular objects criticality might apply only to their variations only in the
limiting sense and it might be necesary to assume criticality for all partonic 2-surfaces.

3.4 Why non-local Kähler function?

Kähler function is nonlocal functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: configuration
space integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations of the
isometry group necessitate the modification of the integration measure defining the inner product so
that the integration measure becomes proportional to the exponent exp(K) of the Kähler function
[47]. The generalization to infinite-dimensional case is obvious. Also the requirement of Kac-Moody
symmetry leads to the presence of this kind of vacuum functional as will be found later. The exponent
is in fact uniquely fixed by finiteness requirement. Configuration space integral is of the following form

∫
S̄1exp(K)S1

√
gdX . (3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in the
following manner. The (1, 1)-part of the second variation of the Kähler function defines the metric
and therefore propagator as contravariant metric and the remaining (2, 0)− and (0, 2)-parts of the
second variation are treated perturbatively. The most natural choice for the 3-surface are obviously
the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined determi-
nants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore
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these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [52]) for induced geometric quantities are extremely nonlinear there is no hope
of obtaining a finite theory. For nonlocal action the situation is however completely different. There
are no local interaction vertices and therefore no products of delta functions in perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deformations is
nothing but the contravariant metric. Also the various vertices of the theory are closely related to the
metric of the configuration space since they are determined by the Kähler function so that perturbation
theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Diff
degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

∫
X4 J ∧ J). The term

is not well defined for non-orientable space-time surfaces and one must assume that k2 vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If k2 is integer multiple of 1/(8π) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(ik3

∫
δX3 J ∧A) it is possible to guarantee that the exponent is integer valued for 4-surfaces with

boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce diver-

gences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to define
a divergence free field theory [52]. The term doesn’t depend at all on the induced metric and there-
fore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2 coordinate
variables is of the form allowed by renormalizable field theory in the sense that only quartic terms
appear. This is seen by noticing that there always exist symplectic coordinates, where the expression
of the Kähler potential is of the form

A =
∑
k

PkdQ
k . (3.8)

The expression for Chern-Simons term in these coordinates is given by

k2

∫
X3

∑
k,l

PldPk ∧ dQk ∧ dQl , (3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

4 Some properties of Kähler action

In this section some properties of Kähler action and Kähler function are discussed in light of experi-
enced gained during about 15 years after the introduction of the notion.

4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although it
is not associated with the preferred extremals of Kähler action, there are good reasons to expect that
it has deep consequences concerning the structure of the theory.

4.1.1 Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of massless
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particles [55]). The Kähler form of CP2 defines symplectic structure and any 4-surface for which CP2

projection is so called Lagrangian sub- manifold [31] (at most two dimensional manifold with vanishing
induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler form. More
explicitly, in the local coordinates, where the vector potential A associated with the Kähler form reads
as A =

∑
k PkdQ

k. Lagrangian manifolds are expressible locally in the following form

Pk = ∂kf(Qi) . (4.1)

where the function f is arbitrary. Notice that for the general YM action surfaces with one-dimensional
CP2 projection are vacuum extremals but for Kähler action one obtains additional degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type vacuum extremals are warped imbeddings X4 of CP2 to H such that
Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional projection
of X4 is random light like curve. These extremals have a non-vanishing action but vanishing Poincare
charges. Their small deformations are identified as space-time counterparts of fermions and their
super partners. Wormhole throats identified as pieces of these extremals are identified as bosons and
their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventual realization that conformal invariance [40] is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

4.1.2 Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M4
+ and M4

+ local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only
induced metric breaks these symmetries. Symplectic transformations of CP2 act on the Maxwell
field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symmetries.
They are however not gauge symmetries since gauge invariance is still present. In fact, the construc-
tion of the configuration space geometry relies on the assumption that symplectic transformations
of δM4

+ × CP2 which infinitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of the configuration space. In zero en-

ergy ontology these transformations act simultaneously on all partonic 2-surfaces characterizing the
space-time sheet representing a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations means
that U(1) gauge invariance is effectively broken. This has non-trivial implications. The field equations
allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics [16]. For the
known extremals (massless extremals) they are light-like and a possible interpretation is in terms of
Bose-Einstein condensates of collinear massless bosons.

4.1.3 Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+ × Y 2, Y 2 any Lagrangian sub-manifold

of CP2 are vacua irrespective of the topology and that symplectic transformations of CP2 generate
new surfaces Y 2. If preferred extremals are obtained as small deformations of vacuum extremals (for
which the criticality is maximal), one expects therefore enormous ground state degeneracy, which
could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy corresponds
to the hypothesis that configuration space is a union of symmetric spaces labeled by zero modes which
do not appear at the line-element of the configuration space metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and the
maxima Kähler function as a function of zero modes define a discrete set which might be called re-
duced configuration space. Spin glass degeneracy turns out to be crucial element for understanding
how macro-temporal quantum coherence emerges in TGD framework. One of the basic ideas about
p-adicization is that the maxima of Kähler function define the TGD counterpart of spin glass energy
landscape [17, 20]. The hierarchy of discretizations of the symmetric spaces corresponding to a hi-
erarchy of measurement resolutions [10] could allow an identification in terms of a hierarchy of spin
glass energy landscapes so that the algebraic points of the WCW would correspond to the maxima
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of Kähler function. The hierarchical structure would be due to the failure of strict non-determinism
of Kähler action allowing in zero energy ontology to add endlessly details to the space-time sheets
representing zero energy states in shorter scale.

4.1.4 Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to δH =
δM4

+×CP2. An analogous idea in string model context became later known as quantum gravitational
holography. The basic implication of the vacuum degeneracy is classical non-determinism, which is
expected to reflect itself as the properties of the Kähler function and configuration space geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the degeneracy
and save quantum gravitational holography in its simplest form. This would mean that one just
replaces space-like 3-surfaces with ”association sequences” consisting of sequences of space-like 3-
surfaces with time like separations as causal determinants. This would mean that the absolute minima
of Kähler function would become degenerate: same space-like 3-surface at δH would correspond to
several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian signature
of the induced metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X3

l , which might be called
elementary particle horizons. The non-determinism of the CP2 type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M4

+. Pieces of CP2 type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one has
specified the length scale of measurement resolution. One can always add a CD containing a vacuum
extremal to get a new zero energy state and a preferred extremal containing more details.

4.1.5 Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must for
several reasons. Quantum classical correspondence, which has become a basic guide line in the de-
velopment of TGD, states that all quantum phenomena have classical space-time correlates. This is
not new as far as properties of quantum states are considered. What is new that also quantum jumps
and quantum jump sequences which define conscious existence in TGD Universe, should have classical
space-time correlates: somewhat like written language is correlate for the contents of consciousness of
the writer. Classical non-determinism indeed makes this possible. Classical non-determinism makes
also possible the realization of statistical ensembles as ensembles formed by strictly deterministic
pieces of the space-time sheet so that even thermodynamics has space-time representations. Space-
time surface can thus be seen as symbolic representations for the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not be
possible. Classical non-determinism together with quantum-classical correspondence however suggests
that it is possible to have quantum jumps in which non-determinism is concentrated in space-time
region so that also conscious experience contains information about this region only.

4.2 Four-dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in the
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sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the light-like
3-surfaces connecting the ends. This implies that basic geometric objects are partonic 2-surfaces at
the boundaries of CDs identified as the intersections of these two kinds of surfaces. Besides this the
distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so that one would have
only effective 2-dimensionality. The failure of the non-determinism of Kähler action in the standard
sense of the word affects the situation also and one must allow a fractal hierarchy of CDs inside CDs
having interpretation in terms of radiative corrections.

4.2.1 Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like vibrational
excitations possess zero norm they contribute tachyonic term to the mass squared operator of Super
Kac Moody algebra. This difficulty is familiar already from string models [53, 54].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees that
time like excitations do not contribute to the mass squared operator so that mass spectrum is tachyon
free. It also implies the decoupling of the tachyons from physical states: the propagator of the theory
corresponds essentially to the inverse of the Kähler metric and therefore decouples from time like
vibrational excitations. The experience with string model suggests that if metric is degenerate with
respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like excitations possess
vanishing norm with respect to configuration space metric.

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is guaran-
teed in the strong sense since the scalar product of two Diff vector fields given by the matrix associated
with (1, 1) part of the second variation of the Kähler action vanishes identically. This property gives
hopes of obtaining theory, which is free from Diff anomalies: in fact loop space metric is not Diff
degenerate and this might be the underlying reason to the problems encountered in string models
[53, 54].

4.2.2 Complexification of the configuration space

Strong form of GCI plays a fundamental role in the complexification of the configuration space. GCI in
strong form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D
tangent space data associated with ends of light-like 3-surface at light-like boundaries of CD. At both
ends the imbedding space is effectively reduces to δM4

+ × CP2 (forgetting the complications due to
non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional Euclidian
sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure. Therefore
one can say that in certain sense configuration space metric inherits the Kähler structure of S2×CP2.
This mechanism works in case of four-dimensional Minkowski space only: higher-dimensional spheres
do not possess even Kähler structure. In fact, it turns out that the quantum fluctuating degrees of
freedom can be regarded in well-defined sense as a local variant of S2 × CP2 and thus as an infinite-
dimensional analog of symmetric space as the considerations of [7, A2] demonstrate.

The details of the complexification were understood only after the construction of configuration
space geometry and spinor structure in terms of second quantized induced spinor fields [9, A3]. This
also allows to make detailed statements about complexification [7, A2].

4.2.3 Contravariant metric and Diff4 degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered in
both GRT and gauge theories [48]. In TGD a solution of the problem is provided by the existence of
infinite-dimensional isometry group. If the generators of this group form a complete set in the sense
that any vector of the tangent space is expressible as as sum of these generators plus some zero norm
vector fields then one can restrict the consideration to this subspace and in this subspace the matrix
g(X,Y ) defined by the components of the metric tensor indeed indeed possesses well defined inverse
g−1(X,Y ). This procedure is analogous to gauge fixing conditions in gauge theories and coordinate
fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible an
approach to WCW integration based on harmonic analysis replacing the perturbative approach based
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on perturbative functional integral. This approach allows also a p-adic variant and leads an effective
discretization in terms of discrete variants of WCW for which the points of symmetric space consist
of algebraic points. There is an infinite number of these discretizations [17] and the interpretation is
in terms of finite measurement resolution. This gives a connection with the p-adicization program,
infinite primes, inclusions of hyper-finite factors as representation of the finite measurement resolution,
and the hierarchy of Planck constants [19, A7] so that various approaches to quantum TGD converge
nicely.

4.2.4 General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff4 invariant. This in fact
fixes not only classical but also quantum dynamics completely. The point is that the values of the
configuration space spinor fields must be essentially same for all Diff4 related 3-surfaces at the orbit
X4 associated with a given 3-surface. This would mean that the time development of Diff4 invariant
configuration spinor field is completely determined by its initial value at the moment of the big bang!

This is of course a naive over statement. The non-determinism of Kähler action and zero energy
ontology force to take the causal diamond (CD) defined by the intersection of future and past directed
light-cones as the basic structural unit of configuration space, and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW spinor
fields into a sum of products associated with various partonic 2-surfaces. In particular, one obtains
time-like entanglement between positive and negative energy parts of zero energy states and entangle-
ment coefficients define what can be identified as M -matrix expressible as a ”complex square root” of
density matrix and reducing to a product of positive definite diagonal square root of density matrix
and unitary S-matrix. The collection of orthonormal M -matrices in turn define unitary U -matrix
between zero energy states. M -matrix is the basic object measured in particle physics laboratory.

4.3 Holomorphic factorization of Kähler function

One can guess the general form of the core part of the Kähler function as function of complex coordi-
nates assignable to the partonic surfaces at positive and negative energy ends of CD. It its convenient
to restrict the consideration to the simplest possible non-trivial case which is represented by single
propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group [30] and Kac-Moody group [43]. This coset space is as a manifold Cartesian
product (G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler
metric contains also an interaction term between the factors of the Cartesian product so that
Kähler function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (4.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.
Kkin would correspond to the Chern-Simons term assignable to the ends of the line and Kint to
the Chern-Simons terms assignable to the wormhole throats.
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4.4 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

4.4.1 1-1 correspondence between canonical momentum densities and time derivatives
fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multiplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the space-time surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknowns. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivatives in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
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might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

4.4.2 Do the coverings forces by the many-valuedness of ∂0h
k correspond to the cover-

ings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure the
failure of the perturbation theory at quantum level. At classical level the many-valuedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generalized
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.
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2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture
[15].

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and implies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of ~
do not lead to inconsistencies. For space-like 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

4.4.3 Connection with the criticality of the preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters coincide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
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be just those multi-branched space-time surfaces for which branches coincide at the boundaries of
CD × CP2 and at the throats.

5 Weak form of electric-magnetic duality and explicit calcu-
lation of Kähler function

The basic technical problem of quantum TGD has been the explicit calculation of the Kähler function
[10, A4]. Here only the overall view is discussed. The identification as a Kähler action for a preferred
extremal of Kähler action does not look a very practical approach since even the question what
”preferred” means has been far from obvious. The notion which I have christened as a weak form of
electric-magnetic duality however led to a dramatic progress in this problem [10, A4]. One ends up to
an expression of Kähler function as a Chern-Simons action for its extremal defined by the ends of the
space-time sheet and wormhole throats and also to an expression as a Dirac determinant and there
are excellent hopes that a longstanding technical problem has been finally solved. Also the notion
of preferred extremal finds a precise definition in terms of general solution ansatz for field equations
forced by the reduction of TGD to almost topological quantum field theory and the theory can be
solved also in the fermionic sector.

The notion of electric-magnetic duality [57] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2

geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles
and Kähler coupling strength is by quantum criticality renormalization group invariant rather than
running coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades
ago in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [7]. What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

The weak form of electric-magnetic duality has equally dramatic implications concerning the math-
ematical understanding of the basic theory and its calculability.

1. The weak form electric-magnetic duality together with Beltrami flow property [58] of Kähler
current leads to the reduction of Kähler action to Chern-Simons action so that TGD reduces
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to almost topological QFT and that Kähler function is explicitly calculable [10, A4]. This has
an enormous impact concerning the calculability of the theory. The basic observation is that if
Kähler current is proportional to instanton current then the Coulomb interaction term in the
decomposition of the Kähler action to interior and boundary terms vanishes and Kähler action
reduces to a mere boundary term, which by the weak form of electric magnetic duality reduces
to a Chern-Simons term. The proportionality of the Kähler current to instanton current implies
also the vanishing of the 4-D Lorentz force if the CP2 projection of the space-time surface has
dimension less than four and has been conjectured to be a general property of solutions of field
equations [16] so that the reduction to almost topological QFT has been implicitly prediction of
TGD for almost decade but has remained unrecognized.

2. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT [A4, 10, 16]. The solution ansatz makes more detailed
the older solution ansatz and is inspired by the idea that all isometry currents are proportional
to Kähler current which is integrable in the sense that the flow parameter associated with its
flow lines defines a global coordinate. Kähler current in turn must be proportional to instanton
current to achieve the vanishing of Coulomb term in Kähler action implying a reduction to
almost topological QFT. The proposed solution ansatz would describe a hydrodynamical flow
with the property that isometry charges are conserved along the flow lines (Beltrami flow [58])
assignable to the instanton current. A general ansatz satisfying the integrability conditions is
found.

The solution ansatz applies also to the extremals of Chern-Simons action and to the conserved
currents associated with the modified Dirac equation defined as contractions of the modified
gamma matrices between the solutions of the modified Dirac equation. The strongest form of
the solution ansatz states that various classical and quantum currents flow along flow lines of the
Beltrami flow defined by Kähler current (Kähler magnetic field associated with Chern-Simons
action). Intuitively this picture is attractive. A more general ansatz would allow several Beltrami
flows meaning multi-hydrodynamics but Kähler current must still be proportional to instanton
current. The integrability conditions boil down to two scalar functions: the first one satisfies
massless d’Alembert equation in the induced metric and the gradients of the scalar functions are
orthogonal. The interpretation in terms of momentum and polarization directions is natural.
This means dual interpretations in terms of hydrodynamics and field theory.

3. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced
spinor fields are simply constant along flow lines of indued spinor field for Dirac equation in
suitable gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator
can be deduced explicitly if the throats and the ends of space-time surface at the boundaries of
CD are extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary
differential equations along flow lines. One can deduce the general form of the spectrum and the
explicit representation of the Dirac determinant in terms of geometric quantities characterizing
the 3-surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines
in the effective metric defined by the modified gamma matrices). The resulting general form
of Kähler function is consistent with the expression of the Kähler action of CP2 type vacuum
extremals conjectured from the argument leading to a general formula for gravitational constant.

4. Connections with various conjectures emerge. Infinite-primes [19, A8] provide a highly suggestive
characterization for the spectrum of the eigenvalues expressible in terms of M2 pseudo-momenta
identifiable as hyper-complex primes of the projections of hyper-octonionic primes to hyper-
complex plane M2. This would also mean a number theoretical characterization of the geometry
of 3-surfaces defining the lines of the generalized Feynman diagram. An arithmetic quantum
field theory defined by infinite primes would correlate via the conservation of number theoretic
momentum

∑
nilog(pi) the geometries for the lines of the generalized Feynman diagram arriving

at a given vertex realizing therefore quantum classical correspondence. A precise connection with
the p-adic length scale hypothesis and hierarchy of Planck constants emerges. Even the notion
of number theoretic braid emerges also unavoidably so that it is fair to say that a large bundle
of ”must-be-trues” reduces to consequences of the weak form of electric-magnetic duality.
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To sum up, the weak form of electric-magnetic duality gives excellent hopes that quantum TGD
is exactly solvable theory. Of course, it must be made clear that the proportionality of all conserved
currents to instanton current defining Beltrami flow is very strong and the mathematical proof that
this reduction almost obvious in the hydrodynamical picture is really possible is lacking.

References

Books about TGD

[1] M. Pitkänen (2006), Quantum Physics as Infinite-Dimensional Geometry.
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html.

[2] M. Pitkänen (2006), TGD as a Generalized Number Theory.
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html.

[3] M. Pitkänen (2006), p-Adic length Scale Hypothesis and Dark Matter Hierarchy.
http://tgdtheory.com/public_html/paddark/paddark.html.

[4] M. Pitkänen (2006), Quantum TGD.
http://tgdtheory.com/public_html/tgdquant/tgdquant.html.

[5] M. Pitkänen (2006), Physics in Many-Sheeted Space-Time.
http://tgdtheory.com/public_html/tgdclass/tgdclass.html.

[6] M. Pitkänen (2006), TGD Inspired Theory of Consciousness.
http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html.

References to books and articles about TGD

[7] The chapter Construction of Configuration Space Kähler Geometry from Symmetry Principles:
Part I of [1].
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#compl1.

[8] The chapter Identification of the Configuration Space Kähler Function of [1].
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#kahler.

[9] The chapter Configuration Space Spinor Structure of [1].
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#cspin.

[10] The chapter Does the Modified Dirac Equation Define the Fundamental Action Principle? of [1].
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#Dirac.

[11] The chapter Construction of Quantum Theory: Symmetries of [4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#quthe.

[12] The chapter Construction of Quantum Theory: S-matrix of [4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#towards.

[13] The chapter Does the QFT Limit of TGD Have Space-Time Super-Symmetry? of [4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#susy.

[14] The chapter Is it Possible to Understand Coupling Constant Evolution at Space-Time Level? of
[4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#rgflow.

[15] The chapter Does TGD Predict the Spectrum of Planck Constants? of [4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#Planck.

[16] The chapter Basic Extremals of Kähler Action of [5].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#class.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html
http://tgdtheory.com/public_html/paddark/paddark.html
http://tgdtheory.com/public_html/tgdquant/tgdquant.html
http://tgdtheory.com/public_html/tgdclass/tgdclass.html
http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#kahler
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#cspin
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#quthe
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#towards
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#susy
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#rgflow
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#Planck
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#class


REFERENCES 27

[17] The chapter TGD as a Generalized Number Theory: p-Adicization Program of [2].
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visiona.

[18] The chapter TGD as a Generalized Number Theory: Quaternions, Octonions, and their Hyper
Counterparts of [2].
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visionb.

[19] The chapter TGD as a Generalized Number Theory: Infinite Primes of [2].
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visionc.

[20] The chapter Fusion of p-Adic and Real Variants of Quantum TGD to a More General Theory of
[2].
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#mblocks.

[21] The chapter p-Adic Particle Massivation: New Physics of [3].
http://tgdtheory.com/public_html/paddark/paddark.html#padmass4.

[22] The chapter Quantum Hall effect and Hierarchy of Planck Constants of [3].
http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd.

[23] The chapter Negentropy Maximization Principle of [6].
http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html#nmpc.

[24] The chapter Appendix B of [4].
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#appendb.

Articles about TGD

[A2] M. Pitkänen (2010), Physics as Infinite-dimensional Geometry II: Configuration Space
Kähler Geometry Symmetry Principles. http://tgdtheory.com/public_html/articles/

symmapproach.pdf.

[A3] M. Pitkänen (2010), Physics as Infinite-dimensional Geometry III: Configuration Space Spinor
Structure. http://tgdtheory.com/public_html/articles/spinstructure.pdf.

[A4] M. Pitkänen (2010), Physics as Infinite-dimensional Geometry IV: Weak Form of Electric-
Magnetic Duality and Its Implications. http://tgdtheory.com/public_html/articles/

emduality.pdf.

[A5] M. Pitkänen (2010), Physics as Generalized Number Theory I: p-Adic Physics and Number The-
oretic Universality. http://tgdtheory.com/public_html/articles/artvisiona.pdf.

[A6] M. Pitkänen (2010), Physics as Generalized Number Theory II: Classical Number Fields. http:
//tgdtheory.com/public_html/articles/artvisionb.pdf.

[A7] M. Pitkänen (2010), Physics as Generalized Number Theory III: Infinite Primes. http://

tgdtheory.com/public_html/articles/artvisionc.pdf.

[A8] M. Pitkänen (2010), The Geometry of CP2 and its Relationship to Standard Model. http://
tgdtheory.com/public_html/articles/cp2geometry.pdf.

Mathematics

Various geometries

[25] Eisenhart (1964): Riemannian Geometry. Princeton University Press.

[26] Symmetric space. http://en.wikipedia.org/wiki/Symmetric_space.

[27] Harmonic analysis. http://en.wikipedia.org/wiki/Harmonic_analysis.

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visiona
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visionb
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#visionc
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#mblocks
http://tgdtheory.com/public_html/paddark/paddark.html#padmass4
http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html#nmpc
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#appendb
http://tgdtheory.com/public_html/articles/symmapproach.pdf
http://tgdtheory.com/public_html/articles/symmapproach.pdf
http://tgdtheory.com/public_html/articles/spinstructure.pdf
http://tgdtheory.com/public_html/articles/emduality.pdf
http://tgdtheory.com/public_html/articles/emduality.pdf
http://tgdtheory.com/public_html/articles/artvisiona.pdf
http://tgdtheory.com/public_html/articles/artvisionb.pdf
http://tgdtheory.com/public_html/articles/artvisionb.pdf
http://tgdtheory.com/public_html/articles/artvisionc.pdf
http://tgdtheory.com/public_html/articles/artvisionc.pdf
http://tgdtheory.com/public_html/articles/cp2geometry.pdf
http://tgdtheory.com/public_html/articles/cp2geometry.pdf
http://en.wikipedia.org/wiki/Symmetric_space
http://en.wikipedia.org/wiki/Harmonic_analysis


REFERENCES 28

[28] Kähler manifold. http://en.wikipedia.org/wiki/Khler_manifold.

[29] Complex projective space. http://en.wikipedia.org/wiki/Complex_projective_space.
T. Eguchi, B. Gilkey, J. Hanson (1980). Phys. Rep. 66, 6.

[30] Symplectic manifold. http://en.wikipedia.org/wiki/Symplectic_manifold.
Symplectic geometry. http://en.wikipedia.org/wiki/Symplectic_geometry.
A. C. da Silva (2004), Symplectic geometry. http://www.math.princeton.edu/~acannas/

symplectic.pdf.

[31] Lagrangian sub-manifold. http://en.wikipedia.org/wiki/Lagrangian_submanifold.

[32] Clifford algebra. http://en.wikipedia.org/wiki/Clifford_algebra.

[33] Hyper-Kähler manifold. http://en.wikipedia.org/wiki/Hyper-Khler_manifold.

[34] Quaternion-Kähler symmetric space. http://en.wikipedia.org/wiki/Quaternion-Khler_

symmetric_space.

Number theory

[35] Number theory. http://en.wikipedia.org/wiki/Number_theory.
T. M. Apostol (1976), Introduction to Analytic Number Theory, New York: Springer, ISBN 0-
387-90163-9.

[36] Fields. http://en.wikipedia.org/wiki/Field_(mathematics).
D. A. Marcus (1977), Number Fields. Springer Verlag. http://www.springer.com/

mathematics/numbers/book/978-0-387-90279-1.

[37] Quaternions. http://en.wikipedia.org/wiki/Quaternion.

[38] Octonions. http://en.wikipedia.org/wiki/Octonions.
J. C. Baez (2001), The Octonions, Bull. Amer. Math. Soc. 39 (2002), 145-205.
http://math.ucr.edu/home/baez/Octonions/octonions.html.

[39] http://en.wikipedia.org/wiki/P-adic_number.
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